Association of Dietary Pattern with Cardiovascular Risk Factors among Postmenopausal Women in Taiwan: A Cross-Sectional Study from 2001 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Source
2.2. Dietary Assessment and Other Covariates
2.3. Anthropometric, Clinical, and Biochemical Data
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Cardiovascular Risk Dietary Pattern
3.3. Association between the Dietary Pattern and Cardiovascular Risk Factors
4. Discussion
4.1. Association between the Dietary Pattern and Cardiovascular Risk Factors
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stamatelopoulos, K.; Papavagelis, C.; Augoulea, A.; Armeni, E.; Karagkouni, I.; Avgeraki, E.; Georgiopoulos, G.; Yannakoulia, M.; Lambrinoudaki, I. Dietary patterns and cardiovascular risk in postmenopausal women: Protocol of a cross-sectional and prospective study. Maturitas 2018, 116, 59–65. [Google Scholar] [CrossRef]
- Dalal, P.; Agarwal, M. Postmenopausal syndrome. Indian J. Psychiatry 2015, 57 (Suppl. S2), 222–232. [Google Scholar] [CrossRef]
- Newson, L. Menopause and cardiovascular disease. Post Reprod. Health 2018, 24, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Hill, K. The demography of menopause. Maturitas 1996, 23, 113–127. [Google Scholar] [CrossRef]
- Taleb-Belkadi, O.; Chaib, H.; Zemour, L.; Fatah, A.; Chafi, B.; Mekki, K. Lipid profile, inflammation, and oxidative status in peri- and postmenopausal women. Gynecol. Endocrinol. 2016, 32, 982–985. [Google Scholar] [CrossRef]
- Gaspard, U.J.; Gottal, J.-M.; van den Brûle, F.A. Postmenopausal changes of lipid and glucose metabolism: A review of their main aspects. Maturitas 1995, 21, 171–178. [Google Scholar] [CrossRef]
- Yamatani, H.; Takahashi, K.; Yoshida, T.; Takata, K.; Kurachi, H. Association of estrogen with glucocorticoid levels in visceral fat in postmenopausal women. Menopause 2013, 20, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Inaraja, V.; Thuissard, I.; Andreu-Vazquez, C.; Jodar, E. Lipid profile changes during the menopausal transition. Menopause 2020, 27, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Boukhris, M.; Tomasello, S.D.; Marzà, F.; Bregante, S.; Pluchinotta, F.R.; Galassi, A.R. Coronary Heart Disease in Postmenopausal Women with Type II Diabetes Mellitus and the Impact of Estrogen Replacement Therapy: A Narrative Review. Int. J. Endocrinol. 2014, 2014, 413920. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare, Taiwan. 2020 Cause of Death Statistics. Available online: https://www.mohw.gov.tw/cp-5256-63399-2.html (accessed on 22 January 2022).
- Shen, T.-Y.; Strong, C.; Yu, T. Age at menopause and mortality in Taiwan: A cohort analysis. Maturitas 2020, 136, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Landscape, NTU Research and Development. Fast Population Aging: A Challenge of National Health Insurance in Taiwan. Available online: http://research.ord.ntu.edu.tw/landscape/inner.aspx?id=260&chk=4dd6e804-41d7-420d-a4a2-beacba644b44 (accessed on 10 June 2022).
- Hsu, C.-C.; Chang, H.-Y.; Wu, I.-C.; Chen, C.-C.; Tsai, H.-J.; Chiu, Y.-F.; Chuang, S.-C.; Hsiung, W.-C.; Tsai, T.-L.; Liaw, W.-J.; et al. Cohort Profile: The Healthy Aging Longitudinal Study in Taiwan (HALST). Int. J. Epidemiol. 2017, 46, 1106. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Tang, X.; Li, N.; Wu, Y.; Wang, J.; Li, J.; Zhang, Z.; Dou, H.; Liu, J.; Yu, L.; et al. Menopause with cardiovascular disease and its risk factors among rural Chinese women in Beijing: A population-based study. Maturitas 2012, 72, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Pardhe, B.D.; Ghimire, S.; Shakya, J.; Pathak, S.; Shakya, S.; Bhetwal, A.; Khanal, P.R.; Parajuli, N.P. Elevated Cardiovascular Risks among Postmenopausal Women: A Community Based Case Control Study from Nepal. Biochem. Res. Int. 2017, 2017, 3824903. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-Y.; Yang, W.-S.; Lee, L.-T.; Chen, C.-Y.; Liu, C.-S.; Lin, C.-C.; Huang, K.-C. Insulin resistance, obesity, and metabolic syndrome among non-diabetic pre- and post-menopausal women in North Taiwan. Int. J. Obes. 2006, 30, 912–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banna, J.C.; Gilliland, B.; Keefe, M.; Zheng, D. Cross-cultural comparison of perspectives on healthy eating among Chinese and American undergraduate students. BMC Public Health 2016, 16, 1015. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.L.; Silva, T.R.; Maturana, M.A.; Spritzer, P.M. Dietary intake of isoflavones is associated with a lower prevalence of subclinical cardiovascular disease in postmenopausal women: Cross-sectional study. J. Hum. Nutr. Diet. 2019, 32, 810–818. [Google Scholar] [CrossRef]
- Ventura, D.D.A.; Fonseca, V.D.M.; Ramos, E.G.; Marinheiro, L.P.F.; De Souza, R.A.G.; Chaves, C.R.M.D.M.; Peixoto, M.V.M. Association between quality of the diet and cardiometabolic risk factors in postmenopausal women. Nutr. J. 2014, 13, 121. [Google Scholar] [CrossRef]
- Zhang, F.; Tapera, T.M.; Gou, J. Application of a new dietary pattern analysis method in nutritional epidemiology. BMC Med. Res. Methodol. 2018, 18, 119. [Google Scholar] [CrossRef]
- Muga, M.A.; Owili, P.; Hsu, C.-Y.; Rau, H.-H.; Chao, J.C.-J. Association between Dietary Patterns and Cardiovascular Risk Factors among Middle-Aged and Elderly Adults in Taiwan: A Population-Based Study from 2003 to 2012. PLoS ONE 2016, 11, e0157745. [Google Scholar] [CrossRef] [Green Version]
- Kurniawan, A.L.; Hsu, C.-Y.; Rau, H.-H.; Lin, L.-Y.; Chao, J.C.-J. Association of kidney function-related dietary pattern, weight status, and cardiovascular risk factors with severity of impaired kidney function in middle-aged and older adults with chronic kidney disease: A cross-sectional population study. Nutr. J. 2019, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-C.; Kuo, Y.-H.; Yeh, C.-Y.; Chen, J.-S.; Tang, R.; Changchien, C.-R.; Wang, J.-Y.; Huang, W.-S. Role of body mass index in colon cancer patients in Taiwan. World J. Gastroenterol. 2012, 18, 4191–4198. [Google Scholar] [CrossRef] [PubMed]
- Syauqy, A.; Hsu, C.-Y.; Rau, H.-H.; Chao, J.C.-J. Association of dietary patterns, anthropometric measurements, and metabolic parameters with C-reactive protein and neutrophil-to-lymphocyte ratio in middle-aged and older adults with metabolic syndrome in Taiwan: A cross-sectional study. Nutr. J. 2018, 17, 106. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Adam, S.I.M.; Nawi, A.M.; Hassan, M.R.; Ghazi, H.F. Abdominal obesity indicators: Waist circumference or waist-to-hip ratio in Malaysian adults population. Int. J. Prev. Med. 2016, 7, 82. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Du, Z.; Ye, N.; Liu, S.; Geng, D.; Wang, P.; Sun, Y. Using the Atherogenic Index of Plasma to Estimate the Prevalence of Ischemic Stroke within a General Population in a Rural Area of China. BioMed Res. Int. 2020, 2020, 7197054. [Google Scholar] [CrossRef]
- Li, Y.-W.; Kao, T.-W.; Chang, P.-K.; Chen, W.-L.; Wu, L.-W. Atherogenic index of plasma as predictors for metabolic syndrome, hypertension and diabetes mellitus in Taiwan citizens: A 9-year longitudinal study. Sci. Rep. 2021, 11, 9900. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., III; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Sun, Q.; Wen, Q.; Lyu, J.; Sun, D.; Ma, Y.; Man, S.; Yin, J.; Jin, C.; Tong, M.; Wang, B.; et al. Dietary Pattern Derived by Reduced Rank Regression and Cardiovascular Disease: A Cross-Sectional Study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 337–345. [Google Scholar] [CrossRef]
- Tardivo, A.P.; Nahas-Neto, J.; Nahas, E.A.P.; Maesta, N.; Rodrigues, M.A.H.; Orsatti, F. Associations between healthy eating patterns and indicators of metabolic risk in postmenopausal women. Nutr. J. 2010, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.-T.; Gao, Y.; Zheng, Y.-Y.; Ma, Y.-T.; Xie, X. Atherogenic index of plasma (AIP): A novel predictive indicator for the coronary artery disease in postmenopausal women. Lipids Health Dis. 2018, 17, 197. [Google Scholar] [CrossRef] [PubMed]
- Taddei, S. Blood pressure through aging and menopause. Climacteric 2009, 12 (Suppl. S1), 36–40. [Google Scholar] [CrossRef] [PubMed]
- Bo, M.S.; Cheah, W.L.; Lwin, S.; Nwe, T.M.; Win, T.T.; Aung, M. Understanding the Relationship between Atherogenic Index of Plasma and Cardiovascular Disease Risk Factors among Staff of an University in Malaysia. J. Nutr. Metab. 2018, 2018, 7027624. [Google Scholar] [CrossRef]
- Nwagha, U.I.; Ikekpeazu, E.J.; Ejezie, F.E.; Neboh, E.E.; Maduka, I.C. Atherogenic index of plasma: A significant indicator for the onset of atherosclerosis during menopause in hypertensive females of Southeast Nigeria. Afr. Health Sci. 2010, 10, 248–252. [Google Scholar] [PubMed]
- Alves, B.C.; Silva, T.R.; Spritzer, P.M. Sedentary lifestyle and high-carbohydrate intake are associated with low-grade chronic inflammation in post-menopause: A cross-sectional study. Rev. Bras. Ginecol. Obstet. 2016, 38, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Hoang, T.; Lee, S.; Kim, J. Association Between Dietary Patterns and Dyslipidemia in Korean Women. Front. Nutr. 2022, 8, 756257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Z.; Wang, H.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Jia, X.; Huang, F.; Zhai, F.; et al. Association between dietary patterns and blood lipid profiles among Chinese women. Public Health Nutr. 2016, 19, 3361–3368. [Google Scholar] [CrossRef] [Green Version]
- Htun, N.C.; Suga, H.; Imai, S.; Shimizu, W.; Takimoto, H. Food intake patterns and cardiovascular risk factors in Japanese adults: Analyses from the 2012 National Health and nutrition survey, Japan. Nutr. J. 2017, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M. Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 2004, 89, 2595–2600. [Google Scholar] [CrossRef]
- Rosano, G.M.C.; Vitale, C.; Marazzi, G.; Volterrani, M. Menopause and cardiovascular disease: The evidence. Climacteric 2007, 10 (Suppl. S1), 19–24. [Google Scholar] [CrossRef]
- Zheng, C.; Beresford, S.A.; Van Horn, L.; Tinker, L.F.; Thomson, C.A.; Neuhouser, M.L.; Di, C.; Manson, J.E.; Mossavar-Rahmani, Y.; Seguin, R.; et al. Simultaneous Association of Total Energy Consumption and Activity-Related Energy Expenditure With Risks of Cardiovascular Disease, Cancer, and Diabetes Among Postmenopausal Women. Am. J. Epidemiol. 2014, 180, 526–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathnayake, K.M.; Weech, M.; Jackson, K.G.; Lovegrove, J.A. Meal Fatty Acids Have Differential Effects on Postprandial Blood Pressure and Biomarkers of Endothelial Function but Not Vascular Reactivity in Postmenopausal Women in the Randomized Controlled Dietary Intervention and VAScular function (DIVAS)-2 Study. J. Nutr. 2018, 148, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Howard, B.V.; Van Horn, L.; Hsia, J.; Manson, J.E.; Stefanick, M.I.; Wassertheil-Smoller, S.; Kuller, L.H.; LaCroix, A.Z.; Langer, R.D.; Lasser, N.I.; et al. Low-Fat Dietary Pattern and Risk of Cardiovascular Disease: The Women’s Health Initiative Randomized Controlled Dietary Modification Trial. Obstet. Gynecol. Surv. 2006, 61, 451–453. [Google Scholar] [CrossRef]
- Chen, G.-C.; Chen, L.-H.; Mossavar-Rahmani, Y.; Kamensky, V.; Shadyab, A.H.; Haring, B.; Wild, R.A.; Silver, B.; Kuller, L.H.; Sun, Y.; et al. Dietary cholesterol and egg intake in relation to incident cardiovascular disease and all-cause and cause-specific mortality in postmenopausal women. Am. J. Clin. Nutr. 2020, 113, 948–959. [Google Scholar] [CrossRef] [PubMed]
- Hirahatake, K.M.; Jiang, L.; Wong, N.D.; Shikany, J.M.; Eaton, C.; Allison, M.A.; Martin, L.; Garcia, L.; Zaslavsky, O.; Odegaard, A.O. Diet Quality and Cardiovascular Disease Risk in Postmenopausal Women With Type 2 Diabetes Mellitus: The Women’s Health Initiative. J. Am. Heart Assoc. 2019, 8, e013249. [Google Scholar] [CrossRef]
- Manios, Y.; Kourlaba, G.; Grammatikaki, E.; Androutsos, O.; Ioannou, E.; Roma-Giannikou, E. Comparison of two methods for identifying dietary patterns associated with obesity in preschool children: The Genesis study. Eur. J. Clin. Nutr. 2010, 64, 1407–1414. [Google Scholar] [CrossRef] [Green Version]
Variables | Participants (n = 5689) |
---|---|
Age (years) | 60.6 ± 7.6 |
Education | |
<High school | 4636 (81.5) |
≥High school | 1053 (18.5) |
Occupation | |
Non-professional | 3637 (63.9) |
Professional | 1269 (22.3) |
Unemployed/retired | 783 (13.8) |
Annual family income (NTD) | |
<800,000 | 3929 (69.1) |
810,000–1,600,000 | 1347 (23.7) |
>1,600,000 | 413 (7.2) |
Marital status | |
Never married | 83 (1.5) |
Married | 4002 (70.3) |
Widows/divorced | 1604 (28.2) |
Smoking | |
No | 5567 (97.9) |
Yes | 122 (2.1) |
Drinking alcohol | |
No | 5433 (95.5) |
Yes | 256 (4.5) |
Physical activity frequency | |
<150 min/week | 3160 (55.5) |
≥150 min/week | 2529 (44.5) |
Sleep duration | |
<6 h | 1917 (33.7) |
6–8 h | 3333 (58.6) |
>8 h | 439 (7.7) |
Variables | Participants (n = 5689) |
---|---|
Body mass index (kg/m2) | |
<18.5 | 100 (1.8) |
18.5–23.9 | 2516 (44.2) |
24–26.9 | 1780 (31.3) |
≥27 | 1293 (22.7) |
Waist circumference | |
<80 cm | 3191 (56.1) |
≥80 cm | 2498 (43.9) |
Waist-to-hip ratio | |
<0.85 | 3922 (68.9) |
≥0.85 | 1767 (31.1) |
Prevalence of chronic disease | |
Hypertension | 642 (11.3) |
Diabetes mellitus | 994 (17.5) |
Cardiovascular disease | 609 (10.7) |
Systolic blood pressure (mmHg) | 133 ± 20 |
Diastolic blood pressure (mmHg) | 75 ± 12 |
Atherogenic index of plasma | 0.3 ± 0.3 |
Total cholesterol (mmol/L) | 5.9 ± 0.8 |
Low-density lipoprotein cholesterol (mmol/L) | 3.7 ± 0.8 |
High-density lipoprotein cholesterol (mmol/L) | 1.5 ± 0.4 |
Triglycerides (mmol/L) | 1.6 ± 0.8 |
Fasting blood glucose (mmol/L) | 6.6 ± 1.9 |
C-reactive protein (nmol/L) | 26.8 ± 47.2 |
Dietary Pattern | Cardiovascular Disease Risk Factors 1 | ||
---|---|---|---|
High SBP | High DBP | High AIP | |
Odds Ratio (95% Confidence Interval) | |||
Model 1 2 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 1.29 (1.09–1.52) *** | 1.22 (0.96–1.54) | 1.41 (1.21–1.64) *** |
Q3 | 1.40 (1.19–1.65) *** | 1.28 (1.01–1.63) * | 1.43 (1.23–1.67) *** |
Q4 | 1.84 (1.58–2.16) *** | 1.69 (1.35–2.12) *** | 1.69 (1.45–1.98) *** |
p for trend | 0.000 | 0.000 | 0.000 |
Model 2 3 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 1.15 (0.97–1.36) | 1.13 (0.89–1.44) | 1.29 (1.09–1.51) ** |
Q3 | 1.19 (1.00–1.41) * | 1.14 (0.89–1.46) | 1.18 (1.01–1.39) * |
Q4 | 1.42 (1.20–1.68) *** | 1.43 (1.13–1.79) ** | 1.29 (1.09–1.52) ** |
p for trend | 0.000 | 0.016 | 0.005 |
Model 3 4 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 1.09 (0.92–1.29) | 1.07 (0.84–1.37) | 1.28 (1.09–1.50) ** |
Q3 | 1.10 (0.92–1.31) | 1.05 (0.82–1.34) | 1.16 (0.99–1.37) |
Q4 | 1.29 (1.08–1.53) ** | 1.28 (1.01–1.62) * | 1.26 (1.06–1.49) ** |
p for trend | 0.030 | 0.144 | 0.013 |
Dietary Pattern | Cardiovascular Disease Risk Factors 1 | ||
---|---|---|---|
High TC | High LDL-C | Low HDL-C | |
Odds Ratio (95% Confidence Interval) | |||
Model 1 2 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 0.84 (0.67–1.05) | 0.63 (0.47–0.83) ** | 0.88 (0.75–1.04) |
Q3 | 0.97 (0.77–1.22) | 0.82 (0.60–1.10) | 0.81 (0.69–0.96) * |
Q4 | 0.87 (0.70–1.09) | 0.78 (0.58–1.05) | 0.73 (0.62–0.86) *** |
p for trend | 0.349 | 0.013 | 0.002 |
Model 2 3 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 0.92 (0.73–1.15) | 0.68 (0.51–0.91) ** | 0.95 (0.81–1.13) |
Q3 | 1.11 (0.88–1.39) | 0.92 (0.68–1.24) | 0.93 (0.79–1.11) |
Q4 | 1.08 (0.86–1.35) | 0.94 (0.69–1.27) | 0.90 (0.76–1.06) |
p for trend | 0.334 | 0.022 | 0.665 |
Model 3 4 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 0.92 (0.74–1.16) | 0.71 (0.53–0.94) * | 0.98 (0.83–1.16) |
Q3 | 1.11 (0.87–1.40) | 0.99 (0.73–1.35) | 0.98 (0.82–1.16) |
Q4 | 1.08 (0.85–1.37) | 1.04 (0.77–1.42) | 0.96 (0.81–1.14) |
p for trend | 0.381 | 0.013 | 0.971 |
Dietary Pattern | Cardiovascular Disease Risk Factors 1 | ||
---|---|---|---|
High TG | High FBG | High CRP | |
Odds Ratio (95% Confidence Interval) | |||
Model 1 2 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 1.39 (1.19–1.63) *** | 1.19 (0.92–1.55) | 1.12 (0.92–1.37) |
Q3 | 1.42 (1.21–1.66) *** | 1.75 (1.30–2.35) *** | 1.38 (1.13–1.67) ** |
Q4 | 1.79 (1.54–2.09) *** | 1.42 (1.08–1.86) * | 1.51 (1.25–1.83) *** |
p for trend | 0.000 | 0.002 | 0.000 |
Model 2 3 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 1.29 (1.10–1.51) ** | 1.10 (0.84–1.43) | 0.99 (0.81–1.22) |
Q3 | 1.21 (1.03–1.43) * | 1.54 (1.14–2.07) ** | 1.14 (0.93–1.39) |
Q4 | 1.43 (1.22–1.68) *** | 1.16 (0.87–1.53) | 1.14 (0.93–1.39) |
p for trend | 0.000 | 0.040 | 0.322 |
Model 3 4 | |||
Q1 (reference) | 1 | 1 | 1 |
Q2 | 1.27 (1.09–1.50) ** | 1.07 (0.82–1.39) | 0.99 (0.80–1.21) |
Q3 | 1.18 (1.00–1.40) * | 1.45 (1.07–1.97) * | 1.11 (0.90–1.36) |
Q4 | 1.38 (1.17–1.62) *** | 1.05 (0.79–1.41) | 1.09 (0.89–1.34) |
p for trend | 0.001 | 0.971 | 0.569 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliné, S.; Hsu, C.-Y.; Lee, H.-A.; Paramastri, R.; Chao, J.C.-J. Association of Dietary Pattern with Cardiovascular Risk Factors among Postmenopausal Women in Taiwan: A Cross-Sectional Study from 2001 to 2015. Nutrients 2022, 14, 2911. https://doi.org/10.3390/nu14142911
Aliné S, Hsu C-Y, Lee H-A, Paramastri R, Chao JC-J. Association of Dietary Pattern with Cardiovascular Risk Factors among Postmenopausal Women in Taiwan: A Cross-Sectional Study from 2001 to 2015. Nutrients. 2022; 14(14):2911. https://doi.org/10.3390/nu14142911
Chicago/Turabian StyleAliné, Sabrina, Chien-Yeh Hsu, Hsiu-An Lee, Rathi Paramastri, and Jane C.-J. Chao. 2022. "Association of Dietary Pattern with Cardiovascular Risk Factors among Postmenopausal Women in Taiwan: A Cross-Sectional Study from 2001 to 2015" Nutrients 14, no. 14: 2911. https://doi.org/10.3390/nu14142911
APA StyleAliné, S., Hsu, C.-Y., Lee, H.-A., Paramastri, R., & Chao, J. C.-J. (2022). Association of Dietary Pattern with Cardiovascular Risk Factors among Postmenopausal Women in Taiwan: A Cross-Sectional Study from 2001 to 2015. Nutrients, 14(14), 2911. https://doi.org/10.3390/nu14142911