Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition
Abstract
:1. Introduction
2. Material and Methods
2.1. Material
2.1.1. Vegetable Material and Site of Study
2.1.2. Brief Descriptions of the Cultivars Studied
2.2. Methods
2.2.1. Seeds and Peels Collection
2.2.2. Analysis of Nutritional Parameters
Proximate Composition
2.2.3. Determination of Ash Content
2.2.4. Determination of Mineral Content
2.2.5. Analysis of Proximal Phytonutrient Composition and Antioxidant Activity of Tomato By-Products
Levels of Phenolic Compounds
Determination of Lycopene and β-Carotene
Determination of Vitamin C
Determination of Antioxidant Activity
2.3. Statistical Analysis
3. Results and Discussion
3.1. Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeyeye, S.A.O.; Ashaolu, T.J.; Bolaji, O.T.; Abegunde, T.A.; Omoyajowo, A.O. Africa and the Nexus of Poverty, Malnutrition and Diseases. Crit. Rev. Food Sci. Nutr. 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- WHO. Malnutrition Is a World Health Crisis. Available online: https://www.who.int/news/item/26-09-2019-malnutrition-is-a-world-health-crisis (accessed on 17 May 2022).
- Otiti, M.I.; Allen, S.J. Severe Acute Malnutrition in Low- and Middle-Income Countries. Paediatr. Child Health 2021, 31, 301–307. [Google Scholar] [CrossRef]
- Kassaw, A.; Amare, D.; Birhanu, M.; Tesfaw, A.; Zeleke, S.; Arage, G.; Kefale, D. Survival and Predictors of Mortality among Severe Acute Malnourished under-Five Children Admitted at Felege-Hiwot Comprehensive Specialized Hospital, Northwest, Ethiopia: A Retrospective Cohort Study. BMC Pediatr. 2021, 21, 176. [Google Scholar] [CrossRef]
- Mathewson, S.L.; Azevedo, P.S.; Gordon, A.L.; Phillips, B.E.; Greig, C.A. Overcoming Protein-Energy Malnutrition in Older Adults in the Residential Care SettingA Narrative Review of Causes and Interventions. Ageing Res. Rev. 2021, 70, 101401. [Google Scholar] [CrossRef] [PubMed]
- FAO. Fruits et Légumes—Éléments Essentiels de Ton Alimentation: Année Internationale des Fruits et des Légumes; Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
- Branthôme, F.-X. Worldwide (Total Fresh) Tomato Production Exceeds 187 Million Tonnes in 2020. Available online: https://www.tomatonews.com/en/worldwide-total-fresh-tomato-production-exceeds-187-million-tonnes-in-2020_2_1565.html (accessed on 6 June 2022).
- FAOSTAT. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 6 June 2022).
- He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. Effects of Dietary Fiber on Human Health. Food Sci. Hum. Wellness 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Donado-Pestana, C.M.; Pessoa, É.V.M.; Rodrigues, L.; Rossi, R.; Moura, M.H.C.; dos Santos-Donado, P.R.; Castro, É.; Festuccia, W.T.; Genovese, M.I. Polyphenols of Cambuci (Campomanesia Phaea (O. Berg.)) Fruit Ameliorate Insulin Resistance and Hepatic Steatosis in Obese Mice. Food Chem. 2021, 340, 128169. [Google Scholar] [CrossRef]
- Bin-jumah, M.N.; Nadeem, M.S.; Gilani, S.J.; Mubeen, B.; Ullah, I.; Alzarea, S.I.; Ghoneim, M.M.; Alshehri, S.; Al-abbasi, F.A.; Kazmi, I. Lycopene: A Natural Arsenal in the War against Oxidative Stress and Cardiovascular Diseases. Antioxidants 2022, 11, 232. [Google Scholar] [CrossRef]
- Anand, R.; Mohan, L.; Bharadvaja, N. Disease Prevention and Treatment Using β-Carotene: The Ultimate Provitamin A. Rev. Bras. Farmacogn. 2022, 15, 1–11. [Google Scholar] [CrossRef]
- Weyh, C.; Krüger, K.; Peeling, P.; Castell, L. The Role of Minerals in the Optimal Functioning of the Immune System. Nutrients 2022, 14, 644. [Google Scholar] [CrossRef]
- Scarcella, M.; Scarpellini, E.; Ascani, A.; Commissari, R.; Scorcella, C.; Zanetti, M.; Parisi, A.; Monti, R.; Milic, N.; Donati, A.; et al. Effect of Whey Proteins on Malnutrition and Extubating Time of Critically Ill COVID-19 Patients. Nutrients 2022, 14, 437. [Google Scholar] [CrossRef]
- Zheng, J.; Zhu, T.; Yang, G.; Zhao, L.; Li, F.; Park, Y.M.; Tabung, F.K.; Steck, S.E.; Li, X.; Wang, H. The Isocaloric Substitution of Plant-Based and Animal-Based Protein in Relation to Aging-Related Health Outcomes: A Systematic Review. Nutrients 2022, 14, 272. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, A.M.; Capocasale, M. Physicochemical Composition of Tomato Seed Oil for an Edible Use: The Effect of Cultivar. Int. Food Res. J. 2016, 23, 583–591. [Google Scholar]
- Giuffrè, A.M.; Capocasale, M.; Zappia, C. Tomato Seed Oil for Edible Use: Cold Break, Hot Break, and Harvest Year Effects. J. Food Process. Preserv. 2017, 41, e13309. [Google Scholar] [CrossRef]
- Giuffrè, A.M.; Zappia, C.; Capocasale, M. Tomato Seed Oil: A Comparison of Extraction Systems and Solvents on Its Biodiesel and Edible Properties. Riv. Ital. Sostanze Grasse 2017, 94, 149–160. [Google Scholar]
- Giuffrè, A.M.; Capocasale, M. Sterol Composition of Tomato (Solanum lycopersicum L.) Seed Oil: The Effect of Cultivar. Int. Food Res. J. 2016, 23, 116–122. [Google Scholar]
- Giuffrè, A.M.; Capocasale, M. Policosanol in Tomato (Solanum lycopersicum L.) Seed Oil: The Effect of Cultivar. J. Oleo Sci. 2015, 64, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, R.K.; Prasad, P.; Sreedhar, R.V.; Naidu, K.A.; Shang, X.; Keum, Y.S. Omega−3 Polyunsaturated Fatty Acids (PUFAs): Emerging Plant and Microbial Sources, Oxidative Stability, Bioavailability, and Health benefits—A Review. Antioxidants 2021, 10, 1627. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Wetterhus, E.-M.; Østbye, T.-K.K.; Haugen, J.-E.; Vogt, G. Rest Plant Materials with Natural Antioxidants Increase the Oxidative Stability of Omega-3-Rich Norwegian Cold Pressed Camelina Sativa Oil. ACS Food Sci. Technol. 2021, 1, 529–537. [Google Scholar] [CrossRef]
- Kumar, M.; Chandran, D.; Tomar, M.; Bhuyan, D.J.; Grasso, S.; Sá, A.G.A.; Carciofi, B.A.M.; Radha; Dhumal, S.; Singh, S.; et al. Valorization Potential of Tomato (Solanum lycopersicum L.) Seed: Nutraceutical Quality, Food Properties, Safety Aspects, and Application as a Health-Promoting Ingredient in Foods. Horticulturae 2022, 8, 265. [Google Scholar] [CrossRef]
- Turini, E.; Sarsale, M.; Petri, D.; Totaro, M.; Lucenteforte, E.; Tavoschi, L.; Baggiani, A. Efficacy of Plant Sterol-Enriched Food for Primary Prevention and Treatment of Hypercholesterolemia: A Systematic Literature Review. Foods 2022, 11, 839. [Google Scholar] [CrossRef]
- Jalil, A.Q.; Hamid, E.S.; Allaw, A.A. Effects of Octacosanol, Wheat Germ Oil and Rice Oil Supplementation on Egg Quality Traits of Laying Quail. IOP Conf. Ser. Earth Environ. Sci. 2021, 910, 21–25. [Google Scholar] [CrossRef]
- Kimba, A.; Abdoulaye, A.K.; Delmas, P.; Assoumane, B.D.; Haougui, A. Les Semences de Tomate Disponibles Au Niger. 2014. Available online: http://www.laboress-afrique.org/ressources/assets/docP/Document_N0300.pdf (accessed on 8 June 2022).
- Szabo, K.; Emőke Teleky, B.; Ranga, F.; Simon, E.; Lelia Pop, O.; Babalau-Fuss, V.; Kapsalis, N.; Cristian Vodnar, D. Bioaccessibility of Microencapsulated Carotenoids, Recovered from Tomato Processing Industrial by-Products, Using in Vitro Digestion Model. LWT—Food Sci. Technol. 2021, 152, 112285. [Google Scholar] [CrossRef]
- ISO-23496; Determination of pH Value—Reference Buffer Solutions for the Calibration of pH Measuring Equipment. ISO Copyright Office: Geneva, Switzerland, 2019.
- NF-V05-101; Produits Dérivés Des Fruits et Légumes—Détermination de L’acidité Titrable. Afnor: Paris, France, 1974.
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- López-Bascón-Bascon, M.A.; de Castro, M.D.L. Soxhlet Extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 327–354. [Google Scholar] [CrossRef]
- Atwater, W.O.; Rosa, E.B. A New Respiration Calorimeter and Experiments on the Conservation of Energy in the Human Body, II. Phys. Rev. (Ser. I) 1899, 9, 214–251. [Google Scholar] [CrossRef] [Green Version]
- AFNOR Norme NF T90-431; Gélatine Alimentaire—Détermination de L’humidité et Des Cendres. Afnor: Paris, France, 1982; p. 3.
- NF-ISO-1762; Détermination Du Résidu (Cendres) Après Incinération À 525 °C. Afnor: Paris, France, 2019.
- Dehpour, A.A.; Ali, E.M.; Fazel, N.S.; Mohammad, N.S. Antioxidant Activity of the Methanol Extract of Ferula Assafoetida and Its Essential Oil Composition. Grasas Aceites 2009, 60, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardisation D’un Extrait de Propolis et Identification Des Principaux Constituants. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar]
- Nagata, M.; Yamashita, I. Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon Shokuhin Kogyo Gakkaishi 1992, 39, 925–928. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.; Patani, P.; Singhvi, I. Colorimetric Estimation of Ascorbic Acid from Different Varities of Tomatoes Cultivated in Gujarat. World J. Pharm. Res. 2018, 7, 1376–1384. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. From Functional Food to Medicinal Product: Systematic Approach in Analysis of Polyphenolics from Propolis and Wine. Nutr. J. 2009, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Hinneburg, I.; Damien, D.H.J.; Hiltunen, R. Antioxidant Activities of Extracts from Selected Culinary Herbs and Spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Vital, M.; Yvon Simplice, I.; Wolfgon, M.; Gabriëlla Jesnaure, B.; Michel, E. Évaluation de La Consommation et Caractérisation Nutritionnelle Des Feuilles de Tiliacora Funifera. J. Appl. Biosci. 2020, 154, 15888–15904. [Google Scholar] [CrossRef]
- Ettaib, R.; Tombari, T.; Hammouda, M.B.; Belgacem, A.; Assadi, B. Valorisation Des Écarts de Triage Des Tomates Géothermiques Dans Le Sud Tunisien. Rev. Régions Arid. 2020, 46, 19–21. [Google Scholar]
- Bouzaâta, C.; Bennadja, S.; Abdesselam, A. Valuation of Peels of Four Industrial Tomato Varieties Grown in Annaba (Eastern Algeria). Int. J. Pharm. Sci. Rev. Res. 2016, 36, 52–58. [Google Scholar]
- Jiang, H.; Zhang, J.; Du, W.; Su, C.; Zhang, B.; Wang, H. Energy Intake and Energy Contributions of Macronutrients and Major Food Sources among Chinese Adults: CHNS 2015 and CNTCS 2015. Eur. J. Clin. Nutr. 2021, 75, 314–324. [Google Scholar] [CrossRef]
- Sasanfar, B.; Toorang, F.; Mohebbi, E.; Zendehdel, K.; Azadbakht, L. Dietary Carbohydrate Quality and Risk of Breast Cancer among Women. Nutr. J. 2021, 20, 93. [Google Scholar] [CrossRef] [PubMed]
- Elbadrawy, E.; Sello, A. Evaluation of Nutritional Value and Antioxidant Activity of Tomato Peel Extracts. Arab. J. Chem. 2016, 9, S1010–S1018. [Google Scholar] [CrossRef] [Green Version]
- Amalou, D.; Ait Ammour, M.; Ahishakiye, B.M.; Ammouche, A. Valorisation Des Sous Produits de Conservie: Cas Des Graines de Tomates. In Proceedings of the 4th International Conference African Association of Agricultural Economists, Hammamet, Tunis, 22–25 September 2013; pp. 1–17. [Google Scholar]
- Sidibe, A.; Sidibe, A.; Keita, G.K.; Sanogo, N.P.; Karimou, I.H. Étude Du Comportement de Trois Variétés de Tomate (Lycopersicon Esculentum) En Saison Sèche Fraîche Dans Les Conditions Agro-Climatiques de Katibougou, Koulikoro, Mali. Afr. Sci. 2020, 17, 57–69. [Google Scholar] [CrossRef]
- Cazes, C.; Phelan, K.; Hubert, V.; Boubacar, H.; Bozama, L.I.; Sakubu, G.T.; Tshiala, B.K.; Tusuku, T.; Alitanou, R.; Kouamé, A.; et al. Simplifying and Optimising the Management of Uncomplicated Acute Malnutrition in Children Aged 6–59 Months in the Democratic Republic of the Congo (OptiMA-DRC): A Non-Inferiority, Randomised Controlled Trial. Lancet Glob. Health 2022, 10, e510–e520. [Google Scholar] [CrossRef]
- Navarro-González, I.; García-Alonso, J.; Periago, M.J. Bioactive Compounds of Tomato: Cancer Chemopreventive Effects and Influence on the Transcriptome in Hepatocytes. J. Funct. Foods 2018, 42, 271–280. [Google Scholar] [CrossRef]
- Fox, J.M.; Zimba, P.V. Chapter 8—Minerals and Trace Elements in Microalgae. In Microalgae in Health and Disease Prevention; Levine, I.A., Fleurence, J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 177–193. ISBN 9780128114056. [Google Scholar]
- Chasapis, C.T.; Stamatina, P.; Chara, A.N.; Maria, A.S. Recent Aspects of the Effects of Zinc on Human Health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Wilson, H.; Calcraft, D.; Neville, C.; Lanham-New, S.; Durrant, L.R. Interdisciplinary Nutritional Management and Care for Older Adults: An Evidence-Based Practical Guide for Nurses; Springer International Publishing: Cham, Switzerland, 2021; pp. 115–134. ISBN 978-3-030-63892-4. [Google Scholar]
- Araújo-Rodrigues, H.; Santos, D.; Campos, D.A.; Ratinho, M.; Rodrigues, I.M.; Pintado, M.E. Development of Frozen Pulps and Powders from Carrot and Tomato by-Products: Impact of Processing and Storage Time on Bioactive and Biological Properties. Horticulturae 2021, 7, 185. [Google Scholar] [CrossRef]
- Abbasi-Parizad, P.; De Nisi, P.; Scaglia, B.; Scarafoni, A.; Pilu, S.; Adani, F. Recovery of Phenolic Compounds from Agro-Industrial by-Products: Evaluating Antiradical Activities and Immunomodulatory Properties. Food Bioprod. Process. 2021, 127, 338–348. [Google Scholar] [CrossRef]
- dos Santos Gomes, F.; Silva, L.O.M.; Beres, C.; Pagani, M.M.; Brígida, A.I.S.; de Araújo Santiago, M.C.P.; Pacheco, S.; de Oliveira Godoy, R.L.; Cabral, L.M.C. Processing Tomato Waste as a Potential Bioactive Compounds Source: Phenolic Compounds, Antioxidant Capacity and Bioacessibility Studies. Cienc. Rural 2022, 52, 1–5. [Google Scholar] [CrossRef]
- Kim, J.K.; Science, C. Recent Insights into the Biological and Pharmacological Activity of Lycopene. EXCLI J. 2022, 2022, 415–425. [Google Scholar]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Marik, P.E. The Antiviral Properties of Vitamin C. Expert Rev. Anti. Infect. Ther. 2020, 18, 99–101. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaboré, K.; Konaté, K.; Sanou, A.; Dakuyo, R.; Sama, H.; Santara, B.; Compaoré, E.W.R.; Dicko, M.H. Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition. Nutrients 2022, 14, 2871. https://doi.org/10.3390/nu14142871
Kaboré K, Konaté K, Sanou A, Dakuyo R, Sama H, Santara B, Compaoré EWR, Dicko MH. Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition. Nutrients. 2022; 14(14):2871. https://doi.org/10.3390/nu14142871
Chicago/Turabian StyleKaboré, Kabakdé, Kiéssoun Konaté, Abdoudramane Sanou, Roger Dakuyo, Hemayoro Sama, Balamoussa Santara, Ella Wendinpuikondo Rakèta Compaoré, and Mamoudou Hama Dicko. 2022. "Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition" Nutrients 14, no. 14: 2871. https://doi.org/10.3390/nu14142871
APA StyleKaboré, K., Konaté, K., Sanou, A., Dakuyo, R., Sama, H., Santara, B., Compaoré, E. W. R., & Dicko, M. H. (2022). Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition. Nutrients, 14(14), 2871. https://doi.org/10.3390/nu14142871