Randomised Controlled Trial of Fish Oil Supplementation on Responsiveness to Resistance Exercise Training in Sarcopenic Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Randomisation and Blinding
2.3. Screening for Sarcopenia
2.3.1. Skeletal Muscle Mass Index
2.3.2. Handgrip Strength (HGS)
2.3.3. Gait Speed
2.4. Measurement of Functional Capacity
2.4.1. Six-Minute Walking Test
2.4.2. Lower Limb Muscle Strength (Peak Torque) and Power
2.4.3. Quadriceps Cross-Sectional Area (CSA) Using MRI
2.4.4. Muscle Quality
2.5. Biochemical Evaluation
2.5.1. Inflammatory Cytokines
2.5.2. Plasma and Capsules Fatty Acid Concentration
2.6. Intervention Protocol
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.H.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition. Prevalence etiology and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef][Green Version]
- Fuggle, N.R.; Shaw, S.; Dennison, E.; Cooper, C. Sarcopenia. Best Pract. Res. Clin. Rheumatol. 2017, 31, 218–242. [Google Scholar] [CrossRef][Green Version]
- Cederholm, T.; Morley, J.E. Sarcopenia: The new definitions. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 1–4. [Google Scholar] [CrossRef]
- Pierine, D.T.; Nicola, M.; Oliveira, E.P. Sarcopenia: Alterações metabólicas e conseqüências no envelhecimento. R. Bras. Ci. Mov. 2009, 17, 96–103. [Google Scholar]
- Buford, T.W.; Anton, S.D.; Judge, A.R.; Marzetti, E.; Wohlgemuth, S.E.; Carter, C.S.; Leeuwenburgh, C.; Pahor, M.; Manini, T.M. Models of accelerated sarcopenia: Critical pieces for solving the puzzle of age-related muscle atrophy. Ageing Res. Rev. 2010, 9, 369–383. [Google Scholar] [CrossRef][Green Version]
- Evans, W.J. Skeletal muscle loss: Cachexia sarcopenia and inactivity. Am. J. Clin. Nutr. 2010, 91, 1123S–1127S. [Google Scholar] [CrossRef][Green Version]
- Hughes, V.A.; Roubenoff, R.; Wood, M.; Frontera, W.R.; Evans, W.J.; Fiatarone Singh, M.A. Anthropometric assessment of 10-y changes in body composition in the elderly. Am. J. Clin. Nutr. 2004, 80, 475–482. [Google Scholar] [CrossRef]
- Jarosz, P.A.; Bellar, A. Sarcopenic Obesity: An Emerging cause of Frailty in Older Adults. Geriatr. Nurs. 2009, 30, 64–70. [Google Scholar] [CrossRef]
- Tay, L.; Ding, Y.Y.; Leung, B.P.; Ismail, N.H.; Yeo, A.; Yew, S.; Tay, K.S.; Tan, C.H.; Chong, M.S. Sex-specific differences in risk factors for sarcopenia amongst community-dwelling older adults. Age 2015, 37, 121. [Google Scholar] [CrossRef][Green Version]
- Shaw, S.C.; Dennison, E.N.; Cooper, C. Epidemiology of sarcopenia. Determinants throughout the lifecourse. Calcif. Tissue Int. 2017, 101, 229–247. [Google Scholar] [CrossRef][Green Version]
- Lynch, N.A.; Metter, E.J.; Lindle, R.S.; Fozard, J.L.; Tobin, J.D.; Roy, T.A.; Fleg, J.L.; Hurley, B.F. Muscle quality. I. Age-associated differences between arm and leg muscle groups. J. Appl. Physiol. 1999, 86, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Rodacki, C.L.; Rodacki, A.L.; Pereira, G.; Naliwaiko, K.; Coelho, I.; Pequito, D.; Fernandes, L.C. Fish-oil supplementation enhances the effects of strength training in elderly women. Am. J. Clin. Nutr. 2012, 95, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Viana, J.U.; Dias, J.M.D.; Batista, P.P.; Silva, S.L.A.; Dias, R.C.; Lustosa, L.P. Effect of a resistance exercise program for sarcopenic elderly women: Quasi-experimental study. Fisioter. Mov. 2018, 31, e003111. [Google Scholar] [CrossRef][Green Version]
- Simopoulos, A.P. Evolutionary aspects of the diet omega-6: Omega-3 fatty acid ratio: Medical implications. World Rev. Nutr. Diet. 2009, 100, 1–21. [Google Scholar]
- Naliwaiko, K.; Araújo, R.L.F.; Fonseca, R.V.; Castilho, J.C.; Andreatini, R.; Bellissimo, M.I.; Oliveira, B.H.; Martins, E.F.; Curi, R.; Fernandes, L.C.; et al. Effects of Fish Oil on the Central Nervous System: A New Potential Antidepressant? Nutr. Neurosci. 2004, 7, 91–99. [Google Scholar] [CrossRef]
- Reidy, P.T.; Walker, D.K.; Dickinson, J.M.; Gundermann, D.M.; Drummond, M.J.; Timmerman, K.L.; Fry, C.S.; Borack, M.S.; Cope, M.B.; Mukherjea, R. Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. J. Nutr. 2013, 143, 410–416. [Google Scholar] [CrossRef]
- Nicastro, H.; Zanchi, N.E.; Luz, C.R.; Lancha, A.H., Jr. Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy. Braz. J. Med. Biol. Res. 2011, 44, 1070–1079. [Google Scholar] [CrossRef][Green Version]
- Lee, S.R.; Jo, E.; Khamoui, A.V. Chronic Fish Oil Consumption with Resistance Training Improves Grip Strength, Physical Function, and Blood Pressure in Community-Dwelling Older Adults. Sports 2019, 7, 167. [Google Scholar] [CrossRef][Green Version]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef][Green Version]
- Hutchins-Wiese, H.L.; Kleppinger, A.; Annis, K.; Liva, E.; Lammi-Keefe, C.J.; Durham, H.A.; Kenny, A.M. The impact of supplemental n-3 long chain polyunsaturated fatty acids and dietary antioxidants on physical performance in postmenopausal women. J. Nutr. Health Aging 2013, 17, 76–80. [Google Scholar] [CrossRef]
- Da Boit, M.; Sibson, R.; Sivasubramaniam, S.; Meakin, J.R.; Greig, C.A.; Aspden, R.M.; Thies, F.; Jeromson, S.; Hamilton, D.L.; Speakman, J.R. Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 151–158. [Google Scholar] [CrossRef]
- Di Girolamo, F.G.; Situlin, R.; Mazzucco, S.; Valentini, R.; Toigo, G.; Biolo, G. Omega-3 fatty acids and protein metabolism: Enhancement of anabolic interventions for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; McDonald, K.; Caldarella, S.M.; Chung, H.Y.; Troen, A.M.; Snodderly, D.M. Cognitive findings of an exploratory trial of docosahexaenoicacid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Supari, F.; Ungerer, T.; Harisson, D.G. Fish oil treatment decreased superoxideanions in the myocardium and coronary arteries of atherosclerotic monkeys. Circulation 1995, 91, 1123–1128. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef][Green Version]
- Urbaniak, G.C.; Plous, S. Research Randomizer (v.4.0) (Computer Software). Available online: http://www.randomizer.org (accessed on 21 August 2017).
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef][Green Version]
- Fess, E.E. Functional Endoscopic Sinus Surgery. Grip Strength. In Clinical Assessment Recommendations; Casanova, J.S., Ed.; American Society of Hand Therapists: Chicago, IL, USA, 1992; pp. 41–45. [Google Scholar]
- Laurentani, F.; Russo, C.; Bandinelli, S.; Bartali, B.; Cavazzini, C.; di Iorio, A.; Corsi, A.M.; Rantanen, T.; Guralnik, J.M.; Ferrucci, L. Age-associatedchanges in skeletal muscles and their effect on mobility: An operational diagnosis of sarcopenia. J. Appl. Physiol. 2003, 95, 1851–1860. [Google Scholar] [CrossRef]
- Lord, R.S.; Menz, H.B. Physiologic and health predictors of 6-minute walk performance in older people. Arch. Phys. Med. Rehabil. 2002, 83, 907–911. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of Reliability in Sports Medicine and Science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef][Green Version]
- American Thoracic Society Statement. Guidelines for the Six-Minute Walk Test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Gray, C.; Macgillivray, A.T.J.; Eeley, C.; Stephens, N.A.; Beggs, I.; Fearon, K.C.; Greig, C.A. Magnetic resonance imaging with k-means clustering objectively measures whole muscle volume compartments in sarcopenia/cancer cachexia. Clin. Nutr. 2011, 30, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Haggerty, C.L.; Goodpaster, B.; Harris, T.; Kritchevsky, S.; Nevitt, M.; Miles, T.P.; Visseer, M.; The Health, Aging, and Body Composition Research Group. Strength and muscle quality in a well-functioning cohort of older adults: The health aging and body composition study. J. Am. Geriatr. Soc. 2003, 51, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C. Long-Chain Omega-3 Fatty Acid Bioavailability: Implications for Understanding the Effects of Supplementation on Heart Disease Risk. J. Nutr. 2018, 148, 1701–1703. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef][Green Version]
- Bertani, R.F.; Campos, G.d.O.; Bonardi, J.M.T.; Lima, N.K.d.C.; Patrizzi, L.J. Teste de uma repetição máxima em idosos: Validade reprodutibilidade e segurança. EFDesportes.com. Rev. Digital. Buenos Aires 2014, 19, 196. [Google Scholar]
- Dupont, J.; Dedeyne, L.; Dalle, S.; Koppo, K.; Gielen, E. The role of omega-3 in the prevention and treatment of sarcopenia. Aging Clin. Exp. Res. 2019, 31, 825. [Google Scholar] [CrossRef][Green Version]
- Tan, A.; Sullenbarger, B.; Prakash, R.; McDaniel, J.C. Supplementation with eicosapentaenoic acid and docosahexaenoic acid reduces high levels of circulating proinflammatory cytokines in aging adults: A randomized, controlled study. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 23–29. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemiahyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef][Green Version]
- Albert, B.B.; Derraik, J.G.; Brennan, C.M.; Biggs, J.B.; Smith, G.C.; Garg, M.L.; Cameron-Smith, D.; Hofman, P.L.; Cutfield, W.S. Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men. Sci. Rep. 2014, 4, 6697. [Google Scholar] [CrossRef][Green Version]
- Barbosa, A.R.; Santarém, J.M.; Filho, W.J.; Marucci, M.F.N. Efeitos de um programa de treinamento contra resistência sobre a força muscular e mulheres idosas. Rev. Bras. Ativ. Física Saúde 2000, 5, 12–20. [Google Scholar]
- Tracy, B.L.; Ivey, F.M.; Hurlbut, D.; Martel, G.F.; Lemmer, J.T.; Siegel, E.L.; Metter, E.J.; Fozard, J.L.; Fleg, J.L.; Hurley, B.F. Muscle quality. II. Effects of strength training in 65- to 75-yr-old men and women. J. Appl. Physiol. 1999, 86, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Brooks, N.; Layne, J.E.; Gordon, P.L.; Roubenoff, R.; Nelson, M.E.; Castaneda-Sceppa, C. Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int. J. Med. Sci. 2007, 4, 19–27. [Google Scholar] [CrossRef][Green Version]
- Hunter, G.R.; Bamman, M.M. Effects of resistance training on older adults. Sports Med. 2004, 34, 329–348. [Google Scholar] [CrossRef] [PubMed]
- Newton, R.U.; Hakkinen, K.; Hakkinen, A.; McCirmick, M.; Volek, J.; Kraemer, W.J. Mixed-methods reistance training increases power and strength of young and older men. Med. Sci. Sports Exerc. 2002, 34, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Hakkinen, K.; Kraemer, W.J.; Newton, R.U.; Alen, M. Changes in electromyographic activity muscle fiber and force production characteristics during heavy resitance/power strength training in middle-aged and older men and women. Acta Physicol. Scand. 2001, 171, 51–62. [Google Scholar]
- Earles, D.R.; Judge, J.O.; Gunnarsson, O.T. Velocity training induces power-specific adaptations in highly functioning older adults. Arch. Phys. Med. Rehabil. 2001, 82, 872–878. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Glenney, S.S. Minimal clinically important difference for change in comfortable gait speed of adults with pathology: A systematic review. J. Eval. Clin. Pract. 2014, 20, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Hauer, K.; Rost, B.; Rütschle, K.; Opitz, H.; Specht, N.; Bärtsch, P.; Oster, P.L.; Schlierf, G. Exercise training for rehabilitation and secondary prevention of falls in geriatric patients with a history of injurious falls. J. Am. Geriatr. Soc. 2001, 49, 10–20. [Google Scholar] [CrossRef][Green Version]
- McCool, J.F.; Schneider, J.K. Home-based leg strengthening for older adults initiated through private practice. Prev. Med. 1999, 28, 105–110. [Google Scholar] [CrossRef]
- Jette, A.M.; Lachman, M.; Giorgetti, M.M.; Assmann, S.F.; Harris, B.A.; Levenson, C.; Wernick, M.; Krebs, D. Exercise-it’s never too late: The strong-for-life program. Am. J. Public Health 1999, 89, 66–72. [Google Scholar] [CrossRef][Green Version]
- Hausdorff, J.M.; Nelson, M.E.; Kaliton, D.; Layne, J.E.; Bernstein, M.J.; Nuernberger, A.; Singh, M.A. Etiology and modification of gait instability in older adults: A randomized controlled trial of exercise. J. Appl. Physiol. 2001, 90, 2117–2129. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.H.; Wall, P.T.; Bariola, J.R.; Bopp, M.M.; Frost, Y.M. Progressive resistance muscle strength training of hospitalized frail elderly. Am. J. Phys. Med. Rehabil. 2001, 80, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Lixandrão, M.E.; Damas, F.; Chacon-Mikahil, M.P.; Cavaglieri, C.R.; Ugrinowitsch, C.; Bottaro, M.; Vechin, F.C.; Conceição, M.S.; Berton, R.; Libardi, C.A. Time course of resistance training- induce muscle hypertrophy in the elderly. J. Strength Cond. Res. 2016, 30, 159–163. [Google Scholar] [CrossRef] [PubMed]
Age (Years), Mean (SD) | |
---|---|
Age (Years), Mean (SD) | |
EP | 71.4 (6.21) |
EFO | 70.6 (3.94) |
Ethnicity, n (%) | |
White | 22 (68.7%) |
Black | 2 (6.25%) |
Eastern | 8 (25.0%) |
Marital status, n (%) | |
Married | 11 (34.4%) |
Widow | 13 (40.6%) |
Divorced | 8 (25.0%) |
Educational level (years), n (%) | |
1–4 years | 17 (53.1%) |
>4 years | 15 (46.9%) |
Number of medications per day, mean(SD) | |
EP | 2.7 (3.9) |
EFO | 2.3 (2.4) |
Comorbidities, n (%) | |
High blood pressure | |
EP | 13 (86.7%) |
EFO | 14 (82.6%) |
Diabetes mellitus | |
EP | 5 (33.3%) |
EFO | 9 (52.9%) |
Group | Pre-Intervention Mean (SD) | Post-Intervention Mean (SD) | Estimated Difference | 95% Confidence Interval | p Value | |
---|---|---|---|---|---|---|
Weight (kg) | EP | 57.9 (11.8) | 59.3 (12.5) | −1.3 | −3.03; 0.42 | 0.13 |
EFO | 62.5 (8.5) | 64.8 (10.7) | −2.4 | −3.99; −0.75 | 0.01 † | |
Height (m) | EP | 1.52 (0.09) | 1.51 (0.08) | 0.02 | 0.01; 0.03 | 0.00 † |
EFO | 1.56 (0.06) | 1.55 (0.05) | 0.02 | 0.01; 0.03 | 0.00 † | |
BMI (kg·m−2) | EP | 24.73 (3.48) | 25.95 (4.21) | −1.22 | −1.97; −0.48 | 0.00 † |
EFO | 25.58 (3.07) | 27.11(3.95) | −1.53 | −2.23; −0.84 | 0.00 † | |
SMI (Kg/m−2) | EP | 6.16(0.39) | 7.12 (0.92) | −0.95 | −1.66; −0.25 | 0.01 † |
EFO | 6.17(0.48) | 8.38(1.52) | −2.21 | −2.86; −1.56 | 0.00 † |
Group | Pre-Intervention Mean (SD) | Post-Intervention Mean (SD) | p-Value Time | p-Value Time * Group | |
---|---|---|---|---|---|
HS (kgf) | EP | 18.58 (4.28) | 21.72 (3.00) | 0.000 † | 0.843 |
EFO | 20.75 (5.47) | 24.14 (4.14) | |||
GS (m/s) | EP | 1.22 (0.48) | 1.36 (0.41) | 0.059 | 0.655 |
EFO | 1.11 (0.38) | 1.19 (0.35) | |||
6mWT (m) | EP | 376.60 (107.2) | 377.20 (105.5) | 0.008 † | 0.009 † |
EFO | 378.20 (60.64) | 443.10 (101.6) | |||
MQ (Nm/cm2) | EP | 18.54 (4.44) | 19. 32 (5.05) | 0.002 † | 0.004 † |
EFO | 17.77 (4.72) | 19.92 (4.38) | |||
Power (watts) | EP | 31.7 (10.5) | 33.0 (14.2) | 0.641 | 0.635 |
EFO | 31.5 (9.07) | 29.9 (12.6) | |||
Peak Torque (Nm) | EP | 63.92 (19.48) | 69.66 (21.84) | 0.000 † | 0.003 † |
EFO | 59.75 (24.59) | 79.21 (18.39) |
Group | Pre-Intervention Mean (SD) | Post-Intervention Mean (SD) | Estimated Difference | 95% Confidence Interval | p Value | |
---|---|---|---|---|---|---|
IL1β (pg/mL) | EP | 0.87 (0.91) | 0.73 (0.54) | 0.13 | −0.22; 0.49 | 0.45 |
EFO | 0.68 (0.57) | 0.67 (0.28) | 0.01 | −0.33; 0.35 | 0.94 | |
IL6 (pg/mL) | EP | 2.72 (2.35) | 1.93 (1.86) | 0.79 | −0.93; 2.51 | 0.36 |
EFO | 5.55 (7.02) | 4.19 (5.68) | 1.36 | −0.31; 3.02 | 0.11 | |
IL8 (pg/mL) | EP | 4.48 (1.79) | 5.82 (5.44) | −1.34 | −3.89; 1.21 | 0.29 |
EFO | 5.09 (3.59) | 5.45 (2.96) | −0.35 | −2.82; 2.11 | 0.77 | |
IL10 (pg/mL) | EP | 4.20 (3.95) | 10.41 (26.41) | −6.20 | −16.14; 3.73 | 0.21 |
EFO | 4.48 (3.27) | 4.09 (3.39) | 0.32 | −9.29; 9.95 | 0.94 | |
TNFα (pg/mL) | EP | 13.70 (7.15) | 13.39 (5.94) | 0.31 | −2.97; 3.59 | 0.85 |
EFO | 15.63 (6.40) | 14.77 (6.14) | 0.86 | −2.32; 4.04 | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Cruz Alves, N.M.; Pfrimer, K.; Santos, P.C.; de Freitas, E.C.; Neves, T.; Pessini, R.A.; Junqueira-Franco, M.V.M.; Nogueira-Barbosa, M.H.; Greig, C.A.; Ferriolli, E. Randomised Controlled Trial of Fish Oil Supplementation on Responsiveness to Resistance Exercise Training in Sarcopenic Older Women. Nutrients 2022, 14, 2844. https://doi.org/10.3390/nu14142844
da Cruz Alves NM, Pfrimer K, Santos PC, de Freitas EC, Neves T, Pessini RA, Junqueira-Franco MVM, Nogueira-Barbosa MH, Greig CA, Ferriolli E. Randomised Controlled Trial of Fish Oil Supplementation on Responsiveness to Resistance Exercise Training in Sarcopenic Older Women. Nutrients. 2022; 14(14):2844. https://doi.org/10.3390/nu14142844
Chicago/Turabian Styleda Cruz Alves, Natália Maira, Karina Pfrimer, Priscila Carvalho Santos, Ellen Cristini de Freitas, Thiago Neves, Rodrigo Antônio Pessini, Márcia Varella Morandi Junqueira-Franco, Marcello H. Nogueira-Barbosa, Carolyn Anne Greig, and Eduardo Ferriolli. 2022. "Randomised Controlled Trial of Fish Oil Supplementation on Responsiveness to Resistance Exercise Training in Sarcopenic Older Women" Nutrients 14, no. 14: 2844. https://doi.org/10.3390/nu14142844