The Use of a Brief Antenatal Lifestyle Education Intervention to Reduce Preterm Birth: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Analyses
2.2. Ethical Approval
3. Results
3.1. Maternal Characteristics and Antenatal Lifestyle Education Attendance
3.2. Maternal Characteristics and Preterm Birth
3.3. Association between the Timing of Seminar Attendance and Preterm Birth
3.4. Subgroup Logistic Regression
3.4.1. Age
3.4.2. Parity
3.4.3. Prior CS or Myomectomy
3.4.4. Assisted Reproductive Technology
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, J.P.; Chawanpaiboon, S.; Moller, A.B.; Watananirun, K.; Bonet, M.; Lumbiganon, P. The global epidemiology of preterm birth. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 52, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Frey, H.A.; Klebanoff, M.A. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 2016, 21, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.-B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2018, 7, e37–e46. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Standards for Improving Quality of Maternal and Newborn Care in Health Facilities; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Koullali, B.; Oudijk, M.; Nijman, T.; Mol, B.; Pajkrt, E. Risk assessment and management to prevent preterm birth. Semin. Fetal Neonatal Med. 2016, 21, 80–88. [Google Scholar] [CrossRef]
- Iams, J.D.; Romero, R.; Culhane, J.F.; Goldenberg, R.L. Primary, secondary, and tertiary interventions to reduce the morbidity and mortality of preterm birth. Lancet 2008, 371, 164–175. [Google Scholar] [CrossRef]
- Matei, A.; Saccone, G.; Vogel, J.P.; Armson, A.B. Primary and secondary prevention of preterm birth: A review of systematic reviews and ongoing random-ized controlled trials. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 236, 224–239. [Google Scholar] [CrossRef]
- Lee, A.C.; Blencowe, H.; Lawn, J.E. Small babies, big numbers: Global estimates of preterm birth. Lancet Glob. Health 2018, 7, e2–e3. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Hedderson, M.M.; Brown, S.D.; Badon, S.E.; Feng, J.; Quesenberry, C.P.; Ferrara, A. Healthy preconception and early-pregnancy lifestyle and risk of preterm birth: A prospective cohort study. Am. J. Clin. Nutr. 2021, 144, 813–821. [Google Scholar] [CrossRef]
- Shapiro-Mendoza, C.K.; Barfield, W.D.; Henderson, Z.; James, A.; Howse, J.L.; Iskander, J.; Thorpe, P.G. CDC grand rounds: Public health strategies to prevent preterm birth. Morb. Mortal. Wkly. Rep. 2016, 65, 826–830. [Google Scholar] [CrossRef]
- Australian Preterm Birth Prevention Alliance. Key Practice Points. Clinical Guidelines. 2021. Available online: https://www.pretermalliance.com.au/Our-Research/Clinical-Guidelines (accessed on 1 July 2021).
- Savitz, D.A.; Harmon, Q.; Siega-Riz, A.M.; Herring, A.H.; Dole, N.; Thorp, J.M. Behavioral influences on preterm birth: Integrated analysis of the pregnancy, infection, and nutrition study. Matern. Child Health J. 2011, 16, 1151–1163. [Google Scholar] [CrossRef] [Green Version]
- Ion, R.; Bernal, A.L. Smoking and preterm birth. Reprod. Sci. 2014, 22, 918–926. [Google Scholar] [CrossRef]
- Crane, M.; Bain, E.; Tieu, J.; Han, S.; Middleton, P.; Crowther, C.A. Diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst. Rev. 2015, 4, CD010443. [Google Scholar] [CrossRef]
- Hong, K.; Hwang, H.; Han, H.; Chae, J.; Choi, J.; Jeong, Y.; Lee, K.J. Perspectives on antenatal education associated with pregnancy outcomes: Systematic review and meta-analysis. Women Birth 2021, 34, 219–230. [Google Scholar] [CrossRef]
- Wang, Q.; Benmarhnia, T.; Zhang, H.; Knibbs, L.D.; Sheridan, P.; Li, C.; Bao, J.; Ren, M.; Wang, S.; He, Y.; et al. Identifying windows of susceptibility for maternal exposure to ambient air pollution and preterm birth. Environ. Int. 2018, 121, 317–324. [Google Scholar] [CrossRef]
- Warren, J.L.; Kong, W.; Luben, T.; Chang, H.H. Critical window variable selection: Estimating the impact of air pollution on very preterm birth. Biostatistics 2020, 21, 790–806. [Google Scholar] [CrossRef]
- Chinese Nutrition Society. Pregnancy women nutrition guidelines. Chin. J. Perinat. Med. 2016, 19, 641–648. [Google Scholar]
- National Research Council. Weight Gain during Pregnancy: Reexamining the Guidelines; The National Academies Press: Washington, DC, USA, 2010. [Google Scholar]
- American College of Obstetricians Gynecologists. ACOG Committee Opinion No. 650: Physical activity and exercise during pregnancy and the postpartum period. Obstet. Gynecol. 2015, 126, e135-42. [Google Scholar] [CrossRef]
- World Health Organization. WHO Recommendations on Interventions to Improve Preterm Birth Outcomes; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Kinshella, M.L.W.; Omar, S.; Scherbinsky, K.; Vidler, M.; Magee, L.A.; von Dadelszen, P.; Moore, S.E.; Elango, R.; PRECISE Conceptual Framework Working Group. Effects of maternal nutritional supplements and dietary interventions on placental complications: An umbrella review, meta-analysis and evidence map. Nutrients 2021, 13, 472. [Google Scholar] [CrossRef]
- Medley, N.; Vogel, J.P.; Care, A.; Alfirevic, Z. Interventions during pregnancy to prevent preterm birth: An overview of Cochrane systematic reviews. Cochrane Database Syst. Rev. 2018, 11, CD012505. [Google Scholar] [CrossRef]
- Muglia, L.J.; Katz, M. The enigma of spontaneous preterm birth. N. Engl. J. Med. 2010, 362, 529–535. [Google Scholar] [CrossRef]
- Savitz, D.A.; Murnane, P. Behavioral influences on preterm birth: A review. Epidemiology 2010, 21, 291–299. [Google Scholar] [CrossRef]
- He, J.-R.; Liu, Y.; Xia, X.-Y.; Ma, W.-J.; Lin, H.-L.; Kan, H.-D.; Lu, J.-H.; Feng, Q.; Mo, W.-J.; Wang, P.; et al. Ambient temperature and the risk of preterm birth in Guangzhou, China (2001–2011). Environ. Health Perspect. 2016, 124, 1100–1106. [Google Scholar] [CrossRef] [Green Version]
- Mustieles, V.; Zhang, Y.; Yland, J.; Braun, J.M.; Williams, P.L.; Wylie, B.J.; Attaman, J.A.; Ford, J.B.; Azevedo, A.; Calafat, A.M.; et al. Maternal and paternal preconception exposure to phenols and preterm birth. Environ. Int. 2020, 137, 105523. [Google Scholar] [CrossRef]
- Warren, J.L.; Stingone, J.A.; Herring, A.H.; Luben, T.J.; Fuentes, M.; Aylsworth, A.S.; Langlois, P.H.; Botto, L.D.; Correa, A.; Olshan, A.F.; et al. Bayesian multinomial probit modeling of daily windows of susceptibility for maternal PM2.5 exposure and congenital heart defects. Stat. Med. 2016, 35, 2786–2801. [Google Scholar] [CrossRef] [Green Version]
- Sandall, J.; Soltani, H.; Gates, S.; Shennan, A.; Devane, D. Midwife-led continuity models versus other models of care for childbearing women. Cochrane Database Syst. Rev. 2016, 4, CD004667. [Google Scholar] [CrossRef] [Green Version]
- Simkhada, B.; Teijlingen, E.R.V.; Porter, M.; Simkhada, P. Factors affecting the utilization of antenatal care in developing countries: Systematic review of the literature. J. Adv. Nurs. 2008, 61, 244–260. [Google Scholar] [CrossRef]
- Ali, S.A.; Dero, A.A.; Ali, S.A.; Ali, G.B. Factors affecting the utilization of antenatal care among pregnant women: A literature review. J. Pregnancy Neonatal Med. 2018, 2, 41–45. [Google Scholar]
Variables | Seminar Attendance | F/χ2 | p | ||
---|---|---|---|---|---|
Absence (n = 1386) | 1st Trimester (n = 1107) | 2nd Trimester or Later (n = 515) | |||
Pre-existing factors (at first antenatal visit) | |||||
Age | 7.580 | 0.023 | |||
<35 | 836 (60.3) | 726 (65.6) | 316 (61.4) | ||
≥35 | 550 (39.7) | 381 (34.4) | 199 (38.6) | ||
Obese | 0.181 | 0.913 | |||
Yes | 32 (2.3) | 23 (2.1) | 12 (2.3) | ||
No | 1354 (97.7) | 1084 (97.9) | 503 (97.7) | ||
Parity | 137.206 | 0.000 | |||
Nulliparous | 752 (54.3) | 851 (76.9) | 331 (64.5) | ||
Multiparous | 634 (45.7) | 256 (23.1) | 183 (35.5) | ||
Prior CS/myomectomy | 59.889 | 0.000 | |||
Yes | 321 (23.3) | 124 (11.2) | 94 (18.3) | ||
No | 1065 (76.8) | 983 (88.8) | 421 (81.7) | ||
Prior cervical surgery | 0.772 | 0.680 | |||
Yes | 14 (1.0) | 10 (0.9) | 3 (0.6) | ||
No | 1372 (99.0) | 1097 (99.1) | 512 (99.4) | ||
Prior preterm birth | 3.706 | 0.157 | |||
Yes | 19 (1.4) | 7 (0.6) | 4 (0.8) | ||
No | 1367 (98.6) | 1100 (99.4) | 511 (99.2) | ||
Pre-existing diabetes | 2.846 | 0.241 | |||
Yes | 36 (2.6) | 23 (2.1) | 18 (3.5) | ||
No | 1350 (97.4) | 1084 (97.9) | 497 (96.5) | ||
Chronic hypertension 1 | 6.754 | 0.034 | |||
Yes | 52 (3.8) | 26 (2.3) | 24 (4.7) | ||
No | 1334 (96.2) | 1081 (97.7) | 491 (95.3) | ||
PCOS 2 | 2.282 | 0.319 | |||
Yes | 43 (3.1) | 24 (2.2) | 16 (3.1) | ||
No | 1343 (96.9) | 1083 (97.8) | 499 (96.9) | ||
IVF/ICSI 3 | 7.570 | 0.023 * | |||
Yes | 143 (10.3) | 154 (13.9) | 62 (11.9) | ||
No | 1243 (89.7) | 953 (86.1) | 453 (88.1) | ||
Gestational factors | |||||
GDM 4 | 1.983 | 0.371 | |||
Yes | 367 (26.5) | 301 (27.2) | 153 (29.7) | ||
No | 1019 (73.5) | 806 (72.8) | 362 (70.3) | ||
Gestational hypertension without significant proteinuria | 2.732 | 0.255 | |||
Yes | 72 (5.2) | 43 (3.9) | 21 (4.1) | ||
No | 1314 (94.8) | 1064 (96.1) | 494 (95.9) | ||
Preeclampsia or eclampsia | 5.494 | 0.064 | |||
Yes | 66 (4.8) | 33 (3.0) | 24 (4.7) | ||
No | 1320 (95.2) | 1074 (97.0) | 491 (95.3) | ||
Placenta implantation | 53.388 | 0.000 | |||
Yes | 72 (5.2) | 6 (0.5) | 7 (1.4) | ||
No | 1314 (94.8) | 1101 (99.5) | 508 (98.6) | ||
Incompetence of cervix uteri | 0.441 | 0.802 | |||
Yes | 26 (1.9) | 21 (1.9) | 12 (2.3) | ||
No | 1360 (98.1) | 1086 (98.1) | 503 (97.7) |
Variables | n | Preterm Birth n (%) | F/χ2 | p |
---|---|---|---|---|
Seminar attendance | ||||
Absence | 1386 | 160 (11.5) | 27.539 | 0.000 |
1st trimester | 1107 | 64 (5.8) | ||
2nd trimester or later | 515 | 37 (7.2) | ||
Pre-existing factors (at first antenatal visit) | ||||
Age | 9.423 | 0.002 | ||
<35 | 1878 | 140 (7.5) | ||
≥35 | 1130 | 121 (10.7) | ||
Obese | 12.911 | 0.000 | ||
Yes | 67 | 14 (20.9) | ||
No | 2941 | 247 (8.4) | ||
Parity | 16.342 | 0.000 | ||
Nulliparous | 1935 | 138 (7.1) | ||
Multiparous | 1073 | 123 (11.5) | ||
Prior CS/myomectomy | 53.313 | 0.000 | ||
Yes | 539 | 90 (16.7) | ||
No | 2469 | 171 (6.9) | ||
Prior cervical surgery | 1.295 | 0.202 | ||
Yes | 27 | 4 (14.8) | ||
No | 2981 | 257 (8.6) | ||
Prior preterm birth | 4.903 | 0.027 | ||
Yes | 30 | 6 (20.0) | ||
No | 2978 | 255 (8.6) | ||
Pre-existing diabetes | 4.758 | 0.029 | ||
Yes | 77 | 12 (15.6) | ||
No | 2931 | 249 (8.5) | ||
Chronic hypertension | 62.830 | 0.000 | ||
Yes | 102 | 31 (30.4) | ||
No | 2906 | 230 (7.9) | ||
PCOS 1 | 2.256 | 0.133 | ||
Yes | 83 | 250 (8.5) | ||
No | 2925 | 11 (13.3) | ||
IVF/ICSI 2 | 0.592 | 0.442 | ||
Yes | 359 | 35 (9.7) | ||
No | 2649 | 226 (8.5) | ||
Gestational factors | ||||
GDM 3 | 5.253 | 0.022 | ||
Yes | 821 | 87 (10.6) | ||
No | 2187 | 174 (8.0) | ||
Gestational hypertension without significant proteinuria | 0.470 | 0.493 | ||
Yes | 136 | 14 (10.3) | ||
No | 2872 | 247 (8.6) | ||
Preeclampsia or eclampsia | ||||
Yes | 123 | 49 (39.8) | 157.146 | 0.000 |
No | 2885 | 212 (7.3) | ||
Placenta implantation | 239.893 | 0.000 | ||
Yes | 85 | 47 (55.5) | ||
No | 2923 | 214 (7.3) | ||
Incompetence of cervix uteri | 17.207 | 0.000 | ||
Yes | 59 | 14 (23.7) | ||
No | 2949 | 247 (8.4) |
Seminar Attendance | n | Preterm Birth Rate (%) | Model A Unadjusted 1 | Model B Adjusted 2 | Model C Adjusted 3 | |
---|---|---|---|---|---|---|
All cohorts | 3008 | 8.7 | p = 0.000 | p = 0.000 | p = 0.004 | |
Absence | 1386 | 11.5 | 1 | 1 | 1 | |
1st trimester | 1107 | 5.8 | 0.47 (0.35–0.64) | 0.54 (0.39–0.73) | 0.61 (0.43–0.85) | |
2nd trimester or later | 515 | 7.2 | 0.59 (0.41–0.86) | 0.58 (0.40–0.86) | 0.60 (0.40–0.91) | |
Age < 35 | 1878 | 7.5 | p = 0.000 | p = 0.000 | p = 0.004 | |
Absence | 836 | 10.8 | 1 | 1 | 1 | |
1st trimester | 726 | 5.1 | 0.45 (0.30–0.66) | 0.47 (0.31–0.71) | 0.54 (0.35–0.86) | |
2nd trimester or later | 316 | 4.1 | 0.36 (0.20–0.65) | 0.33 (0.18–0.62) | 0.41 (0.21–0.79) | |
Age ≥ 35 | 1130 | 10.7 | p = 0.021 | p = 0.110 | p = 0.331 | |
Absence | 550 | 12.7 | 1 | 1 | 1 | |
1st trimester | 381 | 7.1 | 0.52 (0.33–0.83) | 0.60 (0.37–0.94) | 0.68 (0.41–1.13) | |
2nd trimester or later | 199 | 12.1 | 0.94 (0.57–1.54) | 0.94 (0.56–1.56) | 0.91 (0.52–1.59) | |
Parity = 0 | 1935 | 7.1 | p = 0.002 | p = 0.004 | p = 0.007 | |
Absence | 752 | 9.7 | 1 | 1 | 1 | |
1st trimester | 851 | 5.5 | 0.54 (0.37–0.80) | 0.56 (0.38–0.82) | 0.57 (0.38–0.86) | |
2nd trimester or later | 332 | 5.4 | 0.53 (0.31–0.91) | 0.53 (0.31–0.91) | 0.50 (0.28–0.88) | |
Parity ≥ 1 | 1073 | 11.5 | p = 0.012 | p = 0.014 | p = 0.499 | |
Absence | 634 | 13.7 | 1 | 1 | 1 | |
1st trimester | 256 | 6.6 | 0.45 (0.26–0.77) | 0.46 (0.26–0.80) | 0.72 (0.35–1.19) | |
2nd trimester or later | 183 | 10.4 | 0.73 (0.43–1.23) | 0.65 (0.37–1.14) | 0.81 (0.40–1.39) | |
Prior CS/myomectomy | 539 | 16.7 | p = 0.016 | p = 0.017 | p = 0.433 | |
Absence | 321 | 20.6 | 1 | 1 | 1 | |
1st trimester | 124 | 10.5 | 0.45 (0.24–0.85) | 0.47 (0.25–0.89) | 0.86 (0.41–1.81) | |
2nd trimester or later | 94 | 11.7 | 0.51 (0.26–1.02) | 0.48 (0.24–0.97) | 0.59 (0.26–1.32) | |
IVF/ICSI 4 | 359 | 9.7 | p = 0.380 | p = 0.206 | p = 0.173 | |
Absence | 143 | 8.4 | 1 | 1 | 1 | |
1st trimester | 154 | 9.1 | 1.09 (0.49–2.45) | 1.20 (0.50–2.84) | 1.47 (0.57–3.80) | |
2nd trimester or later | 62 | 14.5 | 1.85 (0.74–4.66) | 2.32 (0.88–6.10) | 2.79 (0.94–8.25) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Lu, J.; Zhao, Y.; Wei, Y.; Gamble, J.; Creedy, D.K. The Use of a Brief Antenatal Lifestyle Education Intervention to Reduce Preterm Birth: A Retrospective Cohort Study. Nutrients 2022, 14, 2799. https://doi.org/10.3390/nu14142799
Wang N, Lu J, Zhao Y, Wei Y, Gamble J, Creedy DK. The Use of a Brief Antenatal Lifestyle Education Intervention to Reduce Preterm Birth: A Retrospective Cohort Study. Nutrients. 2022; 14(14):2799. https://doi.org/10.3390/nu14142799
Chicago/Turabian StyleWang, Na, Jie Lu, Yan Zhao, Yuan Wei, Jenny Gamble, and Debra K. Creedy. 2022. "The Use of a Brief Antenatal Lifestyle Education Intervention to Reduce Preterm Birth: A Retrospective Cohort Study" Nutrients 14, no. 14: 2799. https://doi.org/10.3390/nu14142799
APA StyleWang, N., Lu, J., Zhao, Y., Wei, Y., Gamble, J., & Creedy, D. K. (2022). The Use of a Brief Antenatal Lifestyle Education Intervention to Reduce Preterm Birth: A Retrospective Cohort Study. Nutrients, 14(14), 2799. https://doi.org/10.3390/nu14142799