The Effect of Curcumin on Renal Ischemia/Reperfusion Injury in Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Physiological Parameters
3.2. Renal Function
3.3. Global and Renal Hemodynamics
3.4. Oxidative Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- De Ponte, M.C.; Cardoso, V.G.; Gonçalves, G.L.; Costa-Pessoa, J.M.; Oliveira-Souza, M. Early type 1 diabetes aggravates renal ischemia/reperfusion-induced acute kidney injury. Sci. Rep. 2021, 11, 19028. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.M.-W.; Bonventre, J.V. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Adv. Chronic Kidney Dis. 2018, 25, 166–180. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.E.P. Montenegro Junior RM, Vencio S (Org.) Diretrizes da Sociedade Brasileira de Diabetes 2017–2018, 1st ed.; Editora Clannad: São Paulo, Brazil, 2017. [Google Scholar]
- Bellomo, R.; Kellum, A.J.; Ronco, C. Acute kidney injury. Lancet 2012, 380, 756–766. [Google Scholar] [CrossRef]
- Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 Diabetes mellitus. Nat. Rev. Dis. Primers 2017, 3, 17016. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Cordeiro, P.M.; Watanabe, M.; da Fonseca, C.D.; Vattimo, M.D.F.F. The role of oxidative stress in streptozotocin-induced diabetic nephropathy in rats. Arch. Endocrinol. Metab. 2016, 60, 443–449. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, F.; Wen, J.; Wei, X.; Zeng, Y. Effects of sevoflurane on NF-kB and TNF-α expression in renal ischemia –reperfusion diabetic rats. Inflamm. Res. 2017, 6, 901–910. [Google Scholar] [CrossRef]
- Bright, J.J. Curcumin and autoimmune disease. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2007; Volume 595, pp. 425–451. [Google Scholar] [CrossRef]
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019, 11, 1837. [Google Scholar] [CrossRef]
- Altamimi, J.Z.; Alfaris, N.A.; Al-farga, A.M.; Alshammari, G.M.; Binmowyna, M.N.; Yahya, M.A. Curcumin reverses diabetic nephropathy in streptozotocin-induce d diab etes in rats by inhibition of PKC β/p 66 Shc axis and activation of FOXO-3a. J. Nutr. Biochem. 2021, 87, 108515. [Google Scholar] [CrossRef]
- Mirzaei, H.; Shakeri, A.; Rashidi, B.; Jalili, A.; Banikazemi, Z.; Sahebkar, A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother. 2017, 85, 102–112. [Google Scholar] [CrossRef]
- Sharma, S.; Kulkarni, S.K.; Chopra, K. Curcumin, the active principle of turmeric (curcuma longa), ameliorates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 940–945. [Google Scholar] [CrossRef]
- Watanabe, M.; Moura, N.L.B.; Costa, S.C.X.; Martins, L.F.R.; Vattimo, M.F.F. Isoflavone and the heme oxygenase system in ischemic acute kidney injury in rats. Food Chem. Toxicol. 2007, 45, 2366–2371. [Google Scholar] [CrossRef] [PubMed]
- Vattimo, M.F.F.; da Silva, N.O. Uncaria tomentosa and acute ischemic kidney injury in rats. Rev. Esc. Enferm. USP 2011, 45, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, P.M.; Fernandes, S.M.; Fonseca, C.D.; Watanabe, M.; Lopes, S.M.; Vattimo, M.F.F. Effects of Justicia acuminatissima, or Amazonian Sara Tudo, on ischemic acute kidney injury: An experimental study. Rev. Esc. Enferm. USP 2019, 53, e03487. [Google Scholar] [CrossRef]
- Diário Oficial da União. Institui a Diretriz da Prática de Eutanásia do Conselho Nacional de Controle de Experimentação Animal—CONCEA; Resolução Normativa n° 13 de 20 Setembro de 2013; Diário Oficial da União: Brasília, Brazil, 2013.
- Whiter, P.; Samson, F.E. Determination of inulin in plasm and urine by use of antrone. J. Lab. Clin. Med. 1954, 43, 45–48. [Google Scholar]
- Luchi, W.M.; Shimizu, M.H.M.; Canale, D.; Gois, P.H.F.; de Bragança, A.C.; Volpini, R.A.; Girardi, A.C.C.; Seguro, A.C. Vitamin D deficiency is a potential risk factor for contrast-induced nephropathy. Am. J. Physiol. Integr. Comp. Physiol. 2015, 309, R215–R222. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.A.; Iggo, B.; Scandrett, F.J.; Stewart, C.P. The determination of creatinine in plasma or serum, and in urine; a critical examination. Biochem. J. 1954, 58, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Sancho-Martínez, S.M.; Blanco-Gozalo, V.; Quiros, Y.; Prieto-García, L.; Montero-Gómez, M.J.; Docherty, N.G.; Martínez-Salgado, C.; Morales, A.I.; López-Novoa, J.M.; López-Hernández, F.J. Impaired Tubular Reabsorption Is the Main Mechanism Explaining Increases in Urinary NGAL Excretion Following Acute Kidney Injury in Rats. Toxicol. Sci. 2020, 175, 75–86. [Google Scholar] [CrossRef]
- Banerjee, D.; Madhusoodanan, U.K.; Nayak, S.; Jacob, J. Urinary Hydrogen peroxide: A probably marker of oxidative stress in malignancy. Clin. Chim. Acta 2003, 334, 205–209. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogwski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Lima, E.S.; Abdalla, D.S.P. Peroxidação lipídica: Mecanismos e avaliação em amostras biológicas. Braz. J. Pharm. Sci. 2001, 37, 293–303. [Google Scholar]
- Filomeni, G.; Rotilio, G.; Ciriolo, M.R. Cell signalling and the glutathione redox system. Biochem. Pharmacol. 2002, 64, 1057–1064. [Google Scholar] [CrossRef]
- Souza, A.V.; Golim, M.A.; Deffune, E.; Domingues, M.A.; de Carvalho, L.R.; Vianna, I.G.; Castiglia, Y.M.; Vianna, P.T. Evaluation of renalprotection from high doses of melatonin in an experimental model of renal ischemia and reperfusion in hyperglycemic rats. Transplant. Proc. 2014, 46, 1591–1593. [Google Scholar] [CrossRef] [PubMed]
- Dezoti, C.; Watanabe, M.; Pinto, C.F.; Neiva, L.B.M.; Vattimo, M.F.F. Proteção funcional da enzima heme-oxigenase-1 na lesão renal aguda isquêmica e tóxica. Acta Paul. Enferm. 2009, 22, 490–493. [Google Scholar] [CrossRef]
- Fernandes, S.M.; Martins, D.M.; da Fonseca, C.D.; Watanabe, M.; Vattimo Mde, F. Impact of Iodinated Contrast on Renal Function and Hemodynamics in Rats with Chronic Hyperglycemia and Chronic Kidney Disease. Biomed Res. Int. 2016, 2016, 3019410. [Google Scholar] [CrossRef]
- Lima, C. Biomarcadores de Injúria Renal Aguda: Diagnóstico e Aplicabilidade no Período Perioperatório de Transplante de Fígado. Doctoral Dissertation, Universidade de São Paulo, Faculdade de Medicina, São Paulo, Brazil, 2017. [Google Scholar] [CrossRef]
- Tu, Q.; Li, Y.; Jin, J.; Jiang, X.; Ren, Y.; He, Q. Curcumin alleviates diabetic nephropathy via inhibiting podocyte mesenchymal transdifferentiation and inducing autophagy in rats and MPC5 cells. Pharm. Biol. 2019, 57, 778–786. [Google Scholar] [CrossRef]
- Kar, F.; Hacioglu, C.; Senturk, H.; Donmez, D.B.; Kanbak, G.; Uslu, S. Curcumin and LOXblock-1 ameliorate ischemia-reperfusion induced inflammation and acute kidney injury by suppressing the semaphorin-plexin pathway. Life Sci. 2020, 256, 118016. [Google Scholar] [CrossRef]
- Jie, Z.; Chao, M.; Jun, A.; Wei, S.; LiFeng, M. Effect of Curcumin on Diabetic Kidney Disease: A Systematic Review and Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Clinical Trials. Evid.-Based Complement Altern. Med. 2021, 2021, 6109406. [Google Scholar] [CrossRef]
- Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 887–939. [Google Scholar] [CrossRef]
- Lukic, M.L.; Stosic-Grujicic, S.; Shahin, A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev. Immunol. 1998, 6, 119–128. [Google Scholar] [CrossRef]
- Reddy, S.; Wu, D.; Elliott, R.B. Low dose streptozotocin causes diabetes in severe combined immunodeficient (SCID) mice without immune cell infiltration of the pancreatic islets. Autoimmunity 1995, 20, 83–92. [Google Scholar] [CrossRef]
- Friederich, M.; Hansell, P.; Palm, F. Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr. Diabetes Rev. 2009, 5, 120–144. [Google Scholar] [CrossRef] [PubMed]
- Pickering, R.J.; Rosado, C.J.; Sharma, A.; Buksh, S.; Tate, M.; de Haan, J.B. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin. Transl. Immunol. 2018, 7, e1016. [Google Scholar] [CrossRef] [PubMed]
Groups | n | Initial—48 h | 1st Week | 2nd Week | 3rd Week | 4th Week |
---|---|---|---|---|---|---|
Citrate | 5 | 86.7± 3.7 | 89.7 ± 8.3 | 97.3 ± 10.7 | 86.2 ± 11.6 | 95.7 ± 7.7 |
DM | 5 | 374.6 ± 51.3 a | 389.3 ± 76.2 a | 389.7 ± 91.2 a | 380.7 ± 84.0 a | 390.0 ± 58.0 a |
DM + I/R | 5 | 342.6 ± 57.4 a | 342.0 ± 67.9 a | 334.7 ± 37.5 a | 374.6 ± 78.1 a | 345.9 ± 57.2 a |
DM + I/R + Curcumin | 5 | 330.7 ± 63.3 a | 349.4 ± 43.3 a | 346.4 ± 55.6 a | 335.1 ± 66.6 a | 311.3 ± 66.5 a |
Groups | n | 1st Week | 2nd Week | 3rd Week | 4th Week |
---|---|---|---|---|---|
Citrate | 5 | 278 ± 57 | 306 ± 60 | 343 ± 49 | 366 ± 54 |
DM | 5 | 281 ± 9 | 274 ± 10 | 272 ± 13 a | 247 ± 16 a |
DM + I/R | 5 | 216 ± 22 a,b | 233 ± 35 a | 243 ± 42 a | 281 ± 17 a,b |
DM + I/R + Curcumin | 5 | 258 ± 14 | 284 ± 23 | 279 ± 18 a | 309 ± 14 a |
Groups | n | Kidney Weight (g) | Kidney Weight/Animal Weight |
---|---|---|---|
Citrate | 5 | 1.3 ± 0.1 | 0.3 ± 0.1 |
DM | 5 | 1.9 ± 0.2 a | 0.6 ± 0.04 a |
DM + I/R | 5 | 1.8 ± 0.4 a | 0.5 ± 0.1 a |
DM + I/R + Curcumin | 5 | 1.4 ± 0.2 | 0.5 ± 0.1 a,b |
Groups | n | Food (g) | Water (mL) |
---|---|---|---|
Citrate | 5 | 23.0 ± 1.7 | 22.5 ± 2.9 |
DM | 5 | 35.4 ± 0.9 a | 88.0 ± 13.0 a |
DM + I/R | 5 | 19.8 ± 9.4 a,b | 35.0 ± 20.0 b |
DM + I/R + Curcumin | 5 | 20.7 ± 8.3 a,b | 59.2 ± 15.7 a,b |
Groups | n | 24 h Urinary Flow (mL/min) | Serum Creatinine (mg/dL) | Inulin Clearance (mL/min) | Urinary NGAL (ng/mL) |
---|---|---|---|---|---|
Citrate | 5 | 0.011 ± 0.003 | 0.28 ± 0.05 | 0.91 ± 0.26 | 41.41 |
DM | 5 | 0.056 ± 0.010 a | 1.08 ± 0.14 a | 0.58 ± 0.04 a | 57.25 |
DM + I/R | 5 | 0.011 ± 0.005 b | 2.76 ± 0.67 a,b | 0.15 ± 0.06 a,b | 142.42 a,b |
DM + I/R + Curcumina | 5 | 0.025 ± 0.005 a,b,c | 0.93 ± 0.12 a,c | 0.44 ± 0.11 a | 81.35 c |
Groups | n | Heart Rate (Beats per min) | Mean Arterial Pressure (mmHg) | Renal Blood Flow (mL/min) | Renal Vascular Resistance (mmHg/mL/min) |
---|---|---|---|---|---|
Citrate | 5 | 460 ± 56 | 97 ± 9 | 8.1 ± 1.3 | 11.3 ± 1.9 |
DM | 5 | 471 ± 23 | 118 ± 26 | 4.8 ± 0.4 a | 26.7 ± 6.8 a |
DM + I/R | 5 | 500 ± 41 | 95 ± 5 | 2.2 ± 0.3 a,b | 43.5 ± 5.7 a,b |
DM + I/R + Curcumin | 5 | 522 ± 29 | 99 ± 12 | 5.1 ± 1.1 a,c | 20.9 ± 2.0 a,c |
Groups | n | Urinary Peroxides (nmol/g of Urinary Creatinine) | Lipid Peroxidation (nmol/g of Urinary Creatinine) | Urinary Nitrate (µM/g Urinary Creatinine) | Renal Tissue Thiols (nmol/mg of Total Protein) |
---|---|---|---|---|---|
Citrate | 5 | 0.90 ± 0.12 | 0.29 ± 0.05 | 22.01 ± 5.84 | 25.98 ± 2.87 |
DM | 5 | 3.59 ± 0.38 a | 10.45 ± 0.46 a | 51.70 ± 10.45 a | 15.52 ± 2.45 a |
DM + I/R | 5 | 5.85 ± 0.25 a,b | 23.29 ± 2.30 a,b | 165.83 ±13.56 a,b | 11.01 ± 2.16 a,b |
DM + I/R + Curcumin | 5 | 1.80 ± 0.48 a,b,c | 9.13 ± 2.40 a,c | 60.51 ± 10.87 a,c | 19.86 ± 2.77 a,c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, D.I.; de Oliveira Silva, E.; Ventura, S.; Vattimo, M.d.F.F. The Effect of Curcumin on Renal Ischemia/Reperfusion Injury in Diabetic Rats. Nutrients 2022, 14, 2798. https://doi.org/10.3390/nu14142798
Machado DI, de Oliveira Silva E, Ventura S, Vattimo MdFF. The Effect of Curcumin on Renal Ischemia/Reperfusion Injury in Diabetic Rats. Nutrients. 2022; 14(14):2798. https://doi.org/10.3390/nu14142798
Chicago/Turabian StyleMachado, Douglas Ikedo, Eloiza de Oliveira Silva, Sara Ventura, and Maria de Fatima Fernandes Vattimo. 2022. "The Effect of Curcumin on Renal Ischemia/Reperfusion Injury in Diabetic Rats" Nutrients 14, no. 14: 2798. https://doi.org/10.3390/nu14142798
APA StyleMachado, D. I., de Oliveira Silva, E., Ventura, S., & Vattimo, M. d. F. F. (2022). The Effect of Curcumin on Renal Ischemia/Reperfusion Injury in Diabetic Rats. Nutrients, 14(14), 2798. https://doi.org/10.3390/nu14142798