SNAP and Cardiometabolic Risk in Youth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Sample
2.1.1. Measures of Cardiometabolic Health
2.1.2. Youth Food Security
2.2. Empirical Methodology
3. Results
Potential Identification Issues
4. Discussion
4.1. Limitations
4.2. Policy Implications and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
(Column 1) | (Column 2) | (Column 3) | (Column 4) | (Column 5) | |
---|---|---|---|---|---|
Pooled Sample | High | Marginal | Low | Very Low | |
Risk Factor | (n = 9614) | (n = 5977) | (n = 979) | (n = 1544) | (n = 236) |
Waist (cm) | −1.98 (1.54) | −1.21 (1.76) | 2.13 (3.67) | −6.80 * (2.75) | −14.74 * (7.15) |
BP (mmHg) | −1.56 (0.96) | −1.05 (1.20) | −1.78 (3.08) | −4.57 (2.44) | −3.17 (3.95) |
HDL (mg/dL) | 0.98 (1.19) | 1.71 (1.30) | −6.24 * (2.62) | 1.83 (3.28) | 4.75 (6.08) |
Triglycerides (mg/dL) | −17.31 * (7.83) | −15.09 (10.54) | −20.46 (18.85) | −16.61 (16.28) | 6.27 (31.08) |
Glucose (mg/dL) | 3.22 (1.89) | 3.22 (2.46) | 6.75 (5.77) | 3.06 (6.42) | 2.97 (2.86) |
Youth meets criteria for MetS | −0.06 (0.05) | −0.11 (0.07) | 0.02 (0.11) | - | - |
Unconditional | Includes Controls | ||||||
---|---|---|---|---|---|---|---|
(Model 1) | (Model 2) | (Model 3) | (Model 4) | (Model 5) | (Model 6) | (Model 7) | |
Risk Factor | (n = 9614) | (n = 8749) | (n = 8749) | (n = 8749) | (n = 8749) | (n = 8749) | (n = 8749) |
Waist (cm) | −0.45 (1.13) | −0.08 (0.74) | −1.25 (0.90) | −1.49 (0.92) | −1.07 (1.23) | −1.48 (0.92) | −1.73 (1.74) |
Waist criteria | 0.02 (0.02) | 0.02 (0.02) | −0.01 (0.02) | −0.01 (0.02) | −0.01 (0.03) | −0.01 (0.02) | −0.00 (0.04) |
BP (mmHg) | −1.00 (0.83) | −0.34 (0.81) | −1.25 (0.89) | −1.04 (1.07) | −0.24 (1.23) | −1.02 (1.08) | 0.18 (1.67) |
BP criteria | −0.01 (0.01) | −0.00 (0.01) | −0.01 (0.01) | −0.00 (0.01) | −0.00 (0.01) | −0.00 (0.01) | 0.00 (0.02) |
HDL (mg/dL) | 0.33 (1.01) | 0.97 (0.94) | 1.49 (1.14) | 2.33 * (1.10) | 1.58 (1.50) | 2.35 * (1.09) | 2.04 (2.10) |
HDL criteria | −0.02 (0.03) | −0.04 (0.03) | −0.05 (0.04) | −0.07 + (0.04) | −0.08 (0.06) | −0.07 + (0.04) | −0.05 (0.08) |
Triglycerides (mg/dL) | −5.67 (5.52) | −7.96 (5.47) | −19.36 * (7.83) | −20.17 * (8.73) | −20.23 + (11.78) | −20.37 * (8.66) | −26.01 (16.50) |
Triglycerides criteria | −0.04 (0.04) | −0.05 (0.04) | −0.12 * (0.05) | −0.10 + (0.06) | −0.12 (0.08) | −0.10 + (0.06) | −0.19 + (0.11) |
Glucose (mg/dL) | 3.35 (2.18) | 5.03 * (1.92) | 3.67 * (1.65) | 4.76 + (2.71) | 1.06 (2.65) | 4.73 + (2.65) | 0.18 (3.82) |
Glucose criteria | −0.01 (0.05) | 0.02 (0.05) | −0.08 (0.07) | −0.10 (0.07) | −0.05 (0.10) | −0.10 (0.07) | −0.20 (0.13) |
MetS criteria | −0.02 (0.03) | −0.04 (0.03) | −0.10 + (0.05) | −0.08 (0.05) | −0.16 + (0.09) | −0.08 (0.05) | −0.28 + (0.15) |
MetS Z-scores | −0.40 (0.39) | −0.49 (0.42) | −1.46 ** (0.52) | −1.62 ** (0.53) | −1.02 (1.03) | −1.63 ** (0.53) | −0.84 (1.56) |
(Model 1) | (Model 2) | (Model 3) | (Model 4) | (Model 5) | (Model 6) | (Model 7) | (Model 8) | |
---|---|---|---|---|---|---|---|---|
Risk Factor | (n = 5715) | (n = 5296) | (n = 5715) | (n = 5296) | (n = 236) | (n = 5296) | (n = 5296) | (n = 5296) |
Waist (cm) | −1.26 (1.53) | −1.32 (1.06) | −1.53 (1.58) | −1.47 (1.06) | −1.44 (1.06) | −1.94 (1.37) | −1.87 (1.26) | −2.66 (1.98) |
Waist criteria | −0.00 (0.02) | −0.00 (0.02) | −0.01 (0.02) | −0.01 (0.02) | −0.00 (0.02) | −0.02 (0.03) | −0.02 (0.03) | −0.02 (0.05) |
BP (mmHg) | −1.03 (1.19) | −0.77 (1.18) | −1.16 (1.18) | −0.92 (1.16) | −0.85 (1.17) | 0.42 (1.35) | 0.16 (1.24) | 0.39 (1.84) |
BP criteria | 0.00 (0.01) | 0.00 (0.01) | −0.00 (0.01) | 0.00 (0.01) | 0.00 (0.01) | 0.01 (0.02) | 0.01 (0.02) | 0.01 (0.02) |
HDL (mg/dL) | 1.10 (1.22) | 1.65 (1.20) | 1.19 (1.24) | 1.71 (1.22) | 1.70 (1.22) | 1.38 (1.84) | 1.37 (1.63) | 3.01 (2.47) |
HDL criteria | −0.04 (0.05) | −0.04 (0.04) | −0.04 (0.05) | −0.04 (0.04) | −0.04 (0.04) | −0.08 (0.07) | −0.07 (0.06) | −0.10 (0.09) |
Triglycerides (mg/dL) | −15.95 + (8.61) | −19.58 * (8.69) | −18.21 * (8.93) | −22.20 * (8.83) | −21.08 * (8.67) | −21.27 (12.96) | −18.85 + (11.25) | −36.95 * (17.04) |
Triglycerides criteria | −0.07 (0.05) | −0.08 (0.06) | −0.09 + (0.05) | −0.10 + (0.06) | −0.09 (0.06) | −0.12 (0.08) | −0.09 (0.07) | −0.25 * (0.11) |
Glucose (mg/dL) | 5.87 + (3.32) | 5.71 * (2.67) | 5.39 + (2.97) | 4.99 * (2.33) | 5.42 * (2.53) | 3.01 (4.18) | 4.60 (4.38) | 3.34 (5.35) |
Glucose criteria | −0.04 (0.07) | −0.04 (0.07) | −0.06 (0.07) | −0.07 (0.07) | −0.06 (0.07) | −0.06 (0.10) | −0.08 (0.09) | −0.20 (0.13) |
MetS criteria | −0.03 (0.05) | −0.07 (0.05) | −0.04 (0.05) | −0.08 (0.05) | −0.08 (0.05) | −0.17 + (0.09) | −0.12 + (0.07) | −0.31 * (0.14) |
MetS Z-scores | −0.88 (0.57) | −1.26 * (0.62) | −1.03 + (0.59) | −1.48 * (0.63) | −1.40 * (0.62) | −0.75 (1.07) | −0.84 (0.86) | −1.46 (1.54) |
(Model 1) | (Model 2) | (Model 3) | (Model 4) | (Model 5) | |
---|---|---|---|---|---|
Pooled Sample | High | Marginal | Low | Very Low | |
Risk Factor | (n = 9963) | (n = 6261) | (n = 996) | (n = 1587) | (n = 236) |
Waist (cm) | −2.27 (1.75) | −2.65 (2.03) | 2.53 (3.26) | −1.12 (3.97) | 0.25 (7.57) |
Waist criteria | −0.01 (0.02) | −0.02 (0.03) | 0.13 * (0.06) | −0.02 (0.08) | −0.19 (0.33) |
BP (mmHg) | −1.14 (1.35) | −1.28 (1.48) | 2.24 (4.21) | −2.42 (2.58) | −13.26 * (6.23) |
BP criteria | −0.01 (0.01) | −0.01 (0.01) | −0.02 (0.05) | 0.03 + (0.02) | - |
HDL (mg/dL) | 1.13 (1.40) | 1.22 (1.64) | −0.02 (2.55) | 1.54 (3.33) | −3.60 (11.10) |
HDL criteria | 0.01 (0.05) | 0.03 (0.06) | 0.13 (0.09) | −0.17 (0.14) | 0.12 (0.31) |
Triglycerides (mg/dL) | −8.00 (7.91) | −9.17 (8.37) | 36.57 * (16.53) | 15.38 (16.51) | - |
Triglycerides criteria | −0.02 (0.05) | −0.01 (0.05) | 0.20 * (0.10) | −0.02 (0.11) | - |
Glucose (mg/dL) | 5.02 * (1.98) | 5.26 * (2.43) | 15.31 ** (4.54) | 6.08 (4.12) | - |
Glucose criteria | 0.09 (0.07) | 0.02 (0.09) | 0.53 ** (0.14) | 0.25 ** (0.09) | 0.04 (0.00) |
MetS criteria | −0.01 (0.04) | −0.03 (0.05) | 0.31 ** (0.04) | - | - |
MetS Z-scores | −1.06 * (0.52) | −1.19 * (0.58) | 2.92 ** (0.63) | −2.22 * (0.98) | 5.02 ** (0.97) |
References
- Woolf, S.H.; Schoomaker, H. Life Expectancy and Mortality Rates in the United States, 1959–2017. JAMA 2019, 322, 1996–2016. [Google Scholar] [CrossRef]
- Chetty, R.; Stepner, M.; Abraham, S.; Lin, S.; Scuderi, B.; Turner, N.; Bergeron, A.; Cutler, D. The Association Between Income and Life Expectancy in the United States, 2001–2014. JAMA 2016, 315, 1750. [Google Scholar] [CrossRef]
- Olshansky, S.J.; Passaro, D.J.; Hershow, R.C.; Layden, J.; Carnes, B.A.; Brody, J.; Hayflick, L.; Butler, R.N.; Allison, D.B.; Ludwig, D.S. A Potential Decline in Life Expectancy in the United States in the 21st Century. N. Engl. J. Med. 2005, 352, 1138–1145. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Status Report on Noncommunicable Diseases 2010; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- National Institutes of Health (NIH): National Heart Lung and Blood Institute. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary report. Pediatrics 2011, 128 (Suppl. 5), S213–S256. [Google Scholar] [CrossRef] [Green Version]
- Al-Hamad, D.; Raman, V. Metabolic syndrome in children and adolescents. Transl. Pediatr. 2017, 6, 397. [Google Scholar] [CrossRef] [Green Version]
- Agirbasli, M.; Tanrikulu, A.M.; Berenson, G.S. Metabolic Syndrome: Bridging the Gap from Childhood to Adulthood. Cardiovasc. Ther. 2016, 34, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Parker, E.D.; Widome, R.; Nettleton, J.A.; Pereira, M.A. Food Security and Metabolic Syndrome in U.S. Adults and Adolescents: Findings From the National Health and Nutrition Examination Survey, 1999–2006. Ann. Epidemiol. 2010, 20, 364–370. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture: Food and Nutrition Service Office of Research and Analysis. Building a Healthy America: A Profile of the Supplemental Nutrition Assistance Program. 2012. Available online: https://fns-prod.azureedge.net/sites/default/files/BuildingHealthyAmerica.pdf (accessed on 15 June 2017).
- Supplemental Nutrition Assistance Program: Number of Participating Households. 2020. Available online: https://fns-prod.azureedge.net/sites/default/files/resource-files/30SNAPcurrHH-1.pdf (accessed on 5 February 2020).
- Bartlett, S.; Klerman, J.; Olsho, L.; Logan, C.; Blocklin, M.; Beauregard, M.; Enver, A. Evaluation of the Healthy Incentives Pilot (HIP): Final Report; Prepared by Abt Associates for the US Department of Agriculture, Food and Nutrition Service; USDA: Washington, DC, USA, 2014.
- U.S. Census Bureau. Quick Facts. 2020. Available online: https://www.census.gov/quickfacts/fact/table/US/HCN010212 (accessed on 5 February 2020).
- Farson Gray, K.; Fisher, S.; Lauffer, S. Characteristics of Supplemental Nutrition Assistance Program Households: Fiscal Year 2015; Nutrition Assistance Program Report Series, Office of Policy Support, Report No. SNAP-16-CHAR; USDA: Washington, DC, USA, 2016.
- United States Department of Agriculture: Food and Nutrition Service. Supplemental Nutrition Assistance Program Eligibility. 2017. Available online: https://www.fns.usda.gov/snap/eligibility (accessed on 20 February 2017).
- U.S. Department of Agriculture: FNS Program Development Division. State Options Report. 2017. Available online: https://fns-prod.azureedge.net/sites/default/files/snap/13-State_Options.pdf (accessed on 15 June 2020).
- Institute of Medicine and National Research Council. Supplemental Nutrition Assistance Program: Examining the Evidence to Define Benefit Adequacy; The National Academies Press: Washington, DC, USA, 2013. [Google Scholar]
- Food and Nutrition Act of 2008. PL 88-525. 2008. Available online: https://www.fns.usda.gov/sites/default/files/snap/Food-And-Nutrition-Act-2008.pdf (accessed on 13 March 2020).
- Andreyeva, T.; Tripp, A.S.; Schwartz, M.B. Dietary Quality of Americans by Supplemental Nutrition Assistance Program Participation Status. Am. J. Prev. Med. 2015, 49, 594–604. [Google Scholar] [CrossRef]
- Mabli, J.; Ohls, J.; Dragoset, L.; Castner, L.; Santos, B. Measuring the Effect of Supplemental Nutrition Assistance Program (SNAP) Participation on Food Security; Prepared by Mathematica Policy Research for the US Department of Agriculture, Food and Nutrition Service USA; U.S. Department of Agriculture, Food and Nutrition Service: Washington, DC, USA, 2013.
- Nord, M.; Golla, A.M. Does SNAP Decrease Food Insecurity? Untangling the Self-Selection Effect. In USDA Economic Research Service—ERR85; DIANE Publishing: Collingdale, PA, USA, 2009; p. 23. [Google Scholar]
- Tester, J.M.; Laraia, B.A.; Leung, C.W.; Mietus-Snyder, M.L. Dyslipidemia and Food Security in Low-Income US Adolescents: National Health and Nutrition Examination Survey, 2003–2010. Prev. Chronic Dis. 2016, 13, E22. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.J.; Jahns, L.; Laraia, B.A.; Haughton, B. Lower Risk of Overweight in School-aged Food Insecure Girls Who Participate in Food Assistance. Arch. Pediatr. Adolesc. Med. 2003, 157, 780. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.; Montgomery, M.; Ewell, P. Federal Food Assistance Programs and Cardiovascular Risk Factors in Low-Income Preschool Children. J. Community Health 2016, 41, 626–634. [Google Scholar] [CrossRef]
- Leung, C.W.; Tester, J.M.; Rimm, E.B.; Willett, W.C. SNAP Participation and Diet-Sensitive Cardiometabolic Risk Factors in Adolescents. Am. J. Prev. Med. 2017, 52, S127–S137. [Google Scholar] [CrossRef] [Green Version]
- Doudchenko, N.; Imbens, G.W. Balancing, regression, difference-in-differences and synthetic control methods: A synthesis. Natl. Bur. Econ. Res. Work. Pap. Ser. 2016, 22791. [Google Scholar] [CrossRef]
- National Center for Health Statistics. National Health and Nutrition Examination Survey: Sample Design, 2011–2014. Vital Health Stat. 2014, 162, 1–33. [Google Scholar]
- Elgar, F.J.; Stewart, J.M. Validity of Self-report Screening for Overweight and Obesity: Evidence from the Canadian Community Health Survey. Can. J. Public Health/Rev. Can. St. Publique Can. 2008, 99, 423–427. [Google Scholar] [CrossRef]
- Shields, M.; Gorber, S.C.; Janssen, I.; Tremblay, M.S. Obesity estimates for children based on parent-reported versus direct measures. Stat. Can. 2011, 22, 47–58. [Google Scholar]
- Johnson, K.A.; Partsch, D.J.; Rippole, L.L.; McVey, D.M. Reliability of self-reported blood pressure measurements. Arch. Intern. Med. 1999, 159, 2689–2693. [Google Scholar] [CrossRef] [Green Version]
- Tolonen, H.; Koponen, P.; Mindell, J.S.; Männistö, S.; Giampaoli, S.; Dias, C.M.; Tuovinen, T.; Gosswald, A.; Kuulasmaa, K. Under-estimation of obesity, hypertension and high cholesterol by self-reported data: Comparison of self-reported information and objective measures from health examination surveys. Eur. J. Public Health 2014, 24, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatric Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Economic Research Service: U.S. Department of Agriculture. U.S. Household Food Security Survey Module; USDA: Washington, DC, USA, 2012. Available online: https://www.ers.usda.gov/media/8271/hh2012.pdf (accessed on 17 March 2020).
- Angrist, J.D.; Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Babu, S.C.; Gajanan, S.N.; Sanyal, P. Food Security, Poverty and Nutrition Policy Analysis: Statistical Methods and Applications, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- National Academies of Sciences Engineering and Medicine. Review of WIC Food Packages: Improving Balance and Choice: Final Report; USDA: Washington, DC, USA, 2017. [CrossRef]
- Moscoe, E.; Bor, J.; Bärnighausen, T. Regression discontinuity designs are underutilized in medicine, epidemiology, and public health: A review of current and best practice. J. Clin. Epidemiol. 2015, 68, 132–143. [Google Scholar] [CrossRef] [Green Version]
- StataCorp. Stata Statistical Software: Release 14; StataCorp LP: College Station, TX, USA, 2015. [Google Scholar]
- Bitler, M.P. Health and nutrition effects of SNAP: Selection into the program and a review of the literature. In SNAP Matters: How Food Stamps Affect Health and Well-Being; Bartfeld, J., Gundersen, T., Smeeding, M., Ziliak, J.P., Eds.; Stanford University Press: Redwood City, CA, USA, 2015; pp. 134–160. [Google Scholar]
- Meyer, B.D.; Mittag, N.; George, R.M. Errors in Survey Reporting and Imputation and Their Effects on Estimates of Food Stamp Program Participation; US Census Bureau Center for Economic Studies Paper No. CES-WP-11-14; U.S. Census Bureau: Sortland, MD, USA, 2011. [CrossRef] [Green Version]
- Bollinger, C.R.; David, M.H. Modeling Discrete Choice With Response Error: Food Stamp Participation. J. Am. Stat. Assoc. 1997, 92, 827. [Google Scholar] [CrossRef]
- Hoynes, H.; Schanzenbach, D.W. U.S. Food and Nutrition Programs. Natl. Bur. Econ. Res. Work. Pap. Ser. 2015, 21057. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Agriculture: Food and Nutrition Service. The Stimulus Package and SNAP: How the American Recovery and Reinvestment Act Affects SNAP Benefits and Policies. Slide Show from the US Department of Agriculture. 2009. Available online: https://slideplayer.com/slide/5267716/ (accessed on 30 June 2022).
- U.S. Department of Agriculture: Food and Nutrition Service. American Recovery & Reinvestment Act of 2009. 2016. Available online: https://www.fns.usda.gov/arra/snap (accessed on 14 June 2017).
- Wilde, P.E. Measuring the Effect of Food Stamps on Food Insecurity and Hunger: Research and Policy Considerations. J. Nutr. 2007, 137, 307–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larson, N.I.; Story, M.T. Food Insecurity and Weight Status Among U.S. Children and Families: A Review of the Literature. Am. J. Prev. Med. 2011, 40, 166–173. [Google Scholar] [CrossRef] [PubMed]
- French, S.A.; Rydell, S.A.; Mitchell, N.R.; Oakes, J.M.; Elbel, B.; Harnack, L. Financial incentives and purchase restrictions in a food benefit program affect the types of foods and beverages purchased: Results from a randomized trial. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 127. [Google Scholar] [CrossRef] [Green Version]
- 116th Congress, Consolidated Appropriations Act. 2021. Available online: https://www.congress.gov/bill/116th-congress/house-bill/133/text (accessed on 30 June 2020).
- 117th Congress, American Rescue Plan Act of 2021. 2021. Available online: https://www.congress.gov/117/plaws/publ2/PLAW-117publ2.pdf (accessed on 19 June 2022).
- U.S. Department of Agriculture. Thrifty Food Plan, 2021. August 2021, FNS-916. 2021. Available online: https://fns-prod.azureedge.us/sites/default/files/resource-files/TFP2021.pdf (accessed on 30 June 2022).
- Nord, M.; Prell, M. Food Security Improved Following the 2009 ARRA Increase in SNAP Benefit; Economic Research Service, No. 1477-2017-4008; USDA: Washington, DC, USA, 2011.
- Hudak, K.M.; Racine, E.F.; Schulkind, L. An Increase in SNAP Benefits Did Not Impact Food Security or Diet Quality in Youth. J. Acad. Nutr. Diet. 2021, 121, 507–519.e12. [Google Scholar] [CrossRef]
- Anderson, P.M.; Butcher, K.F.; Hoynes, H.W.; Schanzenbach, D.W. Beyond Income: What Else Predicts Very Low Food Security Among Children? South. Econ. J. 2016, 82, 1078–1105. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, A.L.; Peterson, C.; Matthews, M.D.; Kelly, D.R. Grit: Perseverance and Passion for Long-Term Goals. J. Pers. Soc. Psychol. 2007, 92, 1087–1101. [Google Scholar] [CrossRef]
- Nikolaus, C.J.; Schierer, M.; Ellison, B.; Eicher-Miller, H.A.; Gundersen, C.; Nickols-Richardson, S.M. Grit is associated with food security among US parents and adolescents. Am. J. Health Behav. 2019, 43, 207–218. [Google Scholar] [CrossRef]
Risk Factor | Age Range Available in NHANES | No. of Participants Evaluated | Definition of Abnormal Value | Sample Mean (SE) | Percent Meeting Criteria |
---|---|---|---|---|---|
Waist circumference (cm) | 2–18 | 9226 | ≥90th percentile | 78.15 (0.40) | 13.85% (0.75) |
HDL cholesterol (md/dL) | 6–18 | 6019 | <40 mg/dL in boys <50 mg/dL in girls | 51.77 (0.31) | 31.35% (1.09) |
Systolic blood pressure (mmHg) | 8–18 | 5257 | ≥130 mmHg | 107.19 (0.24) | 2.07% (2.43) |
Triglycerides (mg/dL) | 12–18 | 1570 | ≥150 mg/dL | 84.47 (1.88) | 8.64% (1.01) |
Glucose (mg/dL) | 12–18 | 1590 | ≥100 mg/dL | 94.48 (0.49) | 21.57% (1.81) |
MetS | 12–18 | 1452 | Elevated waist circumference and 2+ risk factors | - | 4.96% (0.89) |
MetS Z-score | 12–18 | 1427 | Sum of risk factor Z-scores | 0.27 (0.10) | - |
(Column 1) | (Column 2) | (Column 3) | (Column 4) | (Column 5) | |
---|---|---|---|---|---|
Pooled Sample | High | Marginal | Low | Very Low | |
Risk Factor | (n = 9614) | (n = 5977) | (n = 979) | (n = 1544) | (n = 236) |
Waist criteria | −0.01 (0.02) | 0.00 (0.02) | −0.02 (0.07) | −0.11 * (0.05) | 0.02 (0.11) |
BP criteria | −0.01 (0.01) | 0.00 (0.01) | −0.04 (0.04) | −0.04 (0.04) | −0.09 (0.09) |
HDL criteria | −0.04 (0.04) | −0.07 (0.05) | 0.27 * (0.11) | 0.02 (0.08) | −0.33 (0.25) |
Triglycerides criteria | −0.12 * (0.05) | −0.08 (0.06) | −0.02 (0.07) | −0.18 (0.14) | −0.11 (0.14) |
Glucose criteria | −0.08 (0.07) | −0.12 (0.08) | 0.15 (0.19) | −0.06 (0.17) | - |
MetS Z-score | −1.08 * (0.48) | −1.81 ** (0.59) | 0.08 (1.34) | 0.54 (1.65) | 0.84 (1.84) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfaro-Hudak, K.M.; Schulkind, L.; Racine, E.F.; Zillante, A. SNAP and Cardiometabolic Risk in Youth. Nutrients 2022, 14, 2756. https://doi.org/10.3390/nu14132756
Alfaro-Hudak KM, Schulkind L, Racine EF, Zillante A. SNAP and Cardiometabolic Risk in Youth. Nutrients. 2022; 14(13):2756. https://doi.org/10.3390/nu14132756
Chicago/Turabian StyleAlfaro-Hudak, Katelin M., Lisa Schulkind, Elizabeth F. Racine, and Arthur Zillante. 2022. "SNAP and Cardiometabolic Risk in Youth" Nutrients 14, no. 13: 2756. https://doi.org/10.3390/nu14132756
APA StyleAlfaro-Hudak, K. M., Schulkind, L., Racine, E. F., & Zillante, A. (2022). SNAP and Cardiometabolic Risk in Youth. Nutrients, 14(13), 2756. https://doi.org/10.3390/nu14132756