A Preliminary Study on a Form of the 24-h Recall That Balances Survey Cost and Accuracy, Based on the NCI Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Measurements
2.3. Dietary Intake Assessment
2.4. Data Sets
2.5. Statistical Analysis
3. Results
3.1. Comparison of the Four Scenarios
3.2. Equivalence Testing between Scenario NC2 and NC3
3.3. Comparison of Weekdays and Weekends in Scenario NC2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baranowski, T. 24 Hour Recall and Diet Methods. In Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2012; Chapter 4; 547p. [Google Scholar]
- National Center for Health Statistics. National Health and Nutrition Examination Survey. Available online: https://www.cdc.gov/nchs/nhanes/index.htm (accessed on 5 July 2021).
- Canada, H. Reference Guide to Understanding and Using the Data—2015 Canadian Community Health Survey—Nutrition. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-nutrition-surveillance/health-nutritionsurveys/canadian-community-health-survey-cchs/ (accessed on 9 February 2022).
- Yu, D.; Zhao, L.; Zhao, W. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982–2015). Nutr. Rev. 2020, 78, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Salvador Castell, G.; Serra-Majem, L.; Ribas-Barba, L. What and how much do we eat? 24-hour dietary recall method. Nutr. Hosp. 2015, 31 (Suppl. S3), 46–48. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, N.; Okuda, T.; Shinohara, H.; Yamasaki, R.S.; Hirano, N.; Kang, J.; Ogawa, M.; Nishi, N.N. Relationship between Seasonal Changes in Food Intake and Energy Metabolism, Physical Activity, and Body Composition in Young Japanese Women. Nutrients 2022, 14, 506. [Google Scholar] [CrossRef] [PubMed]
- Capita, R.; Alonso-Calleja, C. Differences in reported winter and summer dietary intakes in young adults in Spain. Int. J. Food Sci. Nutr. 2005, 56, 431–443. [Google Scholar] [CrossRef]
- Tokudome, Y.; Imaeda, N.; Nagaya, T.; Ikeda, M.; Fujiwara, N.; Sato, J.; Kuriki, K.; Kikuchi, S.; Maki, S.; Tokudome, S. Daily, weekly, seasonal, within- and between-individual variation in nutrient intake according to four season consecutive 7 day weighed diet records in Japanese female dietitians. J. Epidemiol. 2002, 12, 85–92. [Google Scholar] [CrossRef] [Green Version]
- el Lozy, M. Dietary variability and its impact on nutritional epidemiology. J. Chronic Dis. 1983, 36, 237–249. [Google Scholar] [CrossRef]
- Huang, K.; Zhao, L.; Guo, Q.; Yu, D.; Yang, Y.; Cao, Q.; Yuan, X.; Ju, L.; Li, S.; Cheng, X.; et al. Comparison of the 24 h Dietary Recall of Two Consecutive Days, Two Non-Consecutive Days, Three Consecutive Days, and Three Non-Consecutive Days for Estimating Dietary Intake of Chinese Adult. Nutrients 2022, 14, 1960. [Google Scholar] [CrossRef]
- Tooze, J.A.; Kipnis, V.; Buckman, D.W.; Carroll, R.J.; Freedman, L.S.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Dodd, K.W. A mixed-effects model approach for estimating the distribution of usual intake of nutrients: The NCI method. Stat. Med. 2010, 29, 2857–2868. [Google Scholar] [CrossRef] [Green Version]
- Kipnis, V.; Midthune, D.; Buckman, D.W.; Dodd, K.W.; Guenther, P.M.; Krebs-Smith, S.M.; Subar, A.F.; Tooze, J.A.; Carroll, R.J.; Freedman, L.S. Modeling data with excess zeros and measurement error: Application to evaluating relationships between episodically consumed foods and health outcomes. Biometrics 2009, 65, 1003–1010. [Google Scholar] [CrossRef] [Green Version]
- Walter, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Luo, H.; Dodd, K.W.; Arnold, C.D.; Engle-Stone, R. A New Statistical Method for Estimating Usual Intakes of Nearly-Daily Consumed Foods and Nutrients Through Use of Only One 24-hour Dietary Recall. J. Nutr. 2019, 149, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- French, C.D.; Arsenault, J.E.; Arnold, C.D.; Haile, D.; Luo, H.; Dodd, K.W.; Vosti, S.A.; Slupsky, C.M.; Engle-Stone, R.; Variance Components of Nutrient Intakes Data Working Group. Within-Person Variation in Nutrient Intakes across Populations and Settings: Implications for the Use of External Estimates in Modeling Usual Nutrient Intake Distributions. Adv. Nutr. 2021, 12, 429–451. [Google Scholar] [CrossRef] [PubMed]
- Basiotis, P.P.; Welsh, S.O.; Cronin, F.J.; Kelsay, J.L.; Mertz, W. Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J. Nutr. 1987, 117, 1638–1641. [Google Scholar] [CrossRef]
- Tooze, J.A.; Midthune, D.; Dodd, K.W.; Freedman, L.S.; Krebs-Smith, S.M.; Subar, A.F.; Guenther, P.M.; Carroll, R.J.; Kipnis, V. A new statistical method for estimating the usual intake of episodically consumed foods with application to their distribution. J. Am. Diet. Assoc. 2006, 106, 1575–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harttig, U.; Haubrock, J.; Knuppel, S.; Boeing, H.; Consortium, E. The MSM program: Web-based statistics package for estimating usual dietary intake using the Multiple Source Method. Eur. J. Clin. Nutr. 2011, 65 (Suppl. S1), S87–S91. [Google Scholar] [CrossRef] [Green Version]
- Nusser, S.M.; Carriquiry, A.L.; Dodd, K.W.; Fuller, W.A. A Semiparametric Transformation Approach to Estimating Usual Daily Intake Distributions. J. Am. Stat. Assoc. 1996, 91, 1440–1449. [Google Scholar] [CrossRef]
- Dekkers, A.L.; Verkaik-Kloosterman, J.; van Rossum, C.T.; Ocke, M.C. SPADE, a new statistical program to estimate habitual dietary intake from multiple food sources and dietary supplements. J. Nutr. 2014, 144, 2083–2091. [Google Scholar] [CrossRef] [Green Version]
- Laureano, G.H.; Torman, V.B.; Crispim, S.P.; Dekkers, A.L.; Camey, S.A. Comparison of the ISU, NCI, MSM, and SPADE Methods for Estimating Usual Intake: A Simulation Study of Nutrients Consumed Daily. Nutrients 2016, 8, 166. [Google Scholar] [CrossRef]
- Pereira, J.L.; de Castro, M.A.; Crispim, S.P.; Fisberg, R.M.; Isasi, C.R.; Mossavar-Rahmani, Y.; Van Horn, L.; Carnethon, M.R.; Daviglus, M.L.; Perreira, K.M.; et al. Comparing Methods from the National Cancer Institute vs Multiple Source Method for Estimating Usual Intake of Nutrients in the Hispanic Community Health Study/Study of Latino Youth. J. Acad. Nutr. Diet. 2021, 121, 59–73.e16. [Google Scholar] [CrossRef]
- Verly, E., Jr.; Oliveira, D.C.; Fisberg, R.M.; Marchioni, D.M. Performance of statistical methods to correct food intake distribution: Comparison between observed and estimated usual intake. Br. J. Nutr. 2016, 116, 897–903. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Yu, D.; Guo, Q.; Yang, Y.; Wei, X.; Zhao, L.; Fang, H. Validation of the MSM and NCI Method for Estimating the Usual Intake of Nutrients and Food According to Four Seasons of Seven Consecutive Daily 24 Hour Dietary Recalls in Chinese Adults. Nutrients 2022, 14, 445. [Google Scholar] [CrossRef] [PubMed]
- St George, S.M.; Van Horn, M.L.; Lawman, H.G.; Wilson, D.K. Reliability of 24-Hour Dietary Recalls as a Measure of Diet in African-American Youth. J. Acad. Nutr. Diet. 2016, 116, 1551–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.X. Chinese Food Composition Table; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Krebs-Smith, S.M.; Guenther, P.M.; Subar, A.F.; Kirkpatrick, S.I.; Dodd, K.W. Americans do not meet federal dietary recommendations. J. Nutr. 2010, 140, 1832–1838. [Google Scholar] [CrossRef]
- Freese, J.; Pricop-Jeckstadt, M.; Heuer, T.; Clemens, M.; Boeing, H.; Knuppel, S.; Nothlings, U. Determinants of consumption-day amounts applicable for the estimation of usual dietary intake with a short 24-h food list. J. Nutr. Sci. 2016, 5, e35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, E.; Nowacki, A.S. Understanding equivalence and noninferiority testing. J. Gen. Intern. Med. 2011, 26, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Wable Grandner, G.; Dickin, K.; Kanbur, R.; Menon, P.; Rasmussen, K.M.; Hoddinott, J. Assessing statistical similarity in dietary intakes of women of reproductive age in Bangladesh. Matern. Child Nutr. 2021, 17, e13086. [Google Scholar] [CrossRef]
- Carriquiry, A.L. Assessing the prevalence of nutrient inadequacy. Public Health Nutr. 1999, 2, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Beaton, G.H.; Milner, J.; McGuire, V.; Feather, T.E.; Little, J.A. Source of variance in 24-hour dietary recall data: Implications for nutrition study design and interpretation. Carbohydrate sources, vitamins, and minerals. Am. J. Clin. Nutr. 1983, 37, 986–995. [Google Scholar] [CrossRef]
- Dodd, K.W.; Guenther, P.M.; Freedman, L.S.; Subar, A.F.; Kipnis, V.; Midthune, D.; Tooze, J.A.; Krebs-Smith, S.M. Statistical methods for estimating usual intake of nutrients and foods: A review of the theory. J. Am. Diet. Assoc. 2006, 106, 1640–1650. [Google Scholar] [CrossRef]
- Verly, E., Jr.; Castro, M.A.; Fisberg, R.M.; Marchioni, D.M. Precision of usual food intake estimates according to the percentage of individuals with a second dietary measurement. J. Acad. Nutr. Diet. 2012, 112, 1015–1020. [Google Scholar] [CrossRef]
- Delisle Nystrom, C.; Henriksson, H.; Alexandrou, C.; Bergstrom, A.; Bonn, S.; Balter, K.; Lof, M. Validation of an Online Food Frequency Questionnaire against Doubly Labelled Water and 24 h Dietary Recalls in Pre-School Children. Nutrients 2017, 9, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazan, R.; Vieux, F.; Mora, S.; Havard, S.; Dubuisson, C. Potential of existing online 24-h dietary recall tools for national dietary surveys. Public Health Nutr. 2021, 24, 5361–5386. [Google Scholar] [CrossRef] [PubMed]
Scenarios | Total | Only Weekdays | Only Weekends | Weekdays and Weekends |
---|---|---|---|---|
C2 | 6 | 4 | 1 | 1 |
C3 | 5 | 4 | 0 | 1 |
NC2 | 15 | 6 | 0 | 9 |
NC3 | 10 | 1 | 0 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.; Zhao, L.; Fang, H.; Yu, D.; Yang, Y.; Li, Z.; Mu, D.; Ju, L.; Li, S.; Cheng, X.; et al. A Preliminary Study on a Form of the 24-h Recall That Balances Survey Cost and Accuracy, Based on the NCI Method. Nutrients 2022, 14, 2740. https://doi.org/10.3390/nu14132740
Huang K, Zhao L, Fang H, Yu D, Yang Y, Li Z, Mu D, Ju L, Li S, Cheng X, et al. A Preliminary Study on a Form of the 24-h Recall That Balances Survey Cost and Accuracy, Based on the NCI Method. Nutrients. 2022; 14(13):2740. https://doi.org/10.3390/nu14132740
Chicago/Turabian StyleHuang, Kun, Liyun Zhao, Hongyun Fang, Dongmei Yu, Yuxiang Yang, Zizi Li, Di Mu, Lahong Ju, Shujuan Li, Xue Cheng, and et al. 2022. "A Preliminary Study on a Form of the 24-h Recall That Balances Survey Cost and Accuracy, Based on the NCI Method" Nutrients 14, no. 13: 2740. https://doi.org/10.3390/nu14132740
APA StyleHuang, K., Zhao, L., Fang, H., Yu, D., Yang, Y., Li, Z., Mu, D., Ju, L., Li, S., Cheng, X., Xu, X., & Guo, Q. (2022). A Preliminary Study on a Form of the 24-h Recall That Balances Survey Cost and Accuracy, Based on the NCI Method. Nutrients, 14(13), 2740. https://doi.org/10.3390/nu14132740