Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Materials
2.3. Sample Extraction
2.4. Liquid Chromatography–Mass Spectrometry
2.5. Statistical Analysis
3. Results
3.1. The Content of Caffeine, Paraxanthine, Theobromine, and Theophylline in Breast Milk According to Selected Factors
3.2. The Relationship between Caffeine Consumption and Caffeine Content in Human Milk
3.3. Association between Obtained Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butts, C.A.; Hedderley, D.I.; Herath, T.D.; Paturi, G.; Glyn-Jones, S.; Wiens, F.; Stahl, B.; Gopal, P. Human milk composition and dietary intakes of breastfeeding omen of different ethnicity from the Manawatu-Wanganui Region of New Zeland. Nutrients 2018, 10, 1231. [Google Scholar] [CrossRef] [Green Version]
- Karcz, K.; Lehman, I.; Królak-Olejnik, B. Foods to Avoid While Breastfeeding? Experiences and Opinions of Polish Mothers and Healthcare Providers. Nutrients 2020, 12, 1644. [Google Scholar] [CrossRef] [PubMed]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martin-Cabrejas, M.; López de Pablo, A.L.; Saenz dr Pipaón, M.S.; Ramiro-Cortijo, D. A review of bioactive factors in human breastmilk: A Focus on prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahr, G.; Sörgel, F.; Granneman, G.R.; Kinzig, M.; Muth, P.; Patterson, K.; Fuhr, U.; Nickel, P.; Stephan, U. Effects of temafloxacin and ciprofloxacin on the pharmacokinetics of caffeine. Clin. Pharm. 1992, 22, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska-Muc, A.K.; Łepecka-Klusek, C.; Stadnicka, G.; Pilewska-Kozak, A.B. Używki w ciąży—Kofeina. J. Educ. Health Sport 2015, 5, 395–406. [Google Scholar]
- McCreedy, A.; Bird, S.; Brown, L.J.; Shaw-Stewart, J.; Chen, Y.-F. Effects of maternal caffeine consumption on the breastfed child: A systematic review. Swiss Med. Wkly. 2018, 148, 14665. [Google Scholar] [CrossRef]
- Jetter, A.; Kinzig, M.; Rodamer, M. Phenotyping of N-acetyltransferase type 2 and xanthine oxidase with caffeine: When should urine samples be collected? Eur. J. Clin. Pharmacol. 2009, 65, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Domingues e Paula, T.M.; Lioe Teh Shang, F.; Chiarini-Garcia, H.; Radicchi Campos Lobato de Almeida, F. Caffeine Intake during Pregnancy: What Are the Real Evidences? J. Pharm. Pharmacol. 2017, 5, 249–260. [Google Scholar]
- Monteiro, J.P.; Alves, M.G.; Oliveira, P.F.; Silva, B.M. Structure-bioactivity relationships of methylxanthines: Trying to make sense of all the promises and the drawbacks. Molecules 2016, 21, 974. [Google Scholar] [CrossRef] [Green Version]
- Mladenovic, K.; Root, Y.; Ramanathan, D. UHPLC-HRMS analysis of theobromine in theobroma cacao and its products. J. Nutr. Food Sci. 2018, 8, 6. [Google Scholar] [CrossRef]
- Cova, I.; Leta, V.; Mariani, C.; Pantoni, L.; Pomati, S. Exploring cocoa properties: Is theobromine a cognitive modulator? Psychopharmacology 2019, 236, 561–572. [Google Scholar] [CrossRef]
- Available online: https://www.sciencedirect.com/topics/nursing-and-health-professions/paraxanthine (accessed on 12 May 2022).
- Wilson, C. The clinical toxicology of caffeine: A review and case study. Toxicol. Rep. 2018, 5, 1140–1152. [Google Scholar] [CrossRef]
- Del Coso, J.; Salinero, J.J.; Lara, B. Effects of caffeine and coffee on human functioning. Nutrients 2020, 12, 125. [Google Scholar] [CrossRef] [Green Version]
- Błaszczyk-Bębenek, E.; Piórecka, B.; Kopytko, M.; Chadzińska, Z.; Jagielski, P.; Schlegel-Zawadzka, M. Evaluation of caffeine consumption among pregnant women from southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2373. [Google Scholar] [CrossRef] [Green Version]
- Verster, J.C.; Koenig, J. Spożycie kofeiny i jej źródła: Przegląd krajowych badań reprezentatywnych. Crit. Rev. Food Sci. Nutr. 2018, 58, 1250–1259. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific Opinion on the safety of caffeine. EFSA J. 2015, 13, 4102. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4102.13.02.2022 (accessed on 25 October 2021).
- Malczyk, E.; Wyka, J.; Malczyk, A.; Larma, K. Assessment of caffeine intake with food by polish females and males. Rocz. Panstw. Zakl. Hig. 2021, 72, 273–280. [Google Scholar] [CrossRef]
- Rehm, C.D.; Ratliff, J.C.; Riedt, C.S.; Drewnowski, A. Coffee consumption among adults in the United States by demographic variables and purchase location: Analyses of nhanes 2011–2016 data. Nutrients 2020, 12, 2463. [Google Scholar] [CrossRef]
- Ortega, R.M.; Pérez-Rodrigo, C.; López-Sobaler, A.M. Dietary assessment methods: Dietary records. Nutr. Hosp. 2015, 31 (Suppl. 3), 38–45. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/books/NBK501467/ (accessed on 25 October 2021).
- Rodak, K.; Kokot, I.; Kratz, E.M. Caffeine as a factor influencing the functioning of the human body—Friend or foe? Nutrients 2021, 13, 3088. [Google Scholar] [CrossRef]
- Geraghty, S.R.; McNamara, K.; Kwiek, J.; Rogers, L.; Klebanoff, M.A.; Augustine, M.; Keim, S.A. Tobacco metabolites and caffeine in human milk purchased via the internet. Breastfeed. Med. 2015, 10, 419–424. [Google Scholar] [CrossRef] [Green Version]
- Iacovou, M.; Sevilla, A. Infant feeding: The effects of scheduled vs. on-demand feeding on mothers’ wellbeing and children’s cognitive development. Eur. J. Public Health 2013, 23, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Farhud, D.D. Impact of lifestyle on health. Iran. J. Public Health 2015, 44, 1442–1444. [Google Scholar]
- Pop, L.-M.; Iorga, M.; Sipos, L.-R.; Iurcov, R. Gender differences in healthy lifestyle, body consciousness, and the use of social networks among medical students. Medicina 2021, 57, 648. [Google Scholar] [CrossRef]
- Samuel, T.M.; Zhou, Q.; Giuffrida, F.; Verhasselt, V.; Thakkar, S.K. Nutritional and non-nutritional composition of human milk is modulated by maternal, infant, and methodological factors. Front. Nutr. 2020, 7, 576133. [Google Scholar] [CrossRef]
- Chung, M.-Y. Factors affecting human milk composition. Pediatr. Neonatol. 2014, 55, 421–422. [Google Scholar] [CrossRef]
- Bo, L.G.; Lin, Q.; Ping, O.; Xian, X.R. Analysis on dietary survey and influencing factors of wet nurses during puerperal period. Chin. J. Matern. Child. Health 2015, 30, 3029–3031. [Google Scholar]
- Wang, B.Z.; Sun, Y.J.; Zhang, H. Analysis of breast milk composition and it’s impactors. Ningxia Med. J. 2016, 38, 758–760. [Google Scholar]
- Levin, K.A. Urban-rural differences in adolescent eating behaviour: A multilevel cross-sectional study of 15-year-olds in Scotland. Public Health Nutr. 2014, 17, 1776–1785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viartasiwi, N.; Trihartono, A. Café in small towns: A picture of the weakening social engagement. Coffee Sci. 2020, 15, e151687. Available online: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1687 (accessed on 30 March 2022). [CrossRef]
- Gehlhar, M.; Coyle, W. Global food consumption and impacts on trade patterns. In Changing Structures of Global Food Consumption and Trade; Regmi, A., Ed.; ERS WRS 01-1; USDA, ERS: Washington, DC, USA, 2001; pp. 1–13. [Google Scholar]
- Fallah, F.; Pourabbas, A.; Delpisheh, A.; Veisani, Y.; Shadnoush, M. Effects of nutrition education on levels of nutritional awareness of pregnant women in Western Iran. Int. J. Endocrinol. Metab. 2013, 11, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Korwin-Szymanowska, A.; Tuszyńska, L. Zachowania żywieniowe jako nieodłączny element edukacji żywieniowej—Raport z badan. In Znaczenie Racjonalnego Żywienia W Edukacji Zdrowotnej; Wolska-Adamczyk, A., Ed.; WSIiZ: Warszawa, Poland, 2015; pp. 23–38. [Google Scholar]
- Szczepańska, E.; Brończyk-Puzoń, A. Ocena Nawyków żywieniowych pacjentów z otyłością, zakwalifikowanych do zabiegu bariatrycznego. Med. Ogólna Nauki Zdrowiu 2014, 20, 330–334. [Google Scholar] [CrossRef]
- Lawrence, E.M. Why do college graduates behave more healthfully than those who are less educated? J. Health Soc. Behav. 2017, 58, 291–306. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). MMWR Morb. Mortal. Wkly. Rep. 2013, 62, 326–330.
- Turnbull, D.; Rodricks, J.V.; Mariano, G.F.; Chowdhury, F. Caffeine and cardiovascular health. Regul. Toxicol. Pharm. 2017, 89, 165–185. [Google Scholar] [CrossRef]
- Tyrala, E.E.; Dodson, W.E. Caffeine secretion into breast milk. Arch. Dis. Child. 1979, 54, 787–789. [Google Scholar] [CrossRef] [Green Version]
- Bojarowicz, H.; Przygoda, M.; Kofeina, C.I. Powszechność stosowania kofeiny oraz jej działanie na organizm. Probl. Hig. Epidemiol. 2012, 93, 8–13. [Google Scholar]
- Papadopoulou, E.; Botton, J.; Brantsæter, A.-L.; Haugen, M.; Alexander, J.; Meltzer, H.M.; Bacelis, J.; Elfin, A.; Jacobsson, B.; Sengpiel, V. Maternal caffeine intake during pregnancy and childhood growth and overweight: Results from a large Norwegian prospective observational cohort study. BMJ Open 2018, 8, e018895. [Google Scholar] [CrossRef] [Green Version]
- Jarosz, M.; Wierzejska, R.; Siuba, M. Maternal caffeine intake and its effect on pregnancy outcomes. Eur. J. Obstet. Gynecol. 2011, 160, 156–160. [Google Scholar] [CrossRef]
- Calvaresi, V.; Escuder, D.; Minutillo, A.; Bastons-Compta, A.; Garcia-Algar, O.; Alonso, C.R.P.; Pacifici, R.; Pichini, S. Transfer of nicotine, cotinine and caffeine into breast milk in a smoker mother consuming caffeinated drinks. J. Anal. Toxicol. 2016, 40, 473–477. [Google Scholar] [CrossRef] [Green Version]
- Liberman, H.R.; Agarwal, S.; Fulgoni, V.L. Daily patterns of caffeine intake and the association of intake with multiple sociodemographic and lifestyle factors in us adults based on the NHANES 2007–2012 surveys. J. Acad. Nutr. Diet. 2019, 119, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.C.; Jalil, A.M.; Ismail, A. Phenolic and theobromine contents of commercial dark, milk and white chocolates on the Malaysian market. Molecules 2009, 14, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munblit, D.; Treneva, M.; Peroni, D.G.; Colicino, S.; Chow, L.; Dissanayeke, S.; Abrol, P.; Sheth, S.; Pampura, A.; Boner, A.L.; et al. Colostrum and mature human milk of women from London, Moscow, and Werona: Determinants of immune composition. Nutrients 2016, 8, 695. [Google Scholar] [CrossRef]
- Olagnero, G.; Barretto, L.; Wiedemann, A.; Terraza, R.; Poy, M.S.; López, L. Maternal understanding regardins women nutrition during breastfeeding. Health 2018, 10, 1661–1672. [Google Scholar] [CrossRef] [Green Version]
- Radzyminski, S.; Callister, L.C. Mother’s beliefs, attitudes, and decision making related to infant feeding choices. J. Perinat. Educ. 2016, 25, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czosnykowska-Łukacka, M.; Królak-Olejnik, B.; Orczyk-Pawiłowicz, M. Breast milk macronutrient components in prolonged lactation. Nutrients 2018, 10, 1893. [Google Scholar] [CrossRef] [Green Version]
- Cambria, S.; Manganaro, R.; Mami, C.; Marseglia, L.; Gemelli, M. Hyperexcitability syndrome in a newborn infant of chocoholic mother. Am. J. Perinatol. 2006, 23, 421–422. [Google Scholar] [CrossRef]
- Available online: https://www.sciencedirect.com/topics/earth-and-planetary-sciences/caffeine (accessed on 30 March 2022).
- Barcelos, R.P.; Lima, F.D.; Carvalho, N.R.; Bresciani, G.; Royes, L.F.F. Caffeine effects on systemic metabolism, oxidative-inflammatory pathways, and exercise performance. Nutr. Res. 2020, 80, 1–17. [Google Scholar] [CrossRef]
- Temple, J.L.; Bernard, C.; Lipshultz, S.E.; Czachor, J.D.; Westphal, J.A.; Mestre, M.A. The safety of ingested caffeine: A comprehensive review. Front. Psychiatry 2017, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Nehlig, A.; Alexander, S.P. Variation in caffeine metabolism. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Limpar, M.; Sata, F.; Kobayashi, S.; Kishi, R. Interaction between maternal caffeine intake during pregnancy and CYP1A2 C164A polymorphism affects infant birth size in the Hokkaido study. Pediatr. Res. 2017, 82, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Wesselink, A.K.; Wise, L.A.; Rothman, K.J.; Hahn, K.A.; Mikkelsen, E.M.; Mahalingaiah, S.; Hatch, E.E. Caffeine and caffeinated beverage consumption and fecundability in a preconception cohort. Reprod. Toxicol. 2016, 62, 39–45. [Google Scholar] [CrossRef] [Green Version]
- van der Hoeven, T.; Browne, J.L.; Uiterwaal, C.; van der Ent, C.K.; Grobbee, D.E.; Dalmeijer, G.W. Antenatal coffee and tea consumption and the effect on birth outcome and hypertensive pregnancy disorders. PLoS ONE 2017, 12, e0177619. [Google Scholar] [CrossRef] [Green Version]
- Jouanne, M.; Oddoux, S.; Noël, A.; Voisin-Chiret, A.S. Nutrient requirements during pregnancy and lactation. Nutrients 2021, 13, 692. [Google Scholar] [CrossRef]
- Fewtrell, M.S.; Mohd Shukri, N.H.; Wells, J.C.K. ‘Optimising’ breastfeeding: What can we learn from evolutionary, comparative and anthropological aspects of lactation? BMC Med. 2020, 18, 4. [Google Scholar] [CrossRef]
- Tedder, J. The roadmap to breastfeeding success: Teaching child development to extend breastfeeding duration. J. Perinat. Educ. 2015, 24, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.unicef.org/media/48046/file/UNICEF_Breastfeeding_A_Mothers_Gift_for_Every_Child.pdf (accessed on 7 February 2022).
Source of Beverage/Food | Volume/Weight | Caffeine Content [mg] |
---|---|---|
ground coffee | 150 mL | 60 |
instant coffee | 150 mL | 66 |
black tea | 250 mL | |
bags | 31 | |
leaf | 43 | |
green tea | 250 mL | |
bags | 34 | |
leaf | 41 | |
cacao | 250 mL | 5 |
Coca-Cola | 250 mL | 25 |
energy drinks | 250 mL | 80 |
bitter chocolate | 100 g | 67 |
milk chocolate | 100 g | 21 |
Factors | n = 100 |
---|---|
Age, year | |
18–25 | 29 |
26–33 | 37 |
34–44 | 34 |
Education | |
Secondary | 60 |
Higher | 40 |
Place of residence | |
City | 65 |
Village | 35 |
Stage of lactation | |
1st | 35 |
2nd | 35 |
3rd and 4th | 30 |
Place of Resident | Level of Education | Age | Stage of Lactation | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Factor | City | Village | Secondary | Higher | 18–25 | 26–33 | 34–44 | 1st | 2nd | 3rd–4th | |
n = 65 n;% | n = 35 n;% | n = 60 n;% | n = 40 n;% | n = 29 n;% | n = 37 n;% | n = 34 n;% | n = 35 n;% | n = 35 n;% | n = 30 n;% | ||
Coffee consumption * | |||||||||||
>than 2 times a day | 38;58 | 6;17 | 33;55 | 13;33 | 9;31 | 8;22 | 23;68 | 3;9 | 10;29 | 14;47 | |
2 times a day | 14;22 | 8;23 | 17;28 | 5;13 | 10;34 | 12;32 | 7;21 | 11;31 | 17;49 | 12;40 | 0.0012 |
1 time a day | 8;12 | 19;54 | 6;10 | 19;48 | 8;28 | 12;32 | 4;12 | 15;43 | 7;20 | 4;13 | |
I don’t consume coffee | 5;8 | 2;6 | 4;7 | 3;8 | 2;7 | 5;14 | - | 6;17 | 1;3 | - | |
Number of teaspoons (5 g) used for making coffee | |||||||||||
>than 2 | 29;45 | 9;26 | 17;28 | 6;15 | 9;31 | 8;22 | 17;50 | 2;6 | 9;26 | 11;37 | |
<than 2 | 21;32 | 13;37 | 26;43 | 19;48 | 12;41 | 14;38 | 12;35 | 15;43 | 17;49 | 14;47 | 0.5451 |
1 or less | 10;15 | 11;31 | 13;22 | 12;30 | 6;21 | 10;27 | 5;15 | 17;49 | 8;23 | 5;17 | |
I don’t consume coffee | 5;8 | 2;6 | 4;7 | 3;8 | 2;7 | 5;14 | - | 6;17 | 1;3 | - | |
Tea consumption ** | |||||||||||
>than 2 times a day | 27;42 | 14;40 | 25;42 | 14;35 | 7;24 | 9;24 | 19;56 | 9;26 | 11;31 | 9;30 | |
2 times a day | 32;49 | 19;54 | 32;53 | 19;48 | 16;55 | 23;62 | 12;35 | 14;40 | 16;46 | 13;43 | 0.0191 |
1 time a day | 6;9 | 2;6 | 3;5 | 7;18 | 6;21 | 5;14 | 3;9 | 12;34 | 8;23 | 8;27 | |
The type of tea consumed | |||||||||||
bags | 57;88 | 32;91 | 55;92 | 31;78 | 25;86 | 28;76 | 29;85 | 31;89 | 27;77 | 24;80 | 0.0291 |
leaf | 8;12 | 3;9 | 5;8 | 9;23 | 4;14 | 9;24 | 5;15 | 4;11 | 8;23 | 6;20 | |
Tea brewing time | |||||||||||
<than 10 min | 62;95 | 31;89 | 57;95 | 36;90 | 27;93 | 32;86 | 31;91 | 35;100 | 32;91 | 26;87 | 0.0002 |
>than 10 min | 3;5 | 4;11 | 3;5 | 4;10 | 2;7 | 5;14 | 3;9 | - | 3;9 | 4;13 | |
Chocolate consumption *** | |||||||||||
>than 3 cubes a day | - | - | - | - | - | - | - | - | - | - | |
3 or less than 3 cubes a day | 58;89 | 21;60 | 47;78 | 32;80 | 21;72 | 27;73 | 31;91 | 23;66 | 30;86 | 26;87 | 0.0492 |
I don’t consume chocolate | 7;11 | 14;40 | 13;22 | 8;20 | 8;28 | 10;27 | 3;9 | 12;34 | 5;14 | 4;13 | |
The type of chocolate consumed | |||||||||||
bitter (70% cocoa and more) | 23;35 | 4;11 | 7;12 | 15;38 | 12;41 | 12;32 | 14;41 | 13;37 | 8;23 | 11;37 | |
milk (less than 70% cocoa) | 35;54 | 17;49 | 40;67 | 17;43 | 9;31 | 15;41 | 17;50 | 10;29 | 22;63 | 15;50 | 0.8192 |
I don’t consume chocolate | 7;11 | 14;40 | 13;22 | 8;20 | 8;28 | 10;27 | 3;9 | 12;34 | 5;14 | 4;13 |
Factors | Compounds | |||
---|---|---|---|---|
Caffeine [µg/mL] | Paraxanthine [µg/mL] | Theophylline [µg/mL] | Theobromine [µg/mL] | |
Place of residence urban areas | 0.590 ± 0.114 a | 0.355 ± 0.098 a | 0.028 ± 0.012 a | 0.442 ± 0.088 a |
rural areas | 0.227 ± 0.012 b | 0.115 ± 0.055 b | 0.017 ± 0.010 b | 0.181 ± 0.062 b |
Level of education | ||||
secondary | 0.673 ± 0.032 a | 0.426 ± 0.021 a | 0.026 ± 0.009 a | 0.368 ± 0.012 b |
higher | 0.545 ± 0.055 b | 0.331 ± 0.037 b | 0.029 ± 0.004 a | 0.442 ± 0.076 a |
Age (years) 18–25 | 0.485 ± 0.022 b | 0.303 ± 0.189 b | 0.019 ± 0.001 b | 0.278 ± 0.119 c |
26–33 | 0.353 ± 0.087 c | 0.190 ± 0.027 c | 0.016 ± 0.012 b | 0.313 ± 0.078 b |
34–44 | 0.838 ± 0.065 a | 0.505 ± 0.071 a | 0.048 ± 0.033 a | 0.630 ± 0.014 a |
Stage of lactation 1st | 0.312 ± 0.167 c | 0.169 ± 0.057 b | 0.013 ± 0.009 b | 0.243 ± 0.082 b |
2nd | 0.698 ± 0.095 b | 0.427 ± 0.032 a | 0.038 ± 0.011 a | 0.537 ± 0.021 a |
3rd–4th | 0.794 ± 0.008 a | 0.472 ± 0.022 a | 0.0410 ± 0.055 a | 0.544 ± 0.059 a |
Paraxanthine | Theophylline | Theobromine | |
---|---|---|---|
Caffeine | 0.92 * | 0.73 * | 0.64 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purkiewicz, A.; Pietrzak-Fiećko, R.; Sörgel, F.; Kinzig, M. Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk. Nutrients 2022, 14, 2196. https://doi.org/10.3390/nu14112196
Purkiewicz A, Pietrzak-Fiećko R, Sörgel F, Kinzig M. Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk. Nutrients. 2022; 14(11):2196. https://doi.org/10.3390/nu14112196
Chicago/Turabian StylePurkiewicz, Aleksandra, Renata Pietrzak-Fiećko, Fritz Sörgel, and Martina Kinzig. 2022. "Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk" Nutrients 14, no. 11: 2196. https://doi.org/10.3390/nu14112196
APA StylePurkiewicz, A., Pietrzak-Fiećko, R., Sörgel, F., & Kinzig, M. (2022). Caffeine, Paraxanthine, Theophylline, and Theobromine Content in Human Milk. Nutrients, 14(11), 2196. https://doi.org/10.3390/nu14112196