Investigation of Maternal Diet and FADS1 Polymorphism Associated with Long-Chain Polyunsaturated Fatty Acid Compositions in Human Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Human Milk Sampling
2.4. Analysis of Fatty Acids in Human Milk
2.5. Participants’ Basic Characteristics
2.6. Food Intake Questionnaire
2.7. Genotyping
2.8. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. LCPUFA Compositions in Human Milk
3.3. Relationships between Genotype, Maternal Diet and LCPUFA Compositions, and Gene–Diet Interaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, M. Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr. 1992, 120, S129–S138. [Google Scholar] [CrossRef]
- Makrides, M.; Neumann, M.A.; Byard, R.W.; Simmer, K.; Gibson, R.A. Fatty acid composition of brain, retina, and erythrocytes in breast- and formula-fed infants. Am. J. Clin. Nutr. 1994, 60, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Birch, E.E.; Garfield, S.; Castañeda, Y.; Hughbanks-Wheaton, D.; Uauy, R.; Hoffman, D. Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Hum. Dev. 2007, 83, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Colombo, J.; Carlson, S.E.; Cheatham, C.L.; Shaddy, D.J.; Kerling, E.H.; Thodosoff, J.M.; Gustafson, K.M.; Brez, C. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am. J. Clin. Nutr. 2013, 98, 403–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N., Jr. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Foiles, A.M.; Kerling, E.H.; Wick, J.A.; Scalabrin, D.M.; Colombo, J.; Carlson, S.E. Formula with long-chain polyunsaturated fatty acids reduces incidence of allergy in early childhood. Pediatr. Allergy Immunol. 2016, 27, 156–161. [Google Scholar] [CrossRef] [Green Version]
- Richard, C.; Lewis, E.D.; Field, C.J. Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant’s immune system early in life. Appl. Physiol. Nutr. Metab. 2016, 41, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Wong, V.W.; Ng, Y.F.; Chan, S.M.; Su, Y.X.; Kwok, K.W.; Chan, H.M.; Cheung, C.L.; Lee, H.W.; Pak, W.Y.; Li, S.Y.; et al. Positive relationship between consumption of specific fish type and n-3 PUFA in milk of Hong Kong lactating mothers. Br. J. Nutr. 2019, 121, 1431–1440. [Google Scholar] [CrossRef]
- Aumeistere, L.; Ciprovica, I.; Zavadska, D.; Volkovs, V. Fish intake reflects on DHA level in breast milk among lactating women in Latvia. Int. Breastfeed. J. 2018, 13, 33. [Google Scholar] [CrossRef]
- Bzikowska-Jura, A.; Czerwonogrodzka-Senczyna, A.; Jasinska-Melon, E.; Mojska, H.; Oledzka, G.; Wesolowska, A.; Szostak-Wegierek, D. The Concentration of Omega-3 Fatty Acids in Human Milk Is Related to Their Habitual but Not Current Intake. Nutrients 2019, 11, 1585. [Google Scholar] [CrossRef] [Green Version]
- Quinn, E.A.; Kuzawa, C.W. A dose-response relationship between fish consumption and human milk DHA content among Filipino women in Cebu City, Philippines. Acta Paediatr. 2012, 101, e439–e445. [Google Scholar] [CrossRef] [PubMed]
- Urwin, H.J.; Miles, E.A.; Noakes, P.S.; Kremmyda, L.S.; Vlachava, M.; Diaper, N.D.; Perez-Cano, F.J.; Godfrey, K.M.; Calder, P.C.; Yaqoob, P. Salmon consumption during pregnancy alters fatty acid composition and secretory IgA concentration in human breast milk. J. Nutr. 2012, 142, 1603–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glaser, C.; Lattka, E.; Rzehak, P.; Steer, C.; Koletzko, B. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health. Matern. Child Nutr. 2011, 7 (Suppl. S2), 27–40. [Google Scholar] [CrossRef]
- Marquardt, A.; Stöhr, H.; White, K.; Weber, B.H. cDNA cloning, genomic structure, and chromosomal localization of three members of the human fatty acid desaturase family. Genomics 2000, 66, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, N.; Girelli, D.; Malerba, G.; Guarini, P.; Illig, T.; Trabetti, E.; Sandri, M.; Friso, S.; Pizzolo, F.; Schaeffer, L.; et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am. J. Clin. Nutr. 2008, 88, 941–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeffer, L.; Gohlke, H.; Muller, M.; Heid, I.M.; Palmer, L.J.; Kompauer, I.; Demmelmair, H.; Illig, T.; Koletzko, B.; Heinrich, J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 2006, 15, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Bayasgalan, T.; Tazoe, F.; Yanagisawa, Y.; Gotoh, T.; Yamanaka, K.; Ogawa, A.; Munkhtulga, L.; Chimedregze, U.; Kagawa, Y.; et al. A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle. Hum. Genet. 2010, 127, 685–690. [Google Scholar] [CrossRef]
- Horiguchi, S.; Nakayama, K.; Iwamoto, S.; Ishijima, A.; Minezaki, T.; Baba, M.; Kontai, Y.; Horikawa, C.; Kawashima, H.; Shibata, H.; et al. Associations between a fatty acid desaturase gene polymorphism and blood arachidonic acid compositions in Japanese elderly. Prostaglandins Leukot. Essent. Fat. Acids 2016, 105, 9–14. [Google Scholar] [CrossRef]
- Nita, R.; Kawabata, T.; Kagawa, Y.; Nakayama, K.; Yanagisawa, Y.; Iwamoto, S.; Kimura, F.; Miyazawa, T.; Tatsuta, N.; Arima, T.; et al. Associations of erythrocyte fatty acid compositions with FADS1 gene polymorphism in Japanese mothers and infants. Prostaglandins Leukot. Essent. Fat. Acids 2020, 152, 102031. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Sueyasu, T.; Tokuda, H.; Ito, M.; Kaneda, Y.; Rogi, T.; Kawashima, H.; Horiguchi, S.; Kawabata, T.; Shibata, H. Aging and FADS1 polymorphisms decrease the biosynthetic capacity of long-chain PUFAs: A human trial using [U-(13)C]linoleic acid. Prostaglandins Leukot. Essent. Fat. Acids 2019, 148, 1–8. [Google Scholar] [CrossRef]
- Conway, M.C.; McSorley, E.M.; Mulhern, M.S.; Strain, J.J.; van Wijngaarden, E.; Yeates, A.J. Influence of fatty acid desaturase (FADS) genotype on maternal and child polyunsaturated fatty acids (PUFA) status and child health outcomes: A systematic review. Nutr. Rev. 2020, 78, 627–646. [Google Scholar] [CrossRef] [PubMed]
- Molto-Puigmarti, C.; Plat, J.; Mensink, R.P.; Muller, A.; Jansen, E.; Zeegers, M.P.; Thijs, C. FADS1 FADS2 gene variants modify the association between fish intake and the docosahexaenoic acid proportions in human milk. Am. J. Clin. Nutr. 2010, 91, 1368–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.C.; Lin, H.C.; Liao, W.L.; Tsai, Y.Y.; Chen, A.C.; Chen, H.C.; Lin, H.Y.; Liao, L.N.; Chao, P.M. FADS Genetic Variants in Taiwanese Modify Association of DHA Intake and Its Proportions in Human Milk. Nutrients 2020, 12, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Yamagata, Z.; Kayama, F.; Kishi, R.; Ohya, Y.; et al. Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 2014, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Kawabata, T.; Tatsuta, N.; Kimura, F.; Miyazawa, T.; Mizuno, S.; Nishigori, H.; Arima, T.; Kagawa, Y.; Yoshimasu, K.; et al. Determinants of polyunsaturated fatty acid concentrations in erythrocytes of pregnant Japanese women from a birth cohort study: Study protocol and baseline findings of an adjunct study of the Japan environment & Children’s study. Environ. Health Prev. Med. 2017, 22, 22. [Google Scholar] [CrossRef] [Green Version]
- Johansson, S.; Wold, A.E.; Sandberg, A.S. Low breast milk levels of long-chain n-3 fatty acids in allergic women, despite frequent fish intake. Clin. Exp. Allergy 2011, 41, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Honda, S.; Murakami, K.; Sasaki, S.; Okubo, H.; Hirota, N.; Notsu, A.; Fukui, M.; Date, C. Both comprehensive and brief self-administered diet history questionnaires satisfactorily rank nutrient intakes in Japanese adults. J. Epidemiol. 2012, 22, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Lattka, E.; Rzehak, P.; Szabo, E.; Jakobik, V.; Weck, M.; Weyermann, M.; Grallert, H.; Rothenbacher, D.; Heinrich, J.; Brenner, H.; et al. Genetic variants in the FADS gene cluster are associated with arachidonic acid concentrations of human breast milk at 1.5 and 6 mo postpartum and influence the course of milk dodecanoic, tetracosenoic, and trans-9-octadecenoic acid concentrations over the duration of lactation. Am. J. Clin. Nutr. 2011, 93, 382–391. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Liu, G.L.; Li, X.; Chen, X.Y.; Wu, Y.X.; Cui, C.C.; Zhang, X.; Yang, G.; Xie, L. Association of polyunsaturated fatty acids in breast milk with fatty acid desaturase gene polymorphisms among Chinese lactating mothers. Prostaglandins Leukot Essent Fat. Acids 2016, 109, 66–71. [Google Scholar] [CrossRef]
- Xie, L.; Innis, S.M. Genetic variants of the FADS1 FADS2 gene cluster are associated with altered (n-6) and (n-3) essential fatty acids in plasma and erythrocyte phospholipids in women during pregnancy and in breast milk during lactation. J. Nutr. 2008, 138, 2222–2228. [Google Scholar] [CrossRef] [Green Version]
- Miliku, K.; Duan, Q.L.; Moraes, T.J.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; Subbarao, P.; Field, C.J.; et al. Human milk fatty acid composition is associated with dietary, genetic, sociodemographic, and environmental factors in the CHILD Cohort Study. Am. J. Clin. Nutr. 2019, 110, 1370–1383. [Google Scholar] [CrossRef] [PubMed]
- Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grunewald, M.; Hellmuth, C.; Kirchberg, F.F.; Mearin, M.L.; Auricchio, R.; Castillejo, G.; Korponay-Szabo, I.R.; Polanco, I.; Roca, M.; Vriezinga, S.L.; et al. Variation and Interdependencies of Human Milk Macronutrients, Fatty Acids, Adiponectin, Insulin, and IGF-II in the European PreventCD Cohort. Nutrients 2019, 11, 2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2016, 69 (Suppl. S2), 28–40. [Google Scholar] [CrossRef] [Green Version]
- Fidler, N.; Sauerwald, T.; Pohl, A.; Demmelmair, H.; Koletzko, B. Docosahexaenoic acid transfer into human milk after dietary supplementation: A randomized clinical trial. J. Lipid Res. 2000, 41, 1376–1383. [Google Scholar] [CrossRef]
- Rodriguez-Cruz, M.; Tovar, A.R.; Palacios-Gonzalez, B.; Del Prado, M.; Torres, N. Synthesis of long-chain polyunsaturated fatty acids in lactating mammary gland: Role of Delta5 and Delta6 desaturases, SREBP-1, PPARalpha, and PGC-1. J. Lipid Res. 2006, 47, 553–560. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Cruz, M.; Sanchez, R.; Bernabe-Garcia, M.; Maldonado, J.; Del Prado, M.; Lopez-Alarcon, M. Effect of dietary levels of corn oil on maternal arachidonic acid synthesis and fatty acid composition in lactating rats. Nutrition 2009, 25, 209–215. [Google Scholar] [CrossRef]
FADS1; rs174547 Genotype | p * | ||||||
---|---|---|---|---|---|---|---|
TT (n = 114) | TC (n = 151) | CC (n = 39) | |||||
Mothers | |||||||
Age at delivery, y | 32.2 | (29.2−35.0) | 31.0 | (28.0−34.4) | 31.9 | (28.0−37.3) | 0.135 |
Non-pregnant physique | |||||||
Height, cm | 158 | (155−162) | 158 | (155−162) | 158 | (154−161) | 0.654 |
Weight, kg | 52 | (48−58) | 53 | (49−58) | 50 | (47−57) | 0.278 |
BMI, kg/m2 | 21.2 | (19.1−22.8) | 20.8 | (19.5−22.9) | 20.2 | (18.6−23.0) | 0.364 |
Parity | 0.048 | ||||||
1 | 82 | (73.2%) | 83 | (56.5%) | 22 | (56.4%) | |
≳2 | 30 | (26.8%) | 64 | (43.5%) | 17 | (43.6%) | |
Smoking during pregnancy † | 0.911 | ||||||
Smoker | 21 | (18.4%) | 27 | (17.9%) | 6 | (15.4%) | |
Non-smoker | 93 | (81.6%) | 124 | (82.1%) | 33 | (84.6%) | |
Passive smoking during pregnancy ‡ | 0.648 | ||||||
Passive smoker | 68 | (59.6%) | 97 | (64.2%) | 26 | (66.7%) | |
Non-passive smoker | 46 | (40.4%) | 54 | (35.8%) | 13 | (33.3%) | |
Mothers’ educational background | 0.059 | ||||||
Middle school/High school | 52 | (45.6%) | 60 | (39.7%) | 13 | (33.3%) | |
Technical college/Junior college/ Vocational school | 53 | (46.5%) | 64 | (42.4%) | 16 | (41.0%) | |
University/Graduate school | 9 | (7.9%) | 27 | (17.9%) | 10 | (25.6%) | |
Intake of food groups | |||||||
Fish and shellfish, g/1000 kcal | 33.9 | (21.9−47.2) | 31.0 | (21.8−40.6) | 28.0 | (19.5−42.5) | 0.178 |
Meat, g/1000 kcal | 32.9 | (25.4−44.0) | 36.2 | (28.3−46.9) | 36.9 | (28.4−45.2) | 0.204 |
Eggs, g/1000 kcal | 17.0 | (12.7−26.4) | 18.4 | (12.6−28.1) | 15.8 | (10.3−26.3) | 0.508 |
Fats and oils, g/1000 kcal | 4.7 | (3.6−6.4) | 5.2 | (4.1−7.0) | 5.2 | (4.4−8.4) | 0.100 |
Infants | |||||||
Gestational age, d | 276 | (269−281) | 277 | (270−282) | 276 | (269−284) | 0.648 |
Sex | 0.768 | ||||||
Male | 61 | (53.5%) | 74 | (49.0%) | 20 | (51.3%) | |
Female | 53 | (46.5%) | 77 | (51.0%) | 19 | (48.7%) | |
Season at birth | 0.683 | ||||||
Spring, March–May | 43 | (37.7%) | 51 | (33.8%) | 9 | (23.1%) | |
Summer, June–August | 33 | (29.0%) | 49 | (32.5%) | 17 | (43.6%) | |
Autumn, September-November | 12 | (10.5%) | 14 | (9.3%) | 4 | (10.3%) | |
Winter, December-February | 26 | (22.8%) | 37 | (24.5%) | 9 | (23.1%) |
FADS1; rs174547 Genotype | Kruskal–Wallis Test | |||||||
---|---|---|---|---|---|---|---|---|
TT (n = 114) | TC (n = 151) | CC (n = 39) | p * | |||||
Total SFA, % | 40.6 | (38.4–43.3) | 40.2 | (36.6–43.9) | 40.8 | (38.6–44.3) | 0.449 | |
C16:0 | Palmitic acid | 21.3 | (20.1–22.4) | 21.1 | (19.5–22.8) | 21.4 | (20.2–22.6) | 0.461 |
Total MUFA, % | 41.2 | (39.6–43.7) | 41.7 | (39.3–43.9) | 41.6 | (40.0–43.5) | 0.817 | |
C18:1 | Oleic acid † | 38.5 | (36.9–40.7) | 39.0 | (36.8–41.1) | 38.8 | (37.6–40.6) | 0.670 |
Total PUFA, % | 17.5 | (15.5–19.4) | 18.0 | (16.1–20.0) | 17.0 | (14.7–18.3) | 0.106 | |
Total n-6 PUFA, % | 15.0 | (13.4–16.2) | 15.3 | (13.7–16.9) | 14.5 | (13.3–15.5) | 0.080 | |
C18:2n-6 | Linoleic acid | 13.8 | (12.4–15.1) | 14.4 | (12.8–16.0) | 13.8 | (12.4–14.7) | 0.070 |
C18:3n-6 | GLA | 0.12 | (0.10–0.15) a | 0.09 | (0.08–0.11) b | 0.07 | (0.05–0.09) c | <0.001 |
C20:4n-6 | ARA | 0.42 | (0.36–0.46) a | 0.34 | (0.30–0.39) b | 0.31 | (0.26–0.34) c | <0.001 |
Total n-3 PUFA, % | 2.54 | (2.08–3.07) | 2.50 | (2.01–3.11) | 2.34 | (1.89–2.93) | 0.482 | |
C18:3n-3 | α-linolenic acid | 1.37 | (1.03–1.65) | 1.45 | (1.15–1.90) | 1.44 | (1.12–1.63) | 0.133 |
C20:5n-3 | EPA | 0.16 | (0.10–0.27) a | 0.13 | (0.08–0.22) ab | 0.10 | (0.06–0.19) b | 0.002 |
C22:6n-3 | DHA | 0.61 | (0.42–0.87) a | 0.51 | (0.36–0.76) ab | 0.45 | (0.34–0.69) b | 0.018 |
Fatty Acids in Human Milk, wt% | ||||||
---|---|---|---|---|---|---|
Food Group Intakes, g/1000 kcal | C20:4n-6 (ARA) | C20:5n-3 (EPA) | C22:6n-3 (DHA) | |||
FADS1; rs174547 Genotype | rs * (p) | rs * (p) | rs * (p) | |||
Fish and shellfish | ||||||
TT n = 114 | −0.037 | (0.693) | 0.253 | (0.007) | 0.281 | (0.002) |
TC n = 151 | 0.122 | (0.137) | 0.405 | (<0.001) | 0.400 | (<0.001) |
CC n = 39 | 0.446 | (0.004) | 0.508 | (0.001) | 0.633 | (<0.001) |
Meat | ||||||
TT n = 114 | −0.052 | (0.580) | −0.053 | (0.575) | −0.128 | (0.175) |
TC n = 151 | 0.150 | (0.066) | −0.007 | (0.936) | −0.020 | (0.806) |
CC n = 39 | −0.056 | (0.734) | −0.159 | (0.333) | −0.152 | (0.356) |
Eggs | ||||||
TT n = 114 | 0.115 | (0.222) | 0.009 | (0.921) | −0.011 | (0.907) |
TC n = 151 | 0.252 | (0.002) | −0.014 | (0.867) | 0.032 | (0.696) |
CC n = 39 | 0.124 | (0.454) | −0.086 | (0.601) | −0.037 | (0.822) |
Fats and oils | ||||||
TT n = 114 | −0.072 | (0.446) | −0.112 | (0.234) | −0.186 | (0.048) |
TC n = 151 | 0.079 | (0.333) | −0.135 | (0.099) | −0.102 | (0.212) |
CC n = 39 | −0.156 | (0.342) | 0.058 | (0.726) | −0.030 | (0.855) |
Fatty Acids in Human Milk, wt% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C20:4n-6 (ARA) | C20:5n-3 (EPA) ‡ | C22:6n-3 (DHA) ‡ | ||||||||||
Multiple Regression Analysis | Multiple Regression Analysis | Multiple Regression Analysis | ||||||||||
Ⅰ | Ⅱ | Ⅰ | Ⅱ | Ⅰ | Ⅱ | |||||||
β * (p) | β * (p) | β * (p) | β * (p) | β * (p) | β * (p) | |||||||
FADS1; rs174547 genotype † | ||||||||||||
TC | −0.110 | (−0.092) | −0.115 | (0.078) | 0.055 | (0.417) | 0.068 | (0.320) | −0.002 | (0.982) | 0.008 | (0.906) |
CC | −0.439 | (<0.001) | −0.430 | (<0.001) | −0.178 | (0.010) | −0.196 | (0.006) | −0.078 | (0.254) | −0.087 | (0.216) |
Intakes, g/1000 kcal | ||||||||||||
Fish and shellfish ‡ | 0.064 | (0.211) | 0.163 | (0.021) | 0.413 | (<0.001) | 0.472 | (<0.001) | 0.432 | (<0.001) | 0.505 | (<0.001) |
Fats and oils | −0.059 | (0.245) | −0.057 | (0.257) | −0.134 | (0.011) | −0.100 | (0.072) | −0.144 | (0.006) | −0.119 | (0.031) |
Eggs ‡ | 0.175 | (0.001) | 0.140 | (0.016) | −0.052 | (0.321) | −0.050 | (0.348) | −0.034 | (0.521) | −0.033 | (0.533) |
Interaction terms † | ||||||||||||
TC × Fish and shellfish ‡ | −0.087 | (0.271) | −0.005 | (0.948) | −0.026 | (0.746) | ||||||
CC × Fish and shellfish ‡ | 0.192 | (0.038) | 0.114 | (0.227) | 0.140 | (0.138) | ||||||
TC × Fats and oils | −0.085 | (0.167) | −0.043 | (0.480) | ||||||||
CC × Fats and oils | 0.115 | (0.063) | 0.098 | (0.111) | ||||||||
TC × Eggs ‡ | 0.050 | (0.450) | ||||||||||
CC × Eggs ‡ | −0.077 | (0.251) | ||||||||||
Adjusted R-squared | R2 = 0.304 | R2 = 0.308 | R2 = 0.243 | R2 = 0.251 | R2 = 0.248 | R2 = 0.254 | ||||||
Model significance (p) | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niwa, S.; Kawabata, T.; Shoji, K.; Ogata, H.; Kagawa, Y.; Nakayama, K.; Yanagisawa, Y.; Iwamoto, S.; Tatsuta, N.; Asato, K.; et al. Investigation of Maternal Diet and FADS1 Polymorphism Associated with Long-Chain Polyunsaturated Fatty Acid Compositions in Human Milk. Nutrients 2022, 14, 2160. https://doi.org/10.3390/nu14102160
Niwa S, Kawabata T, Shoji K, Ogata H, Kagawa Y, Nakayama K, Yanagisawa Y, Iwamoto S, Tatsuta N, Asato K, et al. Investigation of Maternal Diet and FADS1 Polymorphism Associated with Long-Chain Polyunsaturated Fatty Acid Compositions in Human Milk. Nutrients. 2022; 14(10):2160. https://doi.org/10.3390/nu14102160
Chicago/Turabian StyleNiwa, Sakurako, Terue Kawabata, Kumiko Shoji, Hiromitsu Ogata, Yasuo Kagawa, Kazuhiro Nakayama, Yoshiko Yanagisawa, Sadahiko Iwamoto, Nozomi Tatsuta, Kaname Asato, and et al. 2022. "Investigation of Maternal Diet and FADS1 Polymorphism Associated with Long-Chain Polyunsaturated Fatty Acid Compositions in Human Milk" Nutrients 14, no. 10: 2160. https://doi.org/10.3390/nu14102160