Relationships between Maternal Gene Polymorphisms in One Carbon Metabolism and Adverse Pregnancy Outcomes: A Prospective Mother and Child Cohort Study in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Data Collection
2.3. Laboratory Analysis
2.4. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Genotype Frequencies of SNP
3.3. Associations between SNPs and Adverse Pregnancy Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012, 379, 2151–2161. [Google Scholar] [CrossRef]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef] [Green Version]
- UNICEF; WHO. UNICEF-WHO Low Birthweight Estimates: Levels and Trends 2000–2015; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Lee, A.C.; Katz, J.; Blencowe, H.; Cousens, S.; Kozuki, N.; Vogel, J.P.; Adair, L.; Baqui, A.H.; Bhutta, Z.A.; Caulfield, L.E.; et al. National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010. Lancet Glob. Health 2013, 1, e26–e36. [Google Scholar] [CrossRef] [Green Version]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Walani, S.R. Global burden of preterm birth. Int. J. Gynaecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef]
- Yang, Z.Y. Report of Chinese National Nutrition and Health Surveillance in (2010–2013): The Nutrition and Health Condition among Chinese Children Aged 0–5; People’s Medical Publishing House: Beijing, China, 2020. [Google Scholar]
- Sheikh, I.A.; Ahmad, E.; Jamal, M.S.; Rehan, M.; Assidi, M.; Tayubi, I.A.; Albasri, S.F.; Bajouh, O.S.; Turki, R.F.; Abuzenadah, A.M.; et al. Spontaneous preterm birth and single nucleotide gene polymorphisms: A recent update. BMC Genom. 2016, 7 (Suppl. 9). [Google Scholar] [CrossRef] [Green Version]
- Dahman, H.A.B. Risk factors associated with preterm birth: A retrospective study in Mukalla Maternity and Childhood Hospital, Hadhramout Coast/Yemen. Sudan J. Paediatr. 2020, 20, 99–110. [Google Scholar] [CrossRef]
- Anil, K.C.; Basel, P.L.; Singh, S. Low birth weight and its associated risk factors: Health facility-based case-control study. PLoS ONE 2020, 15, e0234907. [Google Scholar] [CrossRef]
- Monangi, N.K.; Brockway, H.M.; House, M.; Zhang, G.; Muglia, L. The genetics of preterm birth: Progress and promise. Semin. Perinatol. 2015, 39, 574–583. [Google Scholar] [CrossRef]
- Mallia, T.; Grech, A.; Hili, A.; Calleja-Agius, J.; Pace, N.P. Genetic determinants of low birth weight. Minerva Ginecol. 2017, 69, 631–643. [Google Scholar] [CrossRef]
- Stalman, S.E.; Solanky, N.; Ishida, M.; Alemán-Charlet, C.; Abu-Amero, S.; Alders, M.; Alvizi, L.; Baird, W.; Demetriou, C.; Henneman, P.; et al. Genetic Analyses in Small-for-Gestational-Age Newborns. J. Clin. Endocrinol. Metab. 2018, 103, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Bodnar, L.M.; Himes, K.P.; Venkataramanan, R.; Chen, J.Y.; Evans, R.W.; Meyer, J.L.; Simhan, H.N. Maternal serum folate species in early pregnancy and risk of preterm birth. Am. J. Clin. Nutr. 2010, 92, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Mao, B.; Wang, M.; Liu, Q.; Yang, L.; Xie, Y.; Wang, Y.; He, X.; Cui, H.; Lin, X.; et al. Folic acid supplementation, dietary folate intake and risk of small for gestational age in China. Public Health Nutr. 2020, 23, 1965–1973. [Google Scholar] [CrossRef] [PubMed]
- Yadav, U.; Kumar, P.; Yadav, S.K.; Mishra, O.P.; Rai, V. Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: An updated meta-analysis. Metab. Brain Dis. 2015, 30, 7–24. [Google Scholar] [CrossRef]
- Tiwari, D.; Bose, P.D.; Das, S.; Das, C.R.; Datta, R.; Bose, S. MTHFR (C677T) polymorphism and PR (PROGINS) mutation as genetic factors for preterm delivery, fetal death and low birth weight: A Northeast Indian population based study. Meta Gene 2015, 3, 31–42. [Google Scholar] [CrossRef]
- Yila, T.A.; Sasaki, S.; Miyashita, C.; Braimoh, T.S.; Kashino, I.; Kobayashi, S.; Okada, E.; Baba, T.; Yoshioka, E.; Minakami, H.; et al. Effects of maternal 5,10-methylenetetrahydrofolate reductase C677T and A1298C Polymorphisms and tobacco smoking on infant birth weight in a Japanese population. J. Epidemiol. 2012, 22, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.H.; Carmichael, S.L.; Shaw, G.M.; Iovannisci, D.M.; Lammer, E. Association between 49 infant gene polymorphisms and preterm delivery. Am. J. Med. Genet. A 2007, 143A, 1990–1996. [Google Scholar] [CrossRef]
- Hwang, I.W.; Kang, Y.D.; Kwon, B.N.; Hong, J.H.; Han, S.H.; Kim, J.S.; Park, J.W.; Jin, H.J. Genetic variations of MTHFR gene and their association with preterm birth in Korean women. Medicina 2017, 53, 380–385. [Google Scholar] [CrossRef]
- Wang, B.J.; Liu, M.J.; Wang, Y.; Dai, J.R.; Tao, J.Y.; Wang, S.N.; Zhong, N.; Chen, Y. Association between SNPs in genes involved in folate metabolism and preterm birth risk. Genet. Mol. Res. 2015, 14, 850–859. [Google Scholar] [CrossRef]
- Nan, Y.; Li, H. MTHFR genetic polymorphism increases the risk of preterm delivery. Int. J. Clin. Exp. Pathol. 2015, 8, 7397–7402. [Google Scholar]
- Lykke, J.A.; Bare, L.A.; Olsen, J.; Lagier, R.; Arellano, A.R.; Tong, C.; Paidas, M.J.; Langhoff-Roos, J. Thrombophilias and adverse pregnancy outcomes: Results from the Danish National Birth Cohort. J. Thromb. Haemost. 2012, 10, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, L.M.; Laivuori, H.; Rautanen, A.; Kaaja, R.; Kere, J.; Krusius, T.; Rasi, V.; Paunio, M. Factor V Leiden as a risk factor for preterm birth—A population-based nested case-control study. J. Thromb. Haemost. 2011, 9, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Chen, Y.; Dai, J.; Wang, B.; Liu, M.; Wang, Y.; Tao, J.; Li, H. Methylenetetrahydrofolate reductase polymorphisms at 3′-untranslated region are associated with susceptibility to preterm birth. Transl. Pediatr. 2015, 4, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, N.; Ataç, F.B.; Verdi, H.; Cetintaş, S.; Gürakan, B.; Haberal, A. Relationship between small-for-gestational age births and maternal thrombophilic mutations. Thromb. Res. 2008, 122, 175–178. [Google Scholar] [CrossRef]
- Sukla, K.K.; Tiwari, P.K.; Kumar, A.; Raman, R. Low birthweight (LBW) and neonatal hyperbilirubinemia (NNH) in an Indian cohort: Association of homocysteine, its metabolic pathway genes and micronutrients as risk factors. PLoS ONE 2013, 8, e71587. [Google Scholar] [CrossRef]
- Kramer, M.S.; Goulet, L.; Lydon, J.; Séguin, L.; McNamara, H.; Dassa, C.; Platt, R.W.; Chen, M.F.; Gauthier, H.; Genest, J.; et al. Socio-economic disparities in preterm birth: Causal pathways and mechanisms. Paediatr. Perinat. Epidemiol. 2001, 15 (Suppl. 2), 104–123. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Duan, Y.; Yang, J.; Li, J.; Li, F.; Zhou, P.; Liu, C.; Zhao, Y.; Gu, X.; Yuan, C.; et al. Cohort profile: The Taicang and Wuqiang mother-child cohort study (TAWS) in China. BMJ Open 2022. accepted. [Google Scholar]
- WHO. WHO: Recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths, Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet. Gynecol. Scand. 1977, 56, 247–253. [Google Scholar]
- Mikolajczyk, R.T.; Zhang, J.; Betran, A.P.; Souza, J.P.; Mori, R.; Gülmezoglu, A.M.; Merialdi, M. A global reference for fetal-weight and birthweight percentiles. Lancet 2011, 377, 1855–1861. [Google Scholar] [CrossRef]
- Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet. 2009, 60, 2.12.1–2.12.18. [Google Scholar] [CrossRef]
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs1801133 (accessed on 2 April 2021).
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs1801131 (accessed on 2 April 2021).
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs1801394 (accessed on 2 April 2021).
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs1805087 (accessed on 2 April 2021).
- Available online: https://www.ncbi.nlm.nih.gov/snp/rs3819102 (accessed on 2 April 2021).
- Bergen, N.E.; Jaddoe, V.W.; Timmermans, S.; Hofman, A.; Lindemans, J.; Russcher, H.; Raat, H.; Steegers-Theunissen, R.P.M.; Steegers, E.A.P. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: The Generation R Study. BJOG 2012, 119, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.M.; Olshan, A.F.; Siega-Riz, A.M.; Savitz, D.A.; Chanock, S.J. Polymorphisms in folate metabolizing genes and risk for spontaneous preterm and small-for-gestational age birth. Am. J. Obstet. Gynecol. 2006, 195, 1231.e1–1231.e11. [Google Scholar] [CrossRef] [PubMed]
- Gargano, J.W.; Holzman, C.B.; Senagore, P.K.; Reuss, M.L.; Pathak, D.R.; Friderici, K.H.; Jernigan, K.; Fisher, R. Polymorphisms in thrombophilia and renin-angiotensin system pathways, preterm delivery, and evidence of placental hemorrhage. Am. J. Obstet. Gynecol. 2009, 201, 317.e1–317.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurk, E.; Tell, G.S.; Refsum, H.; Ueland, P.M.; Vollset, S.E. Associations between maternal methylenetetrahydrofolate reductase polymorphisms and adverse outcomes of pregnancy: The Hordaland Homocysteine Study. Am. J. Med. 2004, 117, 26–31. [Google Scholar] [CrossRef]
- Bulloch, R.E.; Wall, C.R.; McCowan, L.M.E.; Taylor, R.S.; Roberts, C.T.; Thompson, J.M.D. The Effect of Interactions between Folic Acid Supplementation and One Carbon Metabolism Gene Variants on Small-for-Gestational-Age Births in the Screening for Pregnancy Endpoints (SCOPE) Cohort Study. Nutrients 2020, 12, 1677. [Google Scholar] [CrossRef]
- Jankovic-Karasoulos, T.; Furness, D.L.; Leemaqz, S.Y.; Dekker, G.A.; Grzeskowiak, L.E.; Grieger, J.A.; Andraweera, P.H.; McCullough, D.; McAninch, D.; McCowan, L.M.; et al. Maternal folate one-carbon metabolism and pregnancy outcomes. Matern. Child Nutr. 2021, 17, e13064. [Google Scholar] [CrossRef]
- Li, W.X.; Cheng, F.; Zhang, A.J.; Dai, S.X.; Li, G.H.; Lv, W.W.; Zhou, T.; Zhang, Q.; Zhang, H.; Zhang, T.; et al. Folate Deficiency and Gene Polymorphisms of MTHFR, MTR and MTRR Elevate the Hyperhomocysteinemia Risk. Clin. Lab. 2017, 63, 523–533. [Google Scholar] [CrossRef]
- Gaughan, D.J.; Kluijtmans, L.A.; Barbaux, S.; McMaster, D.; Young, I.S.; Yarnell, J.W.; Evans, A.; Whitehead, A.S. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis 2001, 157, 451–456. [Google Scholar] [CrossRef]
- Barbosa, P.R.; Stabler, S.P.; Machado, A.L.; Braga, R.C.; Hirata, R.D.; Hirata, M.H.; Sampaio-Neto, L.F.; Allen, R.H.; Guerra-Shinohara, E.M. Association between decreased vitamin levels and MTHFR, MTR and MTRR gene polymorphisms as determinants for elevated total homocysteine concentrations in pregnant women. Eur. J. Clin. Nutr. 2008, 62, 1010–1021. [Google Scholar] [CrossRef]
- Liu, C.; Luo, D.; Wang, Q.; Ma, Y.; Ping, L.; Wu, T.; Tang, J.; Peng, D.; Zhao, P. Serum homocysteine and folate concentrations in early pregnancy and subsequent events of adverse pregnancy outcome: The Sichuan Homocysteine study. BMC Pregnancy Childbirth 2020, 20, 176. [Google Scholar] [CrossRef]
- Ulrich, C.M.; Bigler, J.; Bostick, R.; Fosdick, L.; Potter, J.D. Thymidylate synthase promoter polymorphism, interaction with folate intake, and risk of colorectal adenomas. Cancer Res. 2002, 62, 3361–3364. [Google Scholar] [PubMed]
- Naselli, F.; Catanzaro, I.; Bellavia, D.; Perez, A.; Sposito, L.; Caradonna, F. Role and importance of polymorphisms with respect to DNA methylation for the expression of CYP2E1 enzyme. Gene 2014, 536, 29–39. [Google Scholar] [CrossRef] [PubMed]
PTB | LBW | SGA | ||||
---|---|---|---|---|---|---|
Cases (n = 27) | Controls (n = 691) | Cases (n = 11) | Controls (n = 686) | Cases (n = 37) | Controls (n = 660) | |
Age at childbearing, mean (SD), y | 28.5(2.5) | 28.4(4.0) | 28.2(3.0) | 28.4(3.9) | 28.5(5.0) | 28.4(3.9) |
Maternal education, n (%) | ||||||
≥College degree | 5(18.52) | 56(8.24) | 2(18.18) | 59(8.60) | 0(0) | 60(9.09) |
Middle school degree | 19(70.37) | 599(88.08) | 7(63.64) | 598(88.05) | 9(94.59) | 569(87.27) |
<Middle school degree | 3(11.11) | 25(3.68) | 2(18.18) | 23(3.35) | 2(5.41) | 24(3.64) |
Pre-pregnancy BMI, mean (SD), kg/m2 | 24.26(5.07) | 23.72(4.39) | 25.43(4.45) | 23.70(4.40) | 21.64(5.11) | 23.72(4.31) |
Gravidity, n (%) | ||||||
1 | 9(33.33) | 174(25.22) | 5(45.45) | 171(24.96) | 13(35.14) | 163(24.73) |
≥2 | 18(66.67) | 516(74.78) | 6(54.55) | 514(75.04) | 24(64.86) | 496(75.27) |
Serum folate concentration, mean (SD), ng/mL | 11.96(3.25) | 11.98(5.10) | 11.17(2.74) | 12.01(5.11) | 11.26(5.17) | 12.08(5.06) |
Folate deficiency, n (%) | 0(0) | 4(0.57) | 0(0) | 4(0.58) | 0(0) | 4(0.60) |
Gestational age at delivery, mean (SD), wk | 34.7(1.8) | 39.1(0.9) | 35.3(2.5) | 39.0(1.1) | 39.0(1.3) | 39.0(1.2) |
Gender of infant, n (%) | ||||||
Boy | 16(59.26) | 334(48.34) | 4(36.36) | 331(48.25) | 16(43.24) | 320(48.48) |
Girl | 11(40.74) | 357(51.66) | 7(63.64) | 355(51.75) | 21(56.76) | 340(51.52) |
Birth weight, mean (SD), g | 2656(502) | 3406(406) | 2104(235) | 3399(403) | 2557(222) | 3406(408) |
Gene | Genotype [n(%)] | Allele [n(%)] | P(HWE) | |||
---|---|---|---|---|---|---|
Wild Type | Heterozygote | Homozygote | Ref Allele | Alt Allele | ||
MTHFR C677T | 102(12.0) | 372(43.8) | 375(44.2) | 576(33.9) | 1122(66.1) | 0.540 |
MTHFR A1298C | 678(79.9) | 159(18.7) | 12(1.4) | 1515(89.2) | 183(10.8) | 0.473 |
MTRR A66G | 483(57.0) | 308(36.3) | 57(6.7) | 1274(75.1) | 422(24.9) | 0.408 |
MTR A2756G | 682(80.3) | 156(18.4) | 11(1.3) | 1520(89.5) | 178(10.5) | 0.577 |
TYMS rs3819102 | 528(62.2) | 294(34.6) | 27(3.2) | 1350(79.5) | 348(20.5) | 0.073 |
Genotype | Controls [n(%)] | PTB [n(%)] | OR (95% CI) | p | |
---|---|---|---|---|---|
MTHFR C677T | CC | 86(96.63) | 3(3.37) | 1 | - |
CT + TT | 605(96.18) | 24(3.82) | 1.14(0.34–3.86) | 0.837 | |
MTHFR A1298C | AA | 546(96.13) | 22(3.87) | 1 | - |
AC + CC | 145(96.67) | 5(3.33) | 0.86(0.32–2.30) | 0.758 | |
MTRR A66G | AA | 399(95.68) | 18(4.32) | 1 | - |
AG + GG | 292(97.01) | 9(2.99) | 0.68(0.30–1.54) | 0.359 | |
MTR A2756G | AA | 561(96.72) | 19(3.28) | 1 | - |
AG + GG | 130(94.20) | 8(5.80) | 1.82(0.78–4.24) | 0.167 | |
TYMS rs3819102 | AA | 434(96.02) | 18(3.98) | 1 | - |
AG + GG | 257(96.62) | 9(3.38) | 0.84(0.37–1.91) | 0.684 |
Genotype | Controls [n(%)] | LBW [n(%)] | OR (95% CI) | p | |
---|---|---|---|---|---|
MTHFR C677T | CC | 84(100.00) | 0(0) | 1 | - |
CT + TT | 602(98.21) | 11(1.79) | - | 0.973 | |
MTHFR A1298C | AA | 540(98.18) | 10(1.82) | 1 | - |
AC + CC | 146(99.32) | 1(0.68) | 0.37(0.05–2.91) | 0.345 | |
MTRR A66G | AA | 397(98.27) | 7(1.73) | 1 | - |
AG + GG | 289(98.63) | 4(1.37) | 0.79(0.23–2.71) | 0.702 | |
MTR A2756G | AA | 554(98.58) | 8(1.42) | 1 | - |
AG + GG | 132(97.78) | 3(2.22) | 1.57(0.41–6.01) | 0.507 | |
TYMS rs3819102 | AA | 428(97.94) | 9(2.06) | 1 | - |
AG + GG | 258(99.23) | 2(0.77) | 0.37(0.08–1.72) | 0.204 |
Genotype | Controls [n(%)] | SGA [n(%)] | OR (95% CI) | p | |
---|---|---|---|---|---|
MTHFR C677T | CC | 80(93.02) | 6(6.98) | 1 | - |
CT + TT | 580(94.93) | 31(5.07) | 0.71(0.29–1.76) | 0.463 | |
MTHFR A1298C | AA | 521(94.56) | 30(5.44) | 1 | - |
AC + CC | 139(95.21) | 7(4.79) | 0.88(0.38–2.03) | 0.756 | |
MTRR A66G | AA | 381(93.84) | 25(6.16) | 1 | - |
AG + GG | 279(95.88) | 12(4.12) | 0.66(0.32–1.33) | 0.241 | |
MTR A2756G | AA | 534(94.85) | 29(5.15) | 1 | - |
AG + GG | 126(94.03) | 8(5.97) | 1.17(0.52–2.62) | 0.704 | |
TYMS rs3819102 | AA | 411(93.62) | 28(6.38) | 1 | - |
AG + GG | 249(96.51) | 9(3.49) | 0.53(0.25–1.14) | 0.106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Duan, Y.; Jiang, S.; Bi, Y.; Pang, X.; Liu, C.; Yang, Z.; Lai, J. Relationships between Maternal Gene Polymorphisms in One Carbon Metabolism and Adverse Pregnancy Outcomes: A Prospective Mother and Child Cohort Study in China. Nutrients 2022, 14, 2108. https://doi.org/10.3390/nu14102108
Wang S, Duan Y, Jiang S, Bi Y, Pang X, Liu C, Yang Z, Lai J. Relationships between Maternal Gene Polymorphisms in One Carbon Metabolism and Adverse Pregnancy Outcomes: A Prospective Mother and Child Cohort Study in China. Nutrients. 2022; 14(10):2108. https://doi.org/10.3390/nu14102108
Chicago/Turabian StyleWang, Shuxia, Yifan Duan, Shan Jiang, Ye Bi, Xuehong Pang, Changqing Liu, Zhenyu Yang, and Jianqiang Lai. 2022. "Relationships between Maternal Gene Polymorphisms in One Carbon Metabolism and Adverse Pregnancy Outcomes: A Prospective Mother and Child Cohort Study in China" Nutrients 14, no. 10: 2108. https://doi.org/10.3390/nu14102108
APA StyleWang, S., Duan, Y., Jiang, S., Bi, Y., Pang, X., Liu, C., Yang, Z., & Lai, J. (2022). Relationships between Maternal Gene Polymorphisms in One Carbon Metabolism and Adverse Pregnancy Outcomes: A Prospective Mother and Child Cohort Study in China. Nutrients, 14(10), 2108. https://doi.org/10.3390/nu14102108