Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring
Abstract
:1. Introduction
Child Obesity and Metabolic Programming
2. The Litter Size Reduction Model: Short- and Long-Term Effects
2.1. Metabolic Syndrome
2.2. Central Dysfunction: Impact on Energy Metabolism and Hormonal Axis
2.3. Peripheral Dysfunction
2.3.1. Pancreatic, Insulin, and Glucose Homeostasis
2.3.2. Adrenal, Glucocorticoid, Catecholamine, and Stress Response Behaviors
2.3.3. Adipose Tissue, Leptin, and Hyperphagia
2.3.4. Thyroid Hormones and Energy Expenditure
2.3.5. Gonads, Sexual Hormones, and Puberty
2.3.6. Liver Metabolism and Dyslipidemia
2.4. Epigenetic Changes
2.5. Sex-Related Differences
3. Final Considerations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.-P.; Bentham, J. The Epidemiological Burden of Obesity in Childhood: A Worldwide Epidemic Requiring Urgent Action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Global, Regional, and Country Estimates of Metabolic Syndrome Burden in Children and Adolescents in 2020: A Systematic Review and Modelling Analysis. Lancet Child Adolesc. Health 2022, 6, 158–170. [Google Scholar] [CrossRef]
- Zheng, M.; Lamb, K.E.; Grimes, C.; Laws, R.; Bolton, K.; Ong, K.K.; Campbell, K. Rapid Weight Gain during Infancy and Subsequent Adiposity: A Systematic Review and Meta-Analysis of Evidence. Obes. Rev. 2018, 19, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Jornayvaz, F.R.; Vollenweider, P.; Bochud, M.; Mooser, V.; Waeber, G.; Marques-Vidal, P. Low Birth Weight Leads to Obesity, Diabetes and Increased Leptin Levels in Adults: The CoLaus Study. Cardiovasc. Diabetol. 2016, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, K.K.; Emmett, P.M.; Noble, S.; Ness, A.; Dunger, D.B. Dietary Energy Intake at the Age of 4 Months Predicts Postnatal Weight Gain and Childhood Body Mass Index. Pediatrics 2006, 117, e503–e508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oddy, W.H.; Mori, T.A.; Huang, R.-C.; Marsh, J.A.; Pennell, C.E.; Chivers, P.T.; Hands, B.P.; Jacoby, P.; Rzehak, P.; Koletzko, B.V.; et al. Early Infant Feeding and Adiposity Risk: From Infancy to Adulthood. Ann. Nutr. Metab. 2014, 64, 262–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, D.A.; Nazmi, A.; Victora, C.G. Growth from Birth to Adulthood and Abdominal Obesity in a Brazilian Birth Cohort. Int. J. Obes. 2010, 34, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gluckman, P.D.; Hanson, M.A.; Buklijas, T. A Conceptual Framework for the Developmental Origins of Health and Disease. J. Dev. Orig. Health Dis. 2010, 1, 6–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, L.L.; De Moura, E.G.; Lisboa, P.C. Does Early Weaning Shape Future Endocrine and Metabolic Disorders? Lessons from Animal Models. J. Dev. Orig. Health Dis. 2020, 11, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.A.; Gluckman, P.D. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology? Physiol. Rev. 2014, 94, 1027–1076. [Google Scholar] [CrossRef] [PubMed]
- Darling, J.C.; Bamidis, P.D.; Burberry, J.; Rudolf, M.C.J. The First Thousand Days: Early, Integrated and Evidence-Based Approaches to Improving Child Health: Coming to a Population near You? Arch. Dis. Child. 2020, 105, 837–841. [Google Scholar] [CrossRef] [PubMed]
- Plagemann, A.; Heidrich, I.; Götz, F.; Rohde, W.; Dörner, G. Obesity and Enhanced Diabetes and Cardiovascular Risk in Adult Rats Due to Early Postnatal Overfeeding. Exp. Clin. Endocrinol. 1992, 99, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Faust, I.M.; Johnson, P.R.; Hirsch, J. Long-Term Effects of Early Nutritional Experience on the Development of Obesity in the Rat. J. Nutr. 1980, 110, 2027–2034. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Götz, F.; Rohde, W.; Dörner, G. Early Postnatal Overfeeding and Diabetes Susceptibility. Exp. Clin. Endocrinol. 1990, 96, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Parra-Vargas, M.; Ramon-Krauel, M.; Lerin, C.; Jimenez-Chillaron, J.C. Size Does Matter: Litter Size Strongly Determines Adult Metabolism in Rodents. Cell Metab. 2020, 32, 334–340. [Google Scholar] [CrossRef]
- Peckham, J.C. The Laboratory Rat; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Cunha, A.C.D.S.R.; Pereira, R.O.; Pereira, M.J.D.S.; de Soares, V.M.; Martins, M.R.; Teixeira, M.T.; Souza, E.P.G.; Moura, A.S. Long-Term Effects of Overfeeding during Lactation on Insulin Secretion--the Role of GLUT-2. J. Nutr. Biochem. 2009, 20, 435–442. [Google Scholar] [CrossRef]
- Stefanidis, A.; Spencer, S.J. Effects of Neonatal Overfeeding on Juvenile and Adult Feeding and Energy Expenditure in the Rat. PLoS ONE 2012, 7, e52130. [Google Scholar] [CrossRef] [Green Version]
- Habbout, A.; Li, N.; Rochette, L.; Vergely, C. Postnatal Overfeeding in Rodents by Litter Size Reduction Induces Major Short- and Long-Term Pathophysiological Consequences. J. Nutr. 2013, 143, 553–562. [Google Scholar] [CrossRef]
- Debarba, L.K.; Marangon, P.B.; Borges, B.C.; Veida-Silva, H.; Venâncio, J.C.; Almeida-Pereira, G.; Antunes-Rodrigues, J.; Elias, L.L.K. Neonatal Nutritional Programming Induces Gliosis and Alters the Expression of T-Cell Protein Tyrosine Phosphatase and Connexins in Male Rats. Horm. Behav. 2020, 120, 104690. [Google Scholar] [CrossRef]
- Davidowa, H.; Li, Y.; Plagemann, A. Altered Responses to Orexigenic (AGRP, MCH) and Anorexigenic (Alpha-MSH, CART) Neuropeptides of Paraventricular Hypothalamic Neurons in Early Postnatally Overfed Rats. Eur. J. Neurosci. 2003, 18, 613–621. [Google Scholar] [CrossRef]
- Sominsky, L.; Ziko, I.; Nguyen, T.-X.; Quach, J.; Spencer, S.J. Hypothalamic Effects of Neonatal Diet: Reversible and Only Partially Leptin Dependent. J. Endocrinol. 2017, 234, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Conceicao, E.P.S.; Kaezer, A.R.; Peixoto-Silva, N.; Felzenszwalb, I.; de Oliveira, E.; Moura, E.G.; Lisboa, P.C. Effects of Ilex Paraguariensis (Yerba Mate) on the Hypothalamic Signalling of Insulin and Leptin and Liver Dysfunction in Adult Rats Overfed during Lactation. J. Dev. Orig. Health Dis. 2017, 8, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Davidowa, H.; Plagemann, A. Insulin Resistance of Hypothalamic Arcuate Neurons in Neonatally Overfed Rats. Neuroreport 2007, 18, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Halah, M.P.; Marangon, P.B.; Antunes-Rodrigues, J.; Elias, L.L.K. Neonatal Nutritional Programming Impairs Adiponectin Effects on Energy Homeostasis in Adult Life of Male Rats. Am. J. Physiol. Metab. 2018, 315, E29–E37. [Google Scholar] [CrossRef] [PubMed]
- Collden, G.; Balland, E.; Parkash, J.; Caron, E.; Langlet, F.; Prevot, V.; Bouret, S.G. Neonatal Overnutrition Causes Early Alterations in the Central Response to Peripheral Ghrelin. Mol. Metab. 2015, 4, 15–24. [Google Scholar] [CrossRef]
- Enes-Marques, S.; Rojas, V.C.T.; Batista, T.H.; Vitor-Vieira, F.; Novais, C.O.; Vilela, F.C.; Rafacho, A.; Giusti-Paiva, A. Neonatal Overnutrition Programming Impairs Cholecystokinin Effects in Adultmale Rats. J. Nutr. Biochem. 2020, 86, 108494. [Google Scholar] [CrossRef]
- Boullu-Ciocca, S.; Dutour, A.; Guillaume, V.; Achard, V.; Oliver, C.; Grino, M. Postnatal Diet-Induced Obesity in Rats Upregulates Systemic and Adipose Tissue Glucocorticoid Metabolism during Development and in Adulthood: Its Relationship with the Metabolic Syndrome. Diabetes 2005, 54, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.L.; de Moura, E.G.; Passos, M.C.F.; Dutra, S.C.P.; Lisboa, P.C. Postnatal Early Overnutrition Changes the Leptin Signalling Pathway in the Hypothalamic-Pituitary-Thyroid Axis of Young and Adult Rats. J. Physiol. 2009, 587, 2647–2661. [Google Scholar] [CrossRef]
- Stopa, L.R.S.; de Souza, C.F.; Martins, A.B.; Lopes, G.M.; Costa, N.O.; Gerardin, D.C.C.; de Carvalho, G.G.; Zaia, D.A.M.; Zaia, C.T.B.V.; Uchoa, E.T.; et al. Neonatal Overfeeding Reduces Estradiol Plasma Levels and Disrupts Noradrenergic-Kisspeptin-GnRH Pathway and Fertility in Adult Female Rats. Mol. Cell. Endocrinol. 2021, 524, 111147. [Google Scholar] [CrossRef]
- Schumacher, R.; Rossetti, M.F.; Lazzarino, G.P.; Canesini, G.; García, A.P.; Stoker, C.; Andreoli, M.F.; Ramos, J.G. Temporary Effects of Neonatal Overfeeding on Homeostatic Control of Food Intake Involve Alterations in POMC Promoter Methylation in Male Rats. Mol. Cell. Endocrinol. 2021, 522, 111123. [Google Scholar] [CrossRef]
- Ziko, I.; De Luca, S.; Dinan, T.; Barwood, J.M.; Sominsky, L.; Cai, G.; Kenny, R.; Stokes, L.; Jenkins, T.A.; Spencer, S.J. Neonatal Overfeeding Alters Hypothalamic Microglial Profiles and Central Responses to Immune Challenge Long-Term. Brain. Behav. Immun. 2014, 41, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Soch, A.; Sominsky, L.; De Luca, S.N.; Spencer, S.J. Obesity after Neonatal Overfeeding Is Independent of Hypothalamic Microgliosis. J. Neuroendocrinol. 2019, 31, e12757. [Google Scholar] [CrossRef] [PubMed]
- Caron, E.; Ciofi, P.; Prevot, V.; Bouret, S.G. Alteration in Neonatal Nutrition Causes Perturbations in Hypothalamic Neural Circuits Controlling Reproductive Function. J. Neurosci. 2012, 32, 11486–11494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampieri, T.T.; Bohlen, T.M.; Silveira, M.A.; Lana, L.C.; de Paula, D.G.; Donato, J.J.; Frazao, R. Postnatal Overnutrition Induces Changes in Synaptic Transmission to Leptin Receptor-Expressing Neurons in the Arcuate Nucleus of Female Mice. Nutrients 2020, 12, 2425. [Google Scholar] [CrossRef] [PubMed]
- Conceição, E.P.S.; Carvalho, J.C.; Manhães, A.C.; Guarda, D.S.; Figueiredo, M.S.; Quitete, F.T.; Oliveira, E.; Moura, E.G.; Lisboa, P.C. Effect of Early Overfeeding on Palatable Food Preference and Brain Dopaminergic Reward System at Adulthood: Role of Calcium Supplementation. J. Neuroendocrinol. 2016, 28, 12380. [Google Scholar] [CrossRef]
- de Gortari, P.; Alcántara-Alonso, V.; Matamoros-Trejo, G.; Amaya, M.I.; Alvarez-Salas, E. Differential Effects of Leptin Administration on Feeding and HPT Axis Function in Early-Life Overfed Adult Rats. Peptides 2020, 127, 170285. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, N.; Zhu, X.; Min, C.; Zhou, W.; Li, X. N-3 PUFAs Protect against Adiposity and Fatty Liver by Promoting Browning in Postnatally Overfed Male Rats: A Role for NRG4. J. Nutr. Biochem. 2021, 93, 108628. [Google Scholar] [CrossRef]
- Conceição, E.P.S.; Moura, E.G.; Trevenzoli, I.H.; Peixoto-Silva, N.; Pinheiro, C.R.; Younes-Rapozo, V.; Oliveira, E.; Lisboa, P.C. Neonatal Overfeeding Causes Higher Adrenal Catecholamine Content and Basal Secretion and Liver Dysfunction in Adult Rats. Eur. J. Nutr. 2013, 52, 1393–1404. [Google Scholar] [CrossRef]
- Conceição, E.P.S.; Trevenzoli, I.H.; Oliveira, E.; Franco, J.G.; Carlos, A.S.; Nascimento-Saba, C.C.A.; Moura, E.G.; Lisboa, P.C. Higher White Adipocyte Area and Lower Leptin Production in Adult Rats Overfed during Lactation. Horm. Metab. Res. 2011, 43, 513–516. [Google Scholar] [CrossRef]
- Conceição, E.P.S.; Franco, J.G.; Oliveira, E.; Resende, A.C.; Amaral, T.A.S.; Peixoto-Silva, N.; Passos, M.C.F.; Moura, E.G.; Lisboa, P.C. Oxidative Stress Programming in a Rat Model of Postnatal Early Overnutrition--Role of Insulin Resistance. J. Nutr. Biochem. 2013, 24, 81–87. [Google Scholar] [CrossRef]
- Argente-Arizón, P.; Ros, P.; Díaz, F.; Fuente-Martin, E.; Castro-González, D.; Sánchez-Garrido, M.Á.; Barrios, V.; Tena-Sempere, M.; Argente, J.; Chowen, J.A. Age and Sex Dependent Effects of Early Overnutrition on Metabolic Parameters and the Role of Neonatal Androgens. Biol. Sex Differ. 2016, 7, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Previate, C.; Malta, A.; Miranda, R.A.; Martins, I.P.; Pavanello, A.; de Oliveira, J.C.; Prates, K.V.; Alves, V.S.; Francisco, F.A.; Moreira, V.M.; et al. Early Metformin Treatment Improves Pancreatic Function and Prevents Metabolic Dysfunction in Early Overfeeding Male Rats at Adulthood. Exp. Physiol. 2020, 105, 2051–2060. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-W.; Mahmood, S.; Srinivasan, M.; Smiraglia, D.J.; Patel, M.S. Developmental Programming in Skeletal Muscle in Response to Overnourishment in the Immediate Postnatal Life in Rats. J. Nutr. Biochem. 2013, 24, 1859–1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bei, F.; Jia, J.; Jia, Y.-Q.; Sun, J.-H.; Liang, F.; Yu, Z.-Y.; Cai, W. Long-Term Effect of Early Postnatal Overnutrition on Insulin Resistance and Serum Fatty Acid Profiles in Male Rats. Lipids Health Dis. 2015, 14, 96. [Google Scholar] [CrossRef] [Green Version]
- Glavas, M.M.; Hui, Q.; Tudurí, E.; Erener, S.; Kasteel, N.L.; Johnson, J.D.; Kieffer, T.J. Early Overnutrition Reduces Pdx1 Expression and Induces β Cell Failure in Swiss Webster Mice. Sci. Rep. 2019, 9, 3619. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, A.L.; De Souza, E.P.G.; Da Silva, S.V.; Rodrigues, D.S.B.; Nascimento, A.B.; Barja-Fidalgo, C.; De Freitas, M.S. Low Expression of Insulin Signaling Molecules Impairs Glucose Uptake in Adipocytes after Early Overnutrition. J. Endocrinol. 2007, 195, 485–494. [Google Scholar] [CrossRef] [Green Version]
- Plagemann, A.; Harder, T.; Rake, A.; Voits, M.; Fink, H.; Rohde, W.; Dörner, G. Perinatal Elevation of Hypothalamic Insulin, Acquired Malformation of Hypothalamic Galaninergic Neurons, and Syndrome x-like Alterations in Adulthood of Neonatally Overfed Rats. Brain Res. 1999, 836, 146–155. [Google Scholar] [CrossRef]
- Carvalho, A.L.O.; Ferri, B.G.; de Sousa, F.A.L.; Vilela, F.C.; Giusti-Paiva, A. Early Life Overnutrition Induced by Litter Size Manipulation Decreases Social Play Behavior in Adolescent Male Rats. Int. J. Dev. Neurosci. Off. J. Int. Soc. Dev. Neurosci. 2016, 53, 75–82. [Google Scholar] [CrossRef]
- Enes-Marques, S.; Giusti-Paiva, A. Litter Size Reduction Accentuates Maternal Care and Alters Behavioral and Physiological Phenotypes in Rat Adult Offspring. J. Physiol. Sci. 2018, 68, 789–798. [Google Scholar] [CrossRef]
- Salari, A.-A.; Samadi, H.; Homberg, J.R.; Kosari-Nasab, M. Small Litter Size Impairs Spatial Memory and Increases Anxiety- like Behavior in a Strain-Dependent Manner in Male Mice. Sci. Rep. 2018, 8, 11281. [Google Scholar] [CrossRef] [Green Version]
- Hou, M.; Liu, Y.; Zhu, L.; Sun, B.; Guo, M.; Burén, J.; Li, X. Neonatal Overfeeding Induced by Small Litter Rearing Causes Altered Glucocorticoid Metabolism in Rats. PLoS ONE 2011, 6, e25726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, G.; Ziko, I.; Barwood, J.; Soch, A.; Sominsky, L.; Molero, J.C.; Spencer, S.J. Overfeeding during a Critical Postnatal Period Exacerbates Hypothalamic-Pituitary-Adrenal Axis Responses to Immune Challenge: A Role for Adrenal Melanocortin 2 Receptors. Sci. Rep. 2016, 6, 21097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Dai, Y.; Min, C.; Li, X. Neonatal Overfeeding Induced Glucocorticoid Overexposure Accelerates Hepatic Lipogenesis in Male Rats. Nutr. Metab. 2018, 15, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Childs, G.V.; Odle, A.K.; MacNicol, M.C.; MacNicol, A.M. The Importance of Leptin to Reproduction. Endocrinology 2021, 162, bqaa204. [Google Scholar] [CrossRef] [PubMed]
- López, M.; Tovar, S.; Vázquez, M.J.; Nogueiras, R.; Seoane, L.M.; García, M.; Señarís, R.M.; Diéguez, C. Perinatal Overfeeding in Rats Results in Increased Levels of Plasma Leptin but Unchanged Cerebrospinal Leptin in Adulthood. Int. J. Obes. 2007, 31, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Velkoska, E.; Cole, T.J.; Morris, M.J. Early Dietary Intervention: Long-Term Effects on Blood Pressure, Brain Neuropeptide Y, and Adiposity Markers. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E1236-43. [Google Scholar] [CrossRef] [Green Version]
- Skowronski, A.A.; LeDuc, C.A.; Foo, K.S.; Goffer, Y.; Burnett, L.C.; Egli, D.; Leibel, R.L. Physiological Consequences of Transient Hyperleptinemia during Discrete Developmental Periods on Body Weight in Mice. Sci. Transl. Med. 2020, 12, 6629. [Google Scholar] [CrossRef]
- Plagemann, A.; Harder, T.; Rake, A.; Waas, T.; Melchior, K.; Ziska, T.; Rohde, W.; Dörner, G. Observations on the Orexigenic Hypothalamic Neuropeptide Y-System in Neonatally Overfed Weanling Rats. J. Neuroendocrinol. 1999, 11, 541–546. [Google Scholar] [CrossRef]
- López, M.; Seoane, L.M.; Tovar, S.; García, M.C.; Nogueiras, R.; Diéguez, C.; Señarís, R.M. A Possible Role of Neuropeptide Y, Agouti-Related Protein and Leptin Receptor Isoforms in Hypothalamic Programming by Perinatal Feeding in the Rat. Diabetologia 2005, 48, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Zhou, N.; Yang, F.; Zhou, S.; Sha, L.; Wang, J.; Li, X. Effects of Postnatal Overfeeding and Fish Oil Diet on Energy Expenditure in Rats. Pediatr. Res. 2018, 83, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Kohorst, J.J.; Zhang, W.; Laritsky, E.; Kunde-Ramamoorthy, G.; Baker, M.S.; Fiorotto, M.L.; Waterland, R.A. Early Postnatal Nutrition Determines Adult Physical Activity and Energy Expenditure in Female Mice. Diabetes 2013, 62, 2773–2783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisboa, P.C.; Conceição, E.P.S.; de Oliveira, E.; Moura, E.G. Postnatal Overnutrition Programs the Thyroid Hormone Metabolism and Function in Adulthood. J. Endocrinol. 2015, 226, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.Q.; Williams, S.M.; Grayson, B.E.; Glavas, M.M.; Cowley, M.A.; Smith, M.S.; Grove, K.L. Excess Weight Gain during the Early Postnatal Period Is Associated with Permanent Reprogramming of Brown Adipose Tissue Adaptive Thermogenesis. Endocrinology 2007, 148, 4150–4159. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, D.L.; Fabrício, G.S.; Trombini, A.B.; Pavanello, A.; Tófolo, L.P.; da Silva Ribeiro, T.A.; de Freitas Mathias, P.C.; Palma-Rigo, K. Early Overfeed-Induced Obesity Leads to Brown Adipose Tissue Hypoactivity in Rats. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2013, 32, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Argente-Arizón, P.; Castro-González, D.; Díaz, F.; Fernández-Gómez, M.J.; Sánchez-Garrido, M.A.; Tena-Sempere, M.; Argente, J.; Chowen, J.A. Neonatal Overnutrition Increases Testicular Size and Expression of Luteinizing Hormone β-Subunit in Peripubertal Male Rats. Front. Endocrinol. 2018, 9, 168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Garrido, M.A.; Castellano, J.M.; Ruiz-Pino, F.; Garcia-Galiano, D.; Manfredi-Lozano, M.; Leon, S.; Romero-Ruiz, A.; Diéguez, C.; Pinilla, L.; Tena-Sempere, M. Metabolic Programming of Puberty: Sexually Dimorphic Responses to Early Nutritional Challenges. Endocrinology 2013, 154, 3387–3400. [Google Scholar] [CrossRef] [Green Version]
- Costa, V.M.G.; Andreazzi, A.E.; Bolotari, M.; Lade, C.G.; Guerra, M.O.; Peters, V.M. Effect of Postnatal Overfeeding on the Male and Female Wistar Rat Reproductive Parameters. J. Dev. Orig. Health Dis. 2019, 10, 667–675. [Google Scholar] [CrossRef]
- Sominsky, L.; Ziko, I.; Spencer, S.J. Neonatal Overfeeding Disrupts Pituitary Ghrelin Signalling in Female Rats Long-Term; Implications for the Stress Response. PLoS ONE 2017, 12, e0173498. [Google Scholar] [CrossRef]
- Sominsky, L.; Ziko, I.; Soch, A.; Smith, J.T.; Spencer, S.J. Neonatal Overfeeding Induces Early Decline of the Ovarian Reserve: Implications for the Role of Leptin. Mol. Cell. Endocrinol. 2016, 431, 24–35. [Google Scholar] [CrossRef]
- Castro-González, D.; Fuente-Martín, E.; Sánchez-Garrido, M.A.; Argente-Arizón, P.; Tena-Sempere, M.; Barrios, V.; Chowen, J.A.; Argente, J. Increased Prepubertal Body Weight Enhances Leptin Sensitivity in Proopiomelanocortin and Neuropeptide y Neurons before Puberty Onset in Female Rats. Endocrinology 2015, 156, 1272–1282. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.A.; Ferreira-Junior, M.D.; Amaral, K.d.J.V.; Cavalcante, K.V.N.; Pontes, C.N.R.; Ribeiro, L.C.D.S.; Dos Santos, B.G.; Xavier, C.H.; Mathias, P.C.d.F.; Andersen, M.L.; et al. Maternal Postnatal Early Overfeeding Induces Sex-Related Cardiac Dysfunction and Alters Sexually Hormones Levels in Young Offspring. J. Nutr. Biochem. 2022, 103, 108969. [Google Scholar] [CrossRef] [PubMed]
- Ramon-Krauel, M.; Pentinat, T.; Bloks, V.W.; Cebrià, J.; Ribo, S.; Pérez-Wienese, R.; Vilà, M.; Palacios-Marin, I.; Fernández-Pérez, A.; Vallejo, M.; et al. Epigenetic Programming at the Mogat1 Locus May Link Neonatal Overnutrition with Long-Term Hepatic Steatosis and Insulin Resistance. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2018, 13, 3217–3226. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Aulinas, F.; Ribo, S.; Parra-Vargas, M.; Fernández-Pérez, A.; Cebrià, J.; Guardiola-Perello, M.; Ramon-Krauel, M.; Lerin, C.; Diaz, R.; Kalko, S.G.; et al. Neonatal Overfeeding during Lactation Rapidly and Permanently Misaligns the Hepatic Circadian Rhythm and Programmes Adult NAFLD. Mol. Metab. 2021, 45, 101162. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Dai, Y.; Jiang, W.; Liu, J.; Hou, M.; Wang, J.; Burén, J.; Li, X. Postnatal Overfeeding Promotes Early Onset and Exaggeration of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Disordered Hepatic Lipid Metabolism in Rats. J. Nutr. Biochem. 2014, 25, 1108–1116. [Google Scholar] [CrossRef]
- Yzydorczyk, C.; Li, N.; Rigal, E.; Chehade, H.; Mosig, D.; Armengaud, J.B.; Rolle, T.; Krishnasamy, A.; Orozco, E.; Siddeek, B.; et al. Calorie Restriction in Adulthood Reduces Hepatic Disorders Induced by Transient Postnatal Overfeeding in Mice. Nutrients 2019, 11, 2796. [Google Scholar] [CrossRef] [Green Version]
- Marousez, L.; Lesage, J.; Eberlé, D. Epigenetics: Linking Early Postnatal Nutrition to Obesity Programming? Nutrients 2019, 11, 2966. [Google Scholar] [CrossRef] [Green Version]
- Plagemann, A.; Harder, T.; Brunn, M.; Harder, A.; Roepke, K.; Wittrock-Staar, M.; Ziska, T.; Schellong, K.; Rodekamp, E.; Melchior, K.; et al. Hypothalamic Proopiomelanocortin Promoter Methylation Becomes Altered by Early Overfeeding: An Epigenetic Model of Obesity and the Metabolic Syndrome. J. Physiol. 2009, 587, 4963–4976. [Google Scholar] [CrossRef]
- Li, G.; Petkova, T.D.; Laritsky, E.; Kessler, N.; Baker, M.S.; Zhu, S.; Waterland, R.A. Early Postnatal Overnutrition Accelerates Aging-Associated Epigenetic Drift in Pancreatic Islets. Environ. Epigenetics 2019, 5, dvz015. [Google Scholar] [CrossRef]
- Plagemann, A.; Roepke, K.; Harder, T.; Brunn, M.; Harder, A.; Wittrock-Staar, M.; Ziska, T.; Schellong, K.; Rodekamp, E.; Melchior, K.; et al. Epigenetic Malprogramming of the Insulin Receptor Promoter Due to Developmental Overfeeding. J. Perinat. Med. 2010, 38, 393–400. [Google Scholar] [CrossRef]
- Huang, F.; Zhu, P.; Wang, J.; Chen, J.; Lin, W. Postnatal Overfeeding Induces Hepatic MicroRNA-221 Expression and Impairs the PI3K/AKT Pathway in Adult Male Rats. Pediatr. Res. 2021, 89, 143–149. [Google Scholar] [CrossRef]
- Miranda, R.A.; Gaspar de Moura, E.; Lisboa, P.C. Tobacco Smoking during Breastfeeding Increases the Risk of Developing Metabolic Syndrome in Adulthood: Lessons from Experimental Models. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2020, 144, 111623. [Google Scholar] [CrossRef] [PubMed]
- Argente-Arizón, P.; Díaz, F.; Ros, P.; Barrios, V.; Tena-Sempere, M.; García-Segura, L.M.; Argente, J.; Chowen, J.A. The Hypothalamic Inflammatory/Gliosis Response to Neonatal Overnutrition Is Sex and Age Dependent. Endocrinology 2018, 159, 368–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziko, I.; Sominsky, L.; Nguyen, T.-X.; Yam, K.-Y.; De Luca, S.; Korosi, A.; Spencer, S.J. Hyperleptinemia in Neonatally Overfed Female Rats Does Not Dysregulate Feeding Circuitry. Front. Endocrinol. 2017, 8, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Garrido, M.A.; Ruiz-Pino, F.; Pozo-Salas, A.I.; Castellano, J.M.; Vazquez, M.J.; Luque, R.M.; Tena-Sempere, M. Early Overnutrition Sensitizes the Growth Hormone Axis to the Impact of Diet-Induced Obesity via Sex-Divergent Mechanisms. Sci. Rep. 2020, 10, 13898. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, V.S.T.; Moura, E.G.; Peixoto, T.C.; Soares, P.N.; Lopes, B.P.; Bertasso, I.M.; Silva, B.S.; Cabral, S.S.; Kluck, G.E.G.; Atella, G.C.; et al. The Model of Litter Size Reduction Induces Long-Term Disruption of the Gut-Brain Axis: An Explanation for the Hyperphagia of Wistar Rats of Both Sexes. Physiol. Rep. 2022, 10, e15191. [Google Scholar] [CrossRef]
- Mozeš, Š.; Šefcíková, Z.; Bujnáková, D.; Racek, L. Effect of Antibiotic Treatment on Intestinal Microbial and Enzymatic Development in Postnatally Overfed Obese Rats. Obesity 2013, 21, 1635–1642. [Google Scholar] [CrossRef]
- Li, R.; Fein, S.B.; Grummer-Strawn, L.M. Do Infants Fed from Bottles Lack Self-Regulation of Milk Intake Compared with Directly Breastfed Infants? Pediatrics 2010, 125, e1386–e1393. [Google Scholar] [CrossRef] [Green Version]
- Horta, B.L.; Loret De Mola, C.; Victora, C.G. Long-Term Consequences of Breastfeeding on Cholesterol, Obesity, Systolic Blood Pressure and Type 2 Diabetes: A Systematic Review and Meta-Analysis. Acta Paediatr. Int. J. Paediatr. 2015, 104, 30–37. [Google Scholar] [CrossRef]
- Hall, W.G.; Rosenblatt, J.S. Suckling Behavior and Intake Control in the Developing Rat Pup. J. Comp. Physiol. Psychol. 1977, 91, 1232–1247. [Google Scholar] [CrossRef]
- Ward, E.; Yang, N.; Muhlhausler, B.S.; Leghi, G.E.; Netting, M.J.; Elmes, M.J.; Langley-Evans, S.C. Acute Changes to Breast Milk Composition Following Consumption of High-Fat and High-Sugar Meals. Matern. Child Nutr. 2021, 17, e13168. [Google Scholar] [CrossRef]
- Dai, Y.; Yang, F.; Zhou, N.; Sha, L.; Zhou, S.; Wang, J.; Li, X.; Liu, H.-W.; Srinivasan, M.; Mahmood, S.; et al. A Post-Weaning Fish Oil Dietary Intervention Reverses Adverse Metabolic Outcomes and 11β-Hydroxysteroid Dehydrogenase Type 1 Expression in Postnatal Overfed Rats. Br. J. Nutr. 2016, 55, 1519–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.-W.; Srinivasan, M.; Mahmood, S.; Smiraglia, D.J.; Patel, M.S. Adult-Onset Obesity Induced by Early Life Overnutrition Could Be Reversed by Moderate Caloric Restriction. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E785–E794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, D.T.; Eller, L.K.; Nettleton, J.E.; Reimer, R.A. Postnatal Prebiotic Fibre Intake Mitigates Some Detrimental Metabolic Outcomes of Early Overnutrition in Rats. Eur. J. Nutr. 2016, 55, 2399–2409. [Google Scholar] [CrossRef] [PubMed]
- Neto, J.G.O.; Boechat, S.K.; Romão, J.S.; Kuhnert, L.R.B.; Pazos-Moura, C.C.; Oliveira, K.J. Cinnamaldehyde Treatment during Adolescence Improves White and Brown Adipose Tissue Metabolism in a Male Rat Model of Early Obesity. Food Funct. 2022, 13, 3405–3418. [Google Scholar] [CrossRef] [PubMed]
- Guiomar de Almeida Brasiel, P.; Cristina Potente Dutra Luquetti, S.; Dutra Medeiros, J.; Otavio do Amaral Corrêa, J.; Barbosa Ferreira Machado, A.; Paula Boroni Moreira, A.; Novaes Rocha, V.; Teodoro de Souza, C.; do Carmo Gouveia Peluzio, M. Kefir Modulates Gut Microbiota and Reduces DMH-Associated Colorectal Cancer via Regulation of Intestinal Inflammation in Adulthood Offsprings Programmed by Neonatal Overfeeding. Food Res. Int. 2022, 152, 110708. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, L.L.; Moura, E.G.; Lisboa, P.C. Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring. Nutrients 2022, 14, 2045. https://doi.org/10.3390/nu14102045
Souza LL, Moura EG, Lisboa PC. Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring. Nutrients. 2022; 14(10):2045. https://doi.org/10.3390/nu14102045
Chicago/Turabian StyleSouza, Luana L., Egberto G. Moura, and Patricia C. Lisboa. 2022. "Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring" Nutrients 14, no. 10: 2045. https://doi.org/10.3390/nu14102045
APA StyleSouza, L. L., Moura, E. G., & Lisboa, P. C. (2022). Litter Size Reduction as a Model of Overfeeding during Lactation and Its Consequences for the Development of Metabolic Diseases in the Offspring. Nutrients, 14(10), 2045. https://doi.org/10.3390/nu14102045