Obese Women Have a High Carbohydrate Intake without Changes in the Resting Metabolic Rate in the Luteal Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample
2.3. Nutritional Status
2.4. Dietary Intake
2.5. Indirect Calorimetry
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayton, A.; Ibrahim, A. Obesity is a public health emergency. BMJ 2019, 366, l5463. [Google Scholar] [CrossRef] [PubMed]
- Chooi, Y.C.; Ding, C.; Magkos, F. The epidemiology of obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atakan, M.; Koşar, Ş.; Güzel, Y.; Tin, H.; Yan, X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021, 13, 1459. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Guo, J. Obesity Energetics: Body Weight Regulation and the Effects of Diet Composition. Gastroenterology 2017, 152, 1718–1727.e3. [Google Scholar] [CrossRef] [Green Version]
- Hume, D.J.; Yokum, S.; Stice, E. Low energy intake plus low energy expenditure (low energy flux), not energy surfeit, predicts future body fat gain. Am. J. Clin. Nutr. 2016, 103, 1389–1396. [Google Scholar] [CrossRef] [Green Version]
- Bosy-Westphal, A.; Braun, W.; Schautz, B.; Müller, M.J. Issues in characterizing resting energy expenditure in obesity and after weight loss. Front. Physiol. 2013, 4, 47. [Google Scholar] [CrossRef] [Green Version]
- Matsuda-Nakamura, M.; Yasuhara, S.; Nagashima, K. Effect of menstrual cycle on thermal perception and autonomic thermoregulatory responses during mild cold exposure. J. Physiol. Sci. 2015, 65, 339–347. [Google Scholar] [CrossRef]
- Day, D.S.; Gozansky, W.S.; Van Pelt, R.; Schwartz, R.S.; Kohrt, W.M. Sex Hormone Suppression Reduces Resting Energy Expenditure and β-Adrenergic Support of Resting Energy Expenditure. J. Clin. Endocrinol. Metab. 2005, 90, 3312–3317. [Google Scholar] [CrossRef]
- Pelkman, C.L.; Chow, M.; Heinbach, R.A.; Rolls, B.J. Short-term effects of a progestational contraceptive drug on food intake, resting energy expenditure, and body weight in young women. Am. J. Clin. Nutr. 2001, 73, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Van Pelt, R.E.; Gavin, K.M.; Kohrt, W.M. Regulation of Body Composition and Bioenergetics by Estrogens. Endocrinol. Metab. Clin. N. Am. 2015, 44, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Leeners, B.; Geary, N.; Tobler, P.N.; Asarian, L. Ovarian hormones and obesity. Hum. Reprod. Updat. 2017, 23, 300–321. [Google Scholar] [CrossRef] [PubMed]
- Horton, T.J.; Miller, E.K.; Glueck, D.; Tench, K. No effect of menstrual cycle phase on glucose kinetics and fuel oxidation during moderate-intensity exercise. Am. J. Physiol. Metab. 2002, 282, E752–E762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, S.; Ng, J.; Leow, M.; Henry, C. The influence of the menstrual cycle on energy balance and taste preference in Asian Chinese women. Eur. J. Nutr. 2015, 54, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Benton, M.J.; Hutchins, A.M.; Dawes, J.J. Effect of menstrual cycle on resting metabolism: A systematic review and meta-analysis. PLoS ONE 2020, 15, e0236025. [Google Scholar] [CrossRef]
- Birgisdóttir, B.E.; Gunnlaugsson, G.; Vitzhum, V. Food and Nutrient Intake over the Course of the Menstrual Cycle—Cycles Iceland. In Proceedings of the Nutrition Society; Cambridge University Press (CUP): Cambridge, UK, 2020; Volume 79, p. 246. [Google Scholar]
- de Souza, L.B.; Martins, K.A.; Cordeiro, M.M.; Rodrigues, Y.D.S.; Rafacho, B.P.M.; Bomfim, R.A. Do Food Intake and Food Cravings Change during the Menstrual Cycle of Young Women? Rev. Bras. Ginecol. Obs./RBGO Gynecol. Obstet. 2018, 40, 686–692. [Google Scholar] [CrossRef] [Green Version]
- Bryant, M.; Truesdale, K.P.; Dye, L. Modest changes in dietary intake across the menstrual cycle: Implications for food intake research. Br. J. Nutr. 2006, 96, 888–894. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, L.A.S.; Soares, C.; Dias, A.C.G.; Penna, N.; Castro, A.O.D.S.; De Azeredo, V.B. Estado nutricional e consumo alimentar de mulheres jovens na fase lútea e folicular do ciclo menstrual. Rev. Nutr. 2011, 24, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Council for International Organizations of Medical Sciences. International ethical guidelines for biomedical research involving human subjects. Bull Med Ethics. 2002, 182, 17–23. [Google Scholar]
- Cáceres, D.; Messagi-Sartor, M.; Rodríguez, D.; Escalada, F.; Gea, J.; Orozco-Levi, M. Variabilidad de la composición corporal medida con bioimpedanciometría eléctrica según condiciones de realización: Influencia del ayuno y del reposo. Nutr. Hosp. 2014, 30, 1359–1365. [Google Scholar]
- Rubio, M.; Salas-Salvadó, J.; Barbany, M.; Moreno, B.; Aranceta, J.; Bellido, D. Consenso SEEDO 2007 para la evaluación del so-brepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Rev. Esp. Obes. 2007, 5, 135–175. [Google Scholar]
- A McClave, S.; Lowen, C.C.; Kleber, M.J.; McConnell, J.W.; Jung, L.Y.; Goldsmith, L.J. Clinical use of the respiratory quotient obtained from indirect calorimetry. J. Parenter. Enter. Nutr. 2003, 27, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.; Williams, J.; Cottrell, F.; Hudson, L.; Compher, C. Accurate Determination of Energy Needs in Hospitalized Patients. J. Am. Diet. Assoc. 2007, 107, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.W.; Grant, L.; Gotthelf, L.; Stifler, L.T.P. Weight loss and long-term follow-up of severely obese individuals treated with an intense behavioral program. Int. J. Obes. 2006, 31, 488–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasyluk, W.; Zwolak, A.; Jonckheer, J.; De Waele, E.; Dąbrowski, W. Methodological Aspects of Indirect Calorimetry in Patients with Sepsis—Possibilities and Limitations. Nutrients 2022, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Osumi, H.; Uchizawa, A.; Hamada, H.; Park, I.; Suzuki, Y.; Tanaka, Y.; Ishihara, A.; Yajima, K.; Seol, J.; et al. Changes in sleeping energy metabolism and thermoregulation during menstrual cycle. Physiol. Rep. 2020, 8, 14353. [Google Scholar] [CrossRef] [PubMed]
- Davidsen, L.; Vistisen, B.; Astrup, A. Impact of the menstrual cycle on determinants of energy balance: A putative role in weight loss attempts. Int. J. Obes. 2007, 31, 1777–1785. [Google Scholar] [CrossRef] [Green Version]
- Melanson, E.L.; Gavin, K.M.; Shea, K.L.; Wolfe, P.; Wierman, M.E.; Schwartz, R.S.; Kohrt, W.M. Regulation of energy expenditure by estradiol in premenopausal women. J. Appl. Physiol. 2015, 119, 975–981. [Google Scholar] [CrossRef] [Green Version]
- Freeman, E.W.; Sammel, M.D.; Lin, H.; Gracia, C.R. Obesity and reproductive hormone levels in the transition to menopause. Menopause 2010, 17, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Eckel, L.A. The ovarian hormone estradiol plays a crucial role in the control of food intake in females. Physiol. Behav. 2011, 104, 517–524. [Google Scholar] [CrossRef] [Green Version]
- Rosen, E.D.; Spiegelman, B.M. What We Talk About When We Talk About Fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef] [Green Version]
- Yeung, E.H.; Zhang, C.; Albert, P.S.; Mumford, S.; Ye, A.; Perkins, N.; Wactawski-Wende, J.; Schisterman, E. Adiposity and sex hormones across the menstrual cycle: The BioCycle Study. Int. J. Obes. 2012, 37, 237–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, R.K. Energía. In Nutrición y Dietoterapia de Krause, 15th ed.; Mahan, K., Escott-Stump, S., Eds.; McGraw Hill Intera-Mericana: México City, México, 2011; pp. 20–32. [Google Scholar]
- Cumberledge, E.A.; Myers, C.; Venditti, J.J.; Dixon, C.B.; Andreacci, J.L. The effect of the menstrual cycle on body composition determined by contact-electrode bioelectrical impedance analyzers. Int. J. Exerc. Sci. 2018, 11, 625–632. [Google Scholar] [PubMed]
- Amado, J.A.; Florez, J. Hormonas sexuales: Estrógenos, gestágenos, andrógenos y anticonceptivos hormonales. In Farmaco-Logía Humana, 4th ed.; Florez, J., Ed.; Masson: Barcelona, Spain, 2003; pp. 887–912. [Google Scholar]
- Kammoun, I.; Ben Saâda, W.; Sifaou, A.; Haouat, E.; Kandara, H.; Ben Salem, L.; Ben Slama, C. Change in women’s eating habits during the menstrual cycle. Ann. d’Endocrinol. 2017, 78, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-C.; Bond, E.F.; Jarrett, M.E. Food Intake Changes across the Menstrual Cycle in Taiwanese Women. Biol. Res. Nurs. 2010, 12, 37–46. [Google Scholar] [CrossRef]
- Krishnan, S.; Tryon, R.; Welch, L.; Horn, W.; Keim, N. Menstrual cycle hormones, food intake, and cravings. FASEB J. 2016, 30, 1418. [Google Scholar] [CrossRef]
- Webb, P. 24-hour energy expenditure and the menstrual cycle. Am. J. Clin. Nutr. 1986, 44, 614–619. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; E Manson, J.; E Buring, J.; Stampfer, M.J.; Willett, W.C.; Ridker, P.M. Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am. J. Clin. Nutr. 2002, 75, 492–498. [Google Scholar] [CrossRef]
- Escalante, L.; Alpizar, M. Changes in Insulin Sensitivity, Secretion and Glucose Effectiveness During Menstrual Cycle. Arch. Med. Res. 1999, 30, 19–22. [Google Scholar]
- Yeung, E.; Zhang, C.; Mumford, S.; Munford, S.; Ye, A.; Trevisan, M.; Chen, L.; Browne, R.; Wactawiski-Wende, J.; Schisterman, E. Longitudinal Study of Insulin Resistance and Sex Hormones over the Menstrual Cycle: The BioCycle Study. J. Clin. Endocrinol. Metab. 2010, 95, 5435–5442. [Google Scholar] [CrossRef] [Green Version]
- Simó, R.; Ciudin, A.; Simó-Servat, O.; Hernández, C. Cognitive impairment and dementia: A new emerging complication of type 2 diabetes—The diabetologist’s perspective. Geol. Rundsch. 2017, 54, 417–424. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Rowe, W.A.; Cooney, R.N.; Smith, J.S.; Becker, D. Limits of body mass index to detect obesity and predict body composition. Nutrition 2001, 17, 26–30. [Google Scholar] [CrossRef]
Nutritional Status | Variables | Follicular Phase | Luteal Phase | p | ||||
---|---|---|---|---|---|---|---|---|
P25 | P50 | P75 | P25 | P50 | P75 | |||
Lean | Weight (kg) | 54.0 | 56.4 | 57.9 | 54.7 | 56.3 | 58.9 | 0.990 |
RMR (Kcal/day) | 987 | 1080 | 1095 | 1102 | 1199 | 1319 | 0.004 * | |
FFM (%) | 71.8 | 73.5 | 74.1 | 71.6 | 73.2 | 75.1 | 0.983 | |
FFM (kg) | 40.0 | 41.7 | 42.9 | 39.9 | 41.8 | 42.9 | 0.950 | |
FM (%) | 25.9 | 26.5 | 28.2 | 24.9 | 26.8 | 28.4 | 0.984 | |
FM (kg) | 14.1 | 15.3 | 16.1 | 13.4 | 15.7 | 16.2 | 0.618 | |
Total Water (%) | 50.9 | 51.6 | 52.9 | 50.9 | 51.7 | 53.7 | 0.693 | |
Total Water (Lt) | 27.7 | 29.2 | 30.4 | 28.8 | 29.0 | 30.2 | 0.802 | |
Intracellular Water (%) | 27.0 | 27.3 | 28.0 | 26.9 | 27.1 | 27.4 | 0.244 | |
Intracellular Water (Lt) | 14.6 | 15.5 | 16.4 | 14.4 | 15.2 | 16.2 | 0.519 | |
Extracellular Water (%) | 23.5 | 24.2 | 25.1 | 23.6 | 24.0 | 26.1 | 0.518 | |
Extracellular Water (Lt) | 13.1 | 13.6 | 14.2 | 13.4 | 13.8 | 14.4 | 0.406 | |
Temperature (°C) | 36 | 36.1 | 36.3 | 36.1 | 36.6 | 36.7 | 0.015 * | |
Respiratory quotient | 0.8 | 0.94 | 1.03 | 0.76 | 0.89 | 0.95 | 0.253 | |
Calories (Kcal/day) | 1472 | 1764 | 1978 | 1760 | 2003 | 2310 | 0.040 * | |
Proteins (g./day) | 52.3 | 63.4 | 88.5 | 57.8 | 72.4 | 87.0 | 0.633 | |
Carbohydrates (g./day) | 198.8 | 246.1 | 289.5 | 213.3 | 239.6 | 290.8 | 0.443 | |
Lipids (g./day) | 50.7 | 64.4 | 78 | 62.7 | 73.0 | 83.0 | 0.044 * | |
Obese | Weight (kg) | 61.5 | 66.2 | 69.2 | 62.7 | 67.5 | 69.0 | 0.787 |
RMR (Kcal/day) | 1115 | 1221 | 1308 | 1148 | 1244 | 1312 | 0.520 | |
FFM (%) | 67.3 | 68.9 | 69.3 | 55.8 | 68.3 | 70.4 | 0.967 | |
FFM (kg) | 42.6 | 43.8 | 47.5 | 42.7 | 44.2 | 47.9 | 0.708 | |
FM (%) | 30.7 | 31.1 | 32.7 | 29.6 | 31.7 | 33.2 | 0.976 | |
FM (kg) | 18.9 | 20.8 | 21.5 | 19.3 | 20.1 | 22.1 | 0.977 | |
Total water (%) | 46.5 | 47.1 | 48.2 | 47.5 | 47.8 | 48.4 | 0.253 | |
Total water (Lt) | 29.4 | 30.6 | 32.2 | 29.2 | 31.1 | 32.6 | 0.663 | |
Intracellular water (%) | 25.0 | 25.7 | 26.0 | 23.2 | 25.9 | 26.2 | 0.917 | |
Intracellular water (Lt) | 16.2 | 17.2 | 17.4 | 15.3 | 17.1 | 17.9 | 0.983 | |
Extracellular water (%) | 21.9 | 22.3 | 22.6 | 22.4 | 22.7 | 23.2 | 0.149 | |
Extracellular water (Lt) | 13.9 | 14.6 | 15.4 | 14.3 | 15.2 | 16.4 | 0.157 | |
Temperature (°C) | 35.4 | 36 | 36.2 | 35.9 | 36.2 | 36.4 | 0.129 | |
Respiratory quotient | 0.73 | 0.81 | 0.9 | 0.75 | 0.79 | 0.83 | 0.868 | |
Calories (Kcal/day) | 1504 | 1684 | 1955 | 1751 | 1952 | 2248 | 0.036 | |
Proteins (g/d) | 53.8 | 60.8 | 76.0 | 61.3 | 63.3 | 80.2 | 0.272 | |
Carbohydrates (g/d) | 192.7 | 213.3 | 229.0 | 222.7 | 238.4 | 304.0 | 0.004 * | |
Lipids (g/d) | 53.4 | 63.2 | 76.0 | 66.7 | 72.0 | 82.3 | 0.065 |
Variables | Lean | Obese | ||||
---|---|---|---|---|---|---|
Coefficient (β) | SE | p | Coefficient (β) | SE | p | |
Weight (kg) | −0.03 | 1.54 | 0.986 | 0.43 | 2.6 | 0.870 |
RMR (kcal/d) | 121.6 | 38.8 | 0.004 | 29.5 | 50.9 | 0.568 |
FM (%) | −0.08 | 0.74 | 0.908 | −0.08 | 1.39 | 0.954 |
FM (kg) | 0.41 | 0.58 | 0.484 | 0.08 | 1.77 | 0.965 |
FFM (%) | 0.08 | 0.74 | 0.908 | 0.61 | 1.57 | 0.702 |
FFM (kg) | −0.05 | 1.25 | 0.968 | 0.36 | 1.35 | 0.794 |
Total water (%) | 0.52 | 0.79 | 0.520 | 0.41 | 0.95 | 0.675 |
AIC (%) | −1.33 | 1.09 | 0.232 | −0.60 | 0.58 | 0.302 |
AIC (L) | −0.71 | 0.74 | 0.344 | 0.17 | 0.84 | 0.838 |
ECW (%) | 1.48 | 1.21 | 0.231 | 1.11 | 0.52 | 0.041 |
ECW (L) | 0.85 | 0.71 | 0.236 | 0.7 | 0.45 | 0.135 |
Temperature (°C) | 0.36 | 0.14 | 0.013 | 0.28 | 0.16 | 0.094 |
RQ | −0.05 | 0.43 | 0.278 | −0.003 | 0.03 | 0.939 |
Calories (kcal/d) | 317.1 | 149.2 | 0.043 | 270 | 138.0 | 0.061 |
Proteins (g/d) | 3.38 | 9.9 | 0.735 | 3.65 | 8.16 | 0.658 |
Carbohydrates (g/d) | 17.4 | 19.2 | 0.372 | 45.2 | 19.0 | 0.025 |
Lipids (g/d) | 13.8 | 6.01 | 0.029 | 8.07 | 7.6 | 0.297 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maury-Sintjago, E.; Rodríguez-Fernández, A.; Parra-Flores, J.; Ruíz-De la Fuente, M. Obese Women Have a High Carbohydrate Intake without Changes in the Resting Metabolic Rate in the Luteal Phase. Nutrients 2022, 14, 1997. https://doi.org/10.3390/nu14101997
Maury-Sintjago E, Rodríguez-Fernández A, Parra-Flores J, Ruíz-De la Fuente M. Obese Women Have a High Carbohydrate Intake without Changes in the Resting Metabolic Rate in the Luteal Phase. Nutrients. 2022; 14(10):1997. https://doi.org/10.3390/nu14101997
Chicago/Turabian StyleMaury-Sintjago, Eduard, Alejandra Rodríguez-Fernández, Julio Parra-Flores, and Marcela Ruíz-De la Fuente. 2022. "Obese Women Have a High Carbohydrate Intake without Changes in the Resting Metabolic Rate in the Luteal Phase" Nutrients 14, no. 10: 1997. https://doi.org/10.3390/nu14101997
APA StyleMaury-Sintjago, E., Rodríguez-Fernández, A., Parra-Flores, J., & Ruíz-De la Fuente, M. (2022). Obese Women Have a High Carbohydrate Intake without Changes in the Resting Metabolic Rate in the Luteal Phase. Nutrients, 14(10), 1997. https://doi.org/10.3390/nu14101997