Nutritional Considerations for Injury Prevention and Recovery in Combat Sports
Abstract
:1. Introduction
2. Injuries in Combat Sports
2.1. Injury Rate
2.2. Injury Severity
2.3. Injury Location
2.4. Injured Tissues
2.5. Risk Factors for Injury
3. Injury Risk Associated with Rapid Weight Loss (RWL)
4. Nutrition in Muscle Injuries
4.1. Protein and Amino Acid Intake
4.2. Creatine
4.3. Omega-3
4.4. Antioxidants
5. Nutrition in Joint, Connective Tissue, and Tendon Injuries
5.1. Collagen
5.2. Gelatin
5.3. Vitamin C
6. Nutritional Strategies in Bone Injuries
6.1. Vitamin D and Calcium
6.2. Energy Intake
6.3. Protein Intake
7. Nutrition in Sports-Related Concussions (SRCs)
8. Preoperative Nutritional Strategies
9. The Role of Nutrition in Returning to a Sport Following Injury
9.1. Nutrition in Immobilization and Atrophy
9.2. An Obvious Nutrient to Be Avoided after Injury: Alcohol
9.3. Energy Intake Following Injury
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koutures, C.; Demorest, R.A. Participation and Injury in Martial Arts. Curr. Sports Med. Rep. 2018, 17, 433–438. [Google Scholar] [CrossRef]
- Lystad, R.P.; Alevras, A.; Rudy, I.; Soligard, T.; Engebretsen, L. Injury incidence, severity and profile in Olympic combat sports: A comparative analysis of 7712 athlete exposures from three consecutive Olympic Games. Br. J. Sports Med. 2020, 55, 1077–1083. [Google Scholar] [CrossRef]
- Reale, R.J.; Slater, G.; Burke, L.M. Individualised dietary strategies for Olympic combat sports: Acute weight loss, recovery and competition nutrition. Eur. J. Sport Sci. 2017, 17, 727–740. [Google Scholar] [CrossRef]
- Peeling, P.; Binnie, M.; Goods, P.; Sim, M.; Burke, L.M. Evidence-Based Supplements for the Enhancement of Athletic Performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Close, G.; Hamilton, D.; Philp, A.; Burke, L.M.; Morton, J. New strategies in sport nutrition to increase exercise performance. Free Radic. Biol. Med. 2016, 98, 144–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef]
- Hespel, P.; Eijnde, B.O.; Van Leemputte, M.; Ursø, B.; Greenhaff, P.; Labarque, V.; Dymarkowski, S.; Van Hecke, P.; Richter, E.A. Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J. Physiol. 2001, 536, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Clark, K.L.; Sebastianelli, W.; Flechsenhar, K.R.; Aukermann, D.F.; Meza, F.; Millard, R.L.; Deitch, J.R.; Sherbondy, P.S.; Albert, A. 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr. Med. Res. Opin. 2008, 24, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Op’t Eijnde, B.; Ursø, B.; Richter, E.A.; Greenhaff, P.L.; Hespel, P. Effect of oral creatine supplementation on human muscle GLUT4 protein content after immobilization. Diabetes 2001, 50, 18–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, G.; Serpell, B.; Baar, K. Rehabilitation and nutrition protocols for optimising return to play from traditional ACL reconstruction in elite rugby union players: A case study. J. Sports Sci. 2019, 37, 1794–1803. [Google Scholar] [CrossRef]
- Dressler, P.; Gehring, D.; Zdzieblik, D.; Oesser, S.; Gollhofer, A.; König, D. Improvement of Functional Ankle Properties Following Supplementation with Specific Collagen Peptides in Athletes with Chronic Ankle Instability. J. Sports Sci. Med. 2018, 17, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Smith-Ryan, A.E.; Hirsch, K.R.; Saylor, H.E.; Gould, L.M.; Blue, M.N.M. Nutritional Considerations and Strategies to Facilitate Injury Recovery and Rehabilitation. J. Athl. Train. 2020, 55, 918–930. [Google Scholar] [CrossRef]
- Tipton, K.D. Nutritional Support for Exercise-Induced Injuries. Sports Med. 2015, 45 (Suppl. 1), 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tipton, K.D. Nutrition for Acute Exercise-Induced Injuries. Ann. Nutr. Metab. 2010, 57 (Suppl. 2), 43–53. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K. Rehabilitation Nutrition for Injury Recovery of Athletes: The Role of Macronutrient Intake. Nutrients 2020, 12, 2449. [Google Scholar] [CrossRef] [PubMed]
- Vergara-Gutiérrez, L.; Lizárraga-Dallo, A.; Pruna-Grive, R. Nutritional Intervention during Muscle Injury Considering its Pathophysiology. Apunts. Educ. Fís. Deportes 2020, 142, 8–20. [Google Scholar]
- Quintero, K.J.; Resende, A.D.S.; Leite, G.S.F.; Junior, A.H.L. An overview of nutritional strategies for recovery process in sports-related muscle injuries. Nutrire 2018, 43, 27. [Google Scholar] [CrossRef]
- Bloomer, R.J. The Role of Nutritional Supplements in the Prevention and Treatment of Resistance Exercise-Induced Skeletal Muscle Injury. Sports Med. 2007, 37, 519–532. [Google Scholar] [CrossRef]
- Rollo, I.; Carter, J.M.; Close, G.L.; Yangüas, J.; Gomez-Diaz, A.; Leal, D.M.; Duda, J.L.; Holohan, D.; Erith, S.J.; Podlog, L. Role of sports psychology and sports nutrition in return to play from musculoskeletal injuries in professional soccer: An interdisciplinary approach. Eur. J. Sport Sci. 2021, 21, 1054–1063. [Google Scholar] [CrossRef]
- Sousa, M.; Teixeira, V.H.; Soares, J. Dietary strategies to recover from exercise-induced muscle damage. Int. J. Food Sci. Nutr. 2014, 65, 151–163. [Google Scholar] [CrossRef]
- Wall, B.T.; van Loon, L.J. Nutritional strategies to attenuate muscle disuse atrophy. Nutr. Rev. 2013, 71, 195–208. [Google Scholar] [CrossRef]
- Wall, B.T.; Morton, J.P.; Van Loon, L.J.C. Strategies to maintain skeletal muscle mass in the injured athlete: Nutritional considerations and exercise mimetics. Eur. J. Sport Sci. 2015, 15, 53–62. [Google Scholar] [CrossRef]
- Close, G.L.; Sale, C.; Baar, K.; Bermon, S. Nutrition for the Prevention and Treatment of Injuries in Track and Field Athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, D.; Lizarraga, A.; Drobnick, F. Injury prevention and nutrition in football. Sports Sci. Exch. 2014, 27, 1–5. [Google Scholar]
- Halloran, L. Wrestling injuries. Orthop. Nurs. 2008, 27, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Pasque, C.; Heyl, R.; Wroble, R. Wrestling injuries. Med. Sports Sci. 2005, 48, 152–178. [Google Scholar]
- Thomas, R.E.; Zamanpour, K. lnjuries in wrestling: Systematic review. Phys. Sportsmed. 2018, 46, 168–196. [Google Scholar] [CrossRef] [PubMed]
- Nomoto, J.; Seiki, Y.; Nemoto, M.; Takahashi, H.; Terashima, H.; Yokota, K.; Kondo, K.; Kano, T.; Goto, S.; Sugo, N. Head Trauma in Female Professional Wrestlers. Neurol. Med. Chir. 2007, 47, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Green, C.M.; Petrou, M.J.; Fogarty-Hover, M.L.S.; Rolf, C.G. Injuries among judokas during competition. Scand. J. Med. Sci. Sports 2007, 17, 205–210. [Google Scholar] [CrossRef]
- Koshida, S.; Deguchi, T.; Miyashita, K.; Iwai, K.; Urabe, Y. The common mechanisms of anterior cruciate ligament injuries in judo: A retrospective analysis. Br. J. Sports Med. 2010, 44, 856–861. [Google Scholar] [CrossRef] [PubMed]
- Pocecco, E.; Ruedl, G.; Stankovic, N.; Sterkowicz, S.; Del Vecchio, F.B.; García, C.G.; Rousseau, R.; Wolf, M.; Kopp, M.; Miarka, B.; et al. Injuries in judo: A systematic literature review including suggestions for prevention. Br. J. Sports Med. 2013, 47, 1139–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.S.; Ha, S.; Jeong, D.H.; O’Sullivan, D.M.; Lee, S.Y. Injury and Illness in World Taekwondo Junior Athletes: An Epidemiological Study. Int. J. Environ. Res. Public Health 2021, 18, 2134. [Google Scholar] [CrossRef]
- Kazemi, M.; Shearer, H.; Choung, Y.S. Pre-competition habits and injuries in Taekwondo athletes. BMC Musculoskelet. Disord. 2005, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lystad, R.P.; Graham, P.L.; Poulos, R.G. Exposure-adjusted incidence rates and severity of competition injuries in Australian amateur taekwondo athletes: A 2-year prospective study. Br. J. Sports Med. 2013, 47, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Lystad, R.P.; Pollard, H.; Graham, P.L. Epidemiology of injuries in competition taekwondo: A meta-analysis of observational studies. J. Sci. Med. Sport 2009, 12, 614–621. [Google Scholar] [CrossRef]
- Lystad, R.P.; Swain, M.; Graham, P. Risk factors for injury in Olympic-style competition taekwondo: A systematic review. J. Sports Med. Phys. Fit. 2013, 53, 655–664. [Google Scholar]
- Pieter, W.; Fife, G.P.; O’Sullivan, D.M. Competition injuries in taekwondo: A literature review and suggestions for prevention and surveillance. Br. J. Sports Med. 2012, 46, 485–491. [Google Scholar] [CrossRef]
- Loosemore, M.; Knowles, C.H.; Whyte, G.P. Amateur boxing and risk of chronic traumatic brain injury: Systematic review of observational studies. BMJ 2007, 335, 809. [Google Scholar] [CrossRef] [Green Version]
- Loosemore, M.; Lightfoot, J.; Beardsley, C. Boxing injuries by anatomical location: A systematic review. Med. Sport. J. Rom. Sports Med. Soc. 2015, 11, 2583. [Google Scholar]
- Loosemore, M.; Lightfoot, J.; Palmer-Green, D.; Gatt, I.; Bilzon, J.; Beardsley, C. Boxing injury epidemiology in the Great Britain team: A 5-year surveillance study of medically diagnosed injury incidence and outcome. Br. J. Sports Med. 2015, 49, 1100–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siewe, J.; Rudat, J.; Zarghooni, K.; Sobottke, R.; Eysel, P.; Herren, C.; Knoll, P.; Illgner, U.; Michael, J. Injuries in Competitive Boxing. A Prospective Study. Int. J. Sports Med. 2015, 36, 249–253. [Google Scholar] [CrossRef]
- Zazryn, T.R.; McCrory, P.R.; Cameron, P.A. Neurologic Injuries in Boxing and Other Combat Sports. Neurol. Clin. 2008, 26, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.E.; Ornstein, J. Injuries in karate: Systematic review. Phys. Sportsmed. 2018, 46, 279–303. [Google Scholar] [CrossRef]
- Augustovičová, D.; Lystad, R.P.; Arriaza, R. Time-Loss Injuries in Karate: A Prospective Cohort Study of 4 Consecutive World Karate Championships. Orthop. J. Sports Med. 2019, 7, 2325967119865866. [Google Scholar] [CrossRef]
- Lystad, R.P.; Augustovičová, D.; Harris, G.; Beskin, K.; Arriaza, R. Epidemiology of injuries in Olympic-style karate competitions: Systematic review and meta-analysis. Br. J. Sports Med. 2020, 54, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Bromley, S.J.; Drew, M.K.; Talpey, S.; McIntosh, A.S.; Finch, C.F. A systematic review of prospective epidemiological research into injury and illness in Olympic combat sport. Br. J. Sports Med. 2018, 52, 8–16. [Google Scholar] [CrossRef]
- Noh, J.-W.; Park, B.-S.; Kim, M.-Y.; Lee, L.-K.; Yang, S.-M.; Lee, W.-D.; Shin, Y.-S.; Kim, J.-H.; Lee, J.-U.; Kwak, T.-Y.; et al. Analysis of combat sports players’ injuries according to playing style for sports physiotherapy research. J. Phys. Ther. Sci. 2015, 27, 2425–2430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemme, N.J.; Johnston, B.; DeFroda, S.F.; Owens, B.D.; Kriz, P.K. Incidence of Combat Sport-Related Mild Traumatic Brain Injuries Presenting to the Emergency Department From 2012 to 2016. Clin. J. Sport Med. 2018. [Google Scholar] [CrossRef]
- Thomas, R.E.; Thomas, B.C. Systematic review of injuries in mixed martial arts. Phys. Sportsmed. 2018, 46, 155–167. [Google Scholar] [CrossRef]
- Porter, M.; O’brie’n, M. Incidence and Severity of Injuries Resulting From Amateur Boxing in Ireland. Clin. J. Sport Med. 1996, 6, 97–101. [Google Scholar] [CrossRef]
- Zazryn, T.; Cameron, P.; McCrory, P. A prospective cohort study of injury in amateur and professional boxing. Br. J. Sports Med. 2006, 40, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Cierna, D.; Štefanovský, M.; Matejová, L.; Lystad, R.P. Epidemiology of Competition Injuries in Elite European Judo Athletes: A Prospective Cohort Study. Clin. J. Sport Med. 2019, 29, 336–340. [Google Scholar]
- Strauss, R.H.; Lanese, R.R. Injuries among wrestlers in school and college tournaments. JAMA 1982, 248, 2016–2019. [Google Scholar] [CrossRef] [PubMed]
- Engebretsen, L.; Soligard, T.; Steffen, K.; Alonso, J.M.; Aubry, M.; Budgett, R.; Dvorak, J.; Jegathesan, M.; Meeuwisse, W.H.; Mountjoy, M.; et al. Sports injuries and illnesses during the London Summer Olympic Games 2012. Br. J. Sports Med. 2013, 47, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junge, A.; Engebretsen, L.; Mountjoy, M.L.; Alonso, J.M.; Renström, P.A.F.H.; Aubry, M.J.; Dvorak, J. Sports Injuries During the Summer Olympic Games 2008. Am. J. Sports Med. 2009, 37, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Soligard, T.; Steffen, K.; Palmer, D.; Alonso, J.M.; Bahr, R.; Lopes, A.; Dvorak, J.; Grant, M.-E.; Meeuwisse, W.; Mountjoy, M.; et al. Sports injury and illness incidence in the Rio de Janeiro 2016 Olympic Summer Games: A prospective study of 11274 athletes from 207 countries. Br. J. Sports Med. 2017, 51, 1265–1271. [Google Scholar] [CrossRef]
- Langan-Evans, C.; Close, G.L.; Morton, J.P. Making Weight in Combat Sports. Strength Cond. J. 2011, 33, 25–39. [Google Scholar] [CrossRef]
- Franchini, E.; Brito, C.J.; Artioli, G.G. Weight loss in combat sports: Physiological, psychological and performance effects. J. Int. Soc. Sports Nutr. 2012, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Artioli, G.G.; Scagliusi, F.; Kashiwagura, D.; Franchini, E.; Gualano, B.; Junior, A.L. Development, validity and reliability of a questionnaire designed to evaluate rapid weight loss patterns in judo players. Scand. J. Med. Sci. Sports 2010, 20, e177–e187. [Google Scholar] [CrossRef]
- Artioli, G.G.; Saunders, B.; Iglesias, R.T.; Franchini, E. It is Time to Ban Rapid Weight Loss from Combat Sports. Sports Med. 2016, 46, 1579–1584. [Google Scholar] [CrossRef] [PubMed]
- Reale, R.; Slater, G.; Burke, L.M. Acute-Weight-Loss Strategies for Combat Sports and Applications to Olympic Success. Int. J. Sports Physiol. Perform. 2017, 12, 142–151. [Google Scholar] [CrossRef]
- Steen, S.N.; Brownell, K.D. Patterns of weight loss and regain in wrestlers: Has the tradition changed? Med. Sci. Sports Exerc. 1990, 22, 762–768. [Google Scholar] [CrossRef]
- Fogelholm, M. Effects of Bodyweight Reduction on Sports Performance. Sports Med. 1994, 18, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Oppliger, R.A.; Case, H.S.; A Horswill, C.; Landry, G.L.; Shelter, A.C. American College of Sports Medicine position stand. Weight loss in wrestlers. Med. Sci. Sports Exerc. 1996, 28, ix–xii. [Google Scholar] [CrossRef] [Green Version]
- Degoutte, F.; Jouanel, P.; Bègue, R.J.; Colombier, M.; Lac, G.; Pequignot, J.M.; Filaire, E. Food Restriction, Performance, Biochemical, Psychological, and Endocrine Changes in Judo Athletes. Endoscopy 2006, 27, 9–18. [Google Scholar] [CrossRef]
- Roemmich, J.N.; Sinning, W.E. Weight loss and wrestling training: Effects on growth-related hormones. J. Appl. Physiol. 1997, 82, 1760–1764. [Google Scholar] [CrossRef] [PubMed]
- Lakicevic, N.; Roklicer, R.; Bianco, A.; Mani, D.; Paoli, A.; Trivic, T.; Ostojic, S.M.; Milovancev, A.; Maksimovic, N.; Drid, P. Effects of Rapid Weight Loss on Judo Athletes: A Systematic Review. Nutrients 2020, 12, 1220. [Google Scholar] [CrossRef]
- Agel, J.; Ransone, J.; Dick, R.; Oppliger, R.; Marshall, S.W. Descriptive epidemiology of collegiate men’s wrestling injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 through 2003–2004. J. Athl. Train. 2007, 42, 303. [Google Scholar]
- Ööpik, V.; Pääsuke, M.; Sikku, T.; Timpmann, S.; Medijainen, L.; Ereline, J.; Smirnova, T.; Gapejeva, E. Effect of rapid weight loss on metabolism and isokinetic performance capacity. A case study of two well trained wrestlers. J. Sports Med. Phys. Fit. 1996, 36, 127–131. [Google Scholar]
- Kim, J.C.; Park, K.J. Injuries and rapid weight loss in elite Korean wrestlers: An epidemiological study. Phys. Sportsmed. 2021, 49, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Mettler, S.; Mitchell, N.; Tipton, K. Increased Protein Intake Reduces Lean Body Mass Loss during Weight Loss in Athletes. Med. Sci. Sports Exerc. 2010, 42, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, S.; Berg, C.M. Dietary Intake at Competition in Elite Olympic Combat Sports. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Trappe, T.A.; Burd, N.A.; Louis, E.S.; Lee, G.A.; Trappe, S.W. Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol. 2007, 191, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Mamerow, M.M.; Mettler, J.A.; English, K.L.; Casperson, S.; Arentson-Lantz, E.; Sheffield-Moore, M.; Layman, D.; Paddon-Jones, D. Dietary Protein Distribution Positively Influences 24-h Muscle Protein Synthesis in Healthy Adults. J. Nutr. 2014, 144, 876–880. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar] [CrossRef]
- Anthony, J.C.; Anthony, T.G.; Layman, D.K. Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J. Nutr. 1999, 129, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Baptista, I.L.; Leal, M.L.; Artioli, G.G.; Aoki, M.S.; Fiamoncini, J.; Turri, A.O.; Curi, R.; Miyabara, E.H.; Moriscot, A.S. Leucine attenuates skeletal muscle wasting via inhibition of ubiquitin ligases. Muscle Nerve 2010, 41, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Hespel, P.; Derave, W. Ergogenic effects of creatine in sports and rehabilitation. Subcell Biochem. 2007, 46, 246–259. [Google Scholar] [CrossRef]
- You, J.-S.; Park, M.-N.; Song, W.; Lee, Y.-S. Dietary fish oil alleviates soleus atrophy during immobilization in association with Akt signaling to p70s6k and E3 ubiquitin ligases in rats. Appl. Physiol. Nutr. Metab. 2010, 35, 310–318. [Google Scholar] [CrossRef]
- Gingras, A.A.; White, P.J.; Chouinard, P.Y.; Julien, P.; Davis, T.A.; Dombrowski, L.; Couture, Y.; Dubreuil, P.; Myre, A.; Bergeron, K.; et al. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 2007, 579, 269–284. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia–hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Kyriakidou, Y.; Wood, C.; Ferrier, C.; Dolci, A.; Elliott, B. The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2021, 18, 1–11. [Google Scholar] [CrossRef]
- Powers, S.K.; DeRuisseau, K.C.; Quindry, J.; Hamilton, K.L. Dietary antioxidants and exercise. J. Sports Sci. 2004, 22, 81–94. [Google Scholar] [CrossRef] [PubMed]
- D’Antona, G. Nutritional Interventions as Potential Strategy to Minimize Exercise-Induced Muscle Injuries in Sports. Muscle Inj. Sport Med. 2013, 63, 93. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, V.H.; Valente, H.F.; Casal, S.I.; Marques, A.F.; Moreira, P.A. Antioxidants Do Not Prevent Postexercise Peroxidation and May Delay Muscle Recovery. Med. Sci. Sports Exerc. 2009, 41, 1752–1760. [Google Scholar] [CrossRef]
- Baar, K. Minimizing Injury and Maximizing Return to Play: Lessons from Engineered Ligaments. Sports Med. 2017, 47 (Suppl. 1), 5–11. [Google Scholar] [CrossRef] [Green Version]
- Mienaltowski, M.J.; Birk, D.E. Structure, Physiology, and Biochemistry of Collagens. Adv. Exp. Med. Biol. 2014, 802, 5–29. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Rennie, M.J. New approaches and recent results concerning human-tissue collagen synthesis. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Young, B.B.; Ezura, Y.; Favata, M.; Soslowsky, L.J.; Chakravarti, S.; E Birk, D. Development of tendon structure and function: Regulation of collagen fibrillogenesis. J. Musculoskelet. Neuronal Interact. 2005, 5, 5–21. [Google Scholar] [PubMed]
- Banos, C.C.; Thomas, A.H.; Kuo, C.K. Collagen fibrillogenesis in tendon development: Current models and regulation of fibril assembly. Birth Defects Res. Part C Embryo Today Rev. 2008, 84, 228–244. [Google Scholar] [CrossRef]
- Babraj, J.; Cuthbertson, D.J.R.; Smith, K.; Langberg, H.; Miller, B.; Krogsgaard, M.R.; Kjaer, M.; Rennie, M.J. Collagen synthesis in human musculoskeletal tissues and skin. Am. J. Physiol. Metab. 2005, 289, E864–E869. [Google Scholar] [CrossRef] [Green Version]
- Paxton, J.Z.; Grover, L.M.; Baar, K. Engineering anIn VitroModel of a Functional Ligament from Bone to Bone. Tissue Eng. Part A 2010, 16, 3515–3525. [Google Scholar] [CrossRef] [PubMed]
- Oesser, S.; Seifert, J. Stimulation of type II collagen biosynthesis and secretion in bovine chondrocytes cultured with degraded collagen. Cell Tissue Res. 2003, 311, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Minaguchi, J.; Koyama, Y.-I.; Meguri, N.; Hosaka, Y.; Ueda, H.; Kusubata, M.; Hirota, A.; Irie, S.; Mafune, N.; Takehana, K. Effects of Ingestion of Collagen Peptide on Collagen Fibrils and Glycosaminoglycans in Achilles Tendon. J. Nutr. Sci. Vitaminol. 2005, 51, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, G.; Lee-Barthel, A.; Ross, M.L.; Wang, B.; Baar, K. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis. Am. J. Clin. Nutr. 2017, 105, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lis, D.M.; Baar, K. Effects of Different Vitamin C–Enriched Collagen Derivatives on Collagen Synthesis. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 526–531. [Google Scholar] [CrossRef]
- Peterkofsky, B. Ascorbate requirement for hydroxylation and secretion of procollagen: Relationship to inhibition of collagen synthesis in scurvy. Am. J. Clin. Nutr. 1991, 54 (Suppl. 6), 1135S–1140S. [Google Scholar] [CrossRef]
- Kloubec, J.; Harris, C. Whole Foods Nutrition for Enhanced Injury Prevention and Healing. ACSMs Health Fit. J. 2016, 20, 7–11. [Google Scholar] [CrossRef]
- McPherson, M.; Pickett, W. Characteristics of martial art injuries in a defined Canadian population: A descriptive epidemiological study. BMC Public Health 2010, 10, 795. [Google Scholar] [CrossRef] [Green Version]
- Lystad, R.P. Epidemiology of injuries in full-contact combat sports. Australas Epidemiol. 2015, 22, 14–18. [Google Scholar]
- Zazryn, T.R.; Finch, C.F.; McCrory, P. A 16 year study of injuries to professional boxers in the state of Victoria, Australia. Br. J. Sports Med. 2003, 37, 321–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredericson, M.; Jennings, F.; Beaulieu, C.; Matheson, G.O. Stress Fractures in Athletes. Top. Magn. Reson. Imaging 2006, 17, 309–325. [Google Scholar] [CrossRef] [PubMed]
- Brukner, P.; Bradshaw, C.; Khan, K.M.; White, S.; Crossley, K. Stress fractures: A review of 180 cases. Clin. J. Sport Med. 1996, 6, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Moran, D.S.; Heled, Y.; Arbel, Y.; Israeli, E.; Finestone, A.S.; Evans, R.K.; Yanovich, R. Dietary intake and stress fractures among elite male combat recruits. J. Int. Soc. Sports Nutr. 2012, 9, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, T.; Martins, T.B.; Hill, H.R.; Kjeldsberg, C.R.; Trawick, R.H.; Weaver, L.K.; Traber, M. Low Vitamin D Impairs Strength Recovery After Anterior Cruciate Ligament Surgery. J. Evid.-Based Integr. Med. 2011, 16, 201–209. [Google Scholar] [CrossRef]
- Ljungqvist, O.; Søreide, E. Preoperative fasting. J. Br. Surg. 2003, 90, 400–406. [Google Scholar] [CrossRef]
- Lappe, J.; Cullen, D.; Haynatzki, G.; Recker, R.; Ahlf, R.; Thompson, K. Calcium and Vitamin D Supplementation Decreases Incidence of Stress Fractures in Female Navy Recruits. J. Bone Miner. Res. 2008, 23, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Palacios, C. The role of nutrients in bone health, from A to Z. Crit. Rev. Food Sci. Nutr. 2006, 46, 621–628. [Google Scholar] [CrossRef]
- Price, C.T.; Langford, J.R.; A Liporace, F. Essential Nutrients for Bone Health and a Review of their Availability in the Average North American Diet. Open Orthop. J. 2012, 6, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Sale, C.; Elliott-Sale, K.J. Nutrition and Athlete Bone Health. Sports Med. 2019, 49, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Heikura, I.A.; Uusitalo, A.L.T.; Stellingwerff, T.; Bergland, D.; Mero, A.A.; Burke, L.M. Low Energy Availability Is Difficult to Assess but Outcomes Have Large Impact on Bone Injury Rates in Elite Distance Athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 403–411. [Google Scholar] [CrossRef] [Green Version]
- Areta, J.L.; Taylor, H.L.; Koehler, K. Low energy availability: History, definition and evidence of its endocrine, metabolic and physiological effects in prospective studies in females and males. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 121, 1–21. [Google Scholar] [CrossRef]
- Tenforde, A.S.; Carlson, J.L.; Chang, A.; Sainani, K.L.; Shultz, R.; Kim, J.H.; Cutti, P.; Golden, N.H.; Fredericson, M. Association of the Female Athlete Triad Risk Assessment Stratification to the Development of Bone Stress Injuries in Collegiate Athletes. Am. J. Sports Med. 2017, 45, 302–310. [Google Scholar] [CrossRef]
- Loucks, A.B.; Kiens, B.; Wright, H.H. Energy availability in athletes. J. Sports Sci. 2011, 29 (Suppl. 1), S7–S15. [Google Scholar] [CrossRef] [PubMed]
- Ihle, R.; Loucks, A.B. Dose-Response Relationships Between Energy Availability and Bone Turnover in Young Exercising Women. J. Bone Miner. Res. 2004, 19, 1231–1240. [Google Scholar] [CrossRef]
- Sawyer, J.C.; Wood, R.J.; Davidson, P.W.; Collins, S.M.; Matthews, T.D.; Gregory, S.M.; Paolone, V.J. Effects of a Short-Term Carbohydrate-Restricted Diet on Strength and Power Performance. J. Strength Cond. Res. 2013, 27, 2255–2262. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.M.; Sale, C.; Fraser, W.; Tang, J.; Shepherd, S.O.; Strauss, J.A.; Close, G.L.; Cocks, M.; Louis, J.; Pugh, J.; et al. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: Implications for training adaptation. J. Physiol. 2019, 597, 4779–4796. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Barzel, U.S.; Massey, L.K. Excess Dietary Protein Can Adversely Affect Bone. J. Nutr. 1998, 128, 1051–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams-White, M.M.; Chung, M.; Du, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; A Shapses, S.; Sackey, J.; Wallace, T.C.; et al. Dietary protein and bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. Am. J. Clin. Nutr. 2017, 105, ajcn145110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams-White, M.M.; Chung, M.; Fu, Z.; Insogna, K.L.; Karlsen, M.C.; LeBoff, M.S.; Shapses, S.A.; Sackey, J.; Shi, J.; Wallace, T.C.; et al. Animal versus plant protein and adult bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. PLoS ONE 2018, 13, e0192459. [Google Scholar] [CrossRef] [Green Version]
- Babraj, J.; Smith, K.; Cuthbertson, D.J.; Rickhuss, P.; Dorling, J.S.; Rennie, M.J. Human Bone Collagen Synthesis Is a Rapid, Nutritionally Modulated Process. J. Bone Miner. Res. 2005, 20, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Delmi, M.; Rapin, C.-H.; Bengoa, J.-M.; Bonjour, J.-P.; Vasey, H.; Delmas, P. Dietary supplementation in elderly patients with fractured neck of the femur. Lancet 1990, 335, 1013–1016. [Google Scholar] [CrossRef]
- Schurch, M.-A.; Rizzoli, R.; Slosman, D.; Vadas, L.; Vergnaud, P.; Bonjour, J.-P. Protein Supplements Increase Serum Insulin-Like Growth Factor-I Levels and Attenuate Proximal Femur Bone Loss in Patients with Recent Hip Fracture: A randomized, double-blind, placebo-controlled trial. Ann. Intern. Med. 1998, 128, 801–809. [Google Scholar] [CrossRef]
- Lust, C.A.; Mountjoy, M.; Robinson, L.E.; Oliver, J.M.; Ma, D.W. Sports-related concussions and subconcussive impacts in athletes: Incidence, diagnosis, and the emerging role of EPA and DHA. Appl. Physiol. Nutr. Metab. 2020, 45, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Zuckerman, S.L.; Kerr, Z.Y.; Yengo-Kahn, A.; Wasserman, E.; Covassin, T.; Solomon, G.S. Epidemiology of Sports-Related Concussion in NCAA Athletes From 2009-2010 to 2013-2014: Incidence, Recurrence, and Mechanisms. Am. J. Sports Med. 2015, 43, 2654–2662. [Google Scholar] [CrossRef] [PubMed]
- Pierpoint, L.A.; Collins, C. Epidemiology of Sport-Related Concussion. Clin. Sports Med. 2021, 40, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; Drezner, J.; Gammons, M.; Guskiewicz, K.; Halstead, M.; Herring, S.; Kutcher, J.; Pana, A.; Putukian, M.; Roberts, W. American Medical Society for Sports Medicine position statement: Concussion in sport. Br. J. Sports Med. 2012, 47, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Trojian, T.H.; Wang, D.H.; Leddy, J.J. Nutritional Supplements for the Treatment and Prevention of Sports-Related Concussion—Evidence Still Lacking. Curr. Sports Med. Rep. 2017, 16, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.C.; McBurney, M.I.; Ciappio, E.D. ω-3 Fatty Acid Supplementation as a Potential Therapeutic Aid for the Recovery from Mild Traumatic Brain Injury/Concussion1,2. Adv. Nutr. 2014, 5, 268–277. [Google Scholar] [CrossRef]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Exp. Neurol. 2006, 197, 309–317. [Google Scholar] [CrossRef]
- Mills, J.D.; Hadley, K.; Bailes, J.E. Dietary Supplementation with the Omega-3 Fatty Acid Docosahexaenoic Acid in Traumatic Brain Injury. Neurosurgery 2011, 68, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. The Salutary Effects of DHA Dietary Supplementation on Cognition, Neuroplasticity, and Membrane Homeostasis after Brain Trauma. J. Neurotrauma 2011, 28, 2113–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. Dietary strategy to repair plasma membrane after brain trauma: Implications for plasticity and cognition. Neurorehabil. Neural Repair 2014, 28, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Hedström, M.; Ljungqvist, O.; Cederholm, T. Metabolism and catabolism in hip fracture patients: Nutritional and anabolic intervention—A review. Acta Orthop. 2006, 77, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Weissman, C. The metabolic response to stress: An overview and update. Anesthesiology 1990, 73, 308–327. [Google Scholar] [CrossRef]
- Bannister, W.K.; Sattilaro, A.J. Vomiting and aspiration during anesthesia. J. Am. Soc. Anesthesiol. 1962, 23, 251–264. [Google Scholar] [CrossRef]
- Jones, C.; Badger, S.A.; Hannon, R. The role of carbohydrate drinks in pre-operative nutrition for elective colorectal surgery. Ann. R. Coll. Surg. Engl. 2011, 93, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Nygren, J.; Thorell, A.; Ljungqvist, O. Preoperative oral carbohydrate nutrition: An update. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Magne, H.; Savary-Auzeloux, I.; Rémond, D.; Dardevet, D. Nutritional strategies to counteract muscle atrophy caused by disuse and to improve recovery. Nutr. Res. Rev. 2013, 26, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Wall, B.T.; Dirks, M.; Snijders, T.; Senden, J.M.G.; Dolmans, J.; Van Loon, L.J.C. Substantial skeletal muscle loss occurs during only 5 days of disuse. Acta Physiol. 2013, 210, 600–611. [Google Scholar] [CrossRef]
- Jones, S.W.; Hill, R.J.; Krasney, P.A.; O’Conner, B.; Peirce, N.; Greenhaff, P. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J. 2004, 18, 1025–1027. [Google Scholar] [CrossRef] [PubMed]
- Paddon-Jones, D.; Sheffield-Moore, M.; Urban, R.J.; Sanford, A.P.; Aarsland, A.; Wolfe, R.R.; Ferrando, A.A. Essential Amino Acid and Carbohydrate Supplementation Ameliorates Muscle Protein Loss in Humans during 28 Days Bedrest. J. Clin. Endocrinol. Metab. 2004, 89, 4351–4358. [Google Scholar] [CrossRef] [PubMed]
- Kouw, I.W.; Groen, B.B.; Smeets, J.; Kramer, I.F.; van Kranenburg, J.M.; Nilwik, R.; Geurts, J.A.; Broeke, R.H.T.; Poeze, M.; van Loon, L.J.; et al. One Week of Hospitalization Following Elective Hip Surgery Induces Substantial Muscle Atrophy in Older Patients. J. Am. Med. Dir. Assoc. 2019, 20, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, H.C.; Drummond, M.J.; Pennings, B.; Fujita, S.; Glynn, E.L.; Chinkes, D.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am. J. Physiol. Metab. 2008, 294, E392–E400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demling, R.H. Nutrition, Anabolism, and the Wound Healing Process: An Overview. Eplasty 2009, 9, e9. [Google Scholar] [PubMed]
- Cockburn, E.; Stevenson, E.; Hayes, P.R.; Robson-Ansley, P.; Howatson, G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl. Physiol. Nutr. Metab. 2010, 35, 270–277. [Google Scholar] [CrossRef]
- Nosaka, K.; Sacco, P.; Mawatari, K. Effects of Amino Acid Supplementation on Muscle Soreness and Damage. Int. J. Sport Nutr. Exerc. Metab. 2006, 16, 620–635. [Google Scholar] [CrossRef] [Green Version]
- Wojcik, J.R.; Walber-Rankin, J.; Smith, L.L.; Gwazdauskas, F.; Walberg-Rankin, J. Comparison of Carbohydrate and Milk-Based Beverages on Muscle Damage and Glycogen Following Exercise. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 406–419. [Google Scholar] [CrossRef]
- Blacker, S.D.; Williams, N.C.; Fallowfield, J.L.; Bilzon, J.L.; Willems, M.E. Carbohydrate vs protein supplementation for recovery of neuromuscular function following prolonged load carriage. J. Int. Soc. Sports Nutr. 2010, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Pasiakos, S.; Lieberman, H.R.; McLellan, T.M. Effects of Protein Supplements on Muscle Damage, Soreness and Recovery of Muscle Function and Physical Performance: A Systematic Review. Sports Med. 2014, 44, 655–670. [Google Scholar] [CrossRef]
- Milsom, J.; Barreira, P.; Burgess, D.J.; Iqbal, Z.; Morton, J.P.; Barreria, P. Case Study: Muscle Atrophy and Hypertrophy in a Premier League Soccer Player During Rehabilitation from ACL Injury. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.J.; Twist, C.; Cobley, J.N.; Howatson, G.; Close, G.L. Exercise-induced muscle damage: What is it, what causes it and what are the nutritional solutions? Eur. J. Sport Sci. 2019, 19, 71–85. [Google Scholar] [CrossRef]
- Cobley, J.N.; McHardy, H.; Morton, J.P.; Nikolaidis, M.G.; Close, G. Influence of vitamin C and vitamin E on redox signaling: Implications for exercise adaptations. Free Radic. Biol. Med. 2015, 84, 65–76. [Google Scholar] [CrossRef] [Green Version]
- Vieira, C.P.; Guerra, F.D.R.; De Oliveira, L.P.; Almeida, M.; Marcondes, M.C.C.; Pimentell, E.R. Green tea and glycine aid in the recovery of tendinitis of the Achilles tendon of rats. Connect. Tissue Res. 2015, 56, 50–58. [Google Scholar] [CrossRef]
- Vieira, C.P.; De Oliveira, L.P.; Guerra, F.D.R.; Almeida, M.D.S.D.; Marcondes, M.C.C.G.; Pimentel, E.R. Glycine Improves Biochemical and Biomechanical Properties Following Inflammation of the Achilles Tendon. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2015, 298, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Buchman, A.; O’Brien, W.; Ou, C.; Rognerud, C.; Alvarez, M.; Dennis, K.; Ahn, C. The Effect of Arginine or Glycine Supplementation on Gastrointestinal Function, Muscle Injury, Serum Amino Acid Concentrations and Performance During a Marathon Run. Int. J. Sports Med. 1999, 20, 315–321. [Google Scholar] [CrossRef]
- Wolfe, R.R. Branched-chain amino acids and muscle protein synthesis in humans: Myth or reality? J. Int. Soc. Sports Nutr. 2017, 14, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blomstrand, E.; Eliasson, J.; Karlsson, H.; Köhnke, R. Branched-Chain Amino Acids Activate Key Enzymes in Protein Synthesis after Physical Exercise. J. Nutr. 2006, 136 (Suppl. 1), 269S–273S. [Google Scholar] [CrossRef] [PubMed]
- Volpi, E.; Kobayashi, H.; Sheffield-Moore, M.; Mittendorfer, B.; Wolfe, R.R. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am. J. Clin. Nutr. 2003, 78, 250–258. [Google Scholar] [CrossRef]
- Katsanos, C.S.; Kobayashi, H.; Sheffield-Moore, M.; Aarsland, A.; Wolfe, R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Metab. 2006, 291, E381–E387. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, C.P. Alcohol and sport. Impact of social drinking on recreational and competitive sports performance. Sports Med. 1993, 15, 71–77. [Google Scholar]
- Martens, M.P.; Dams-O’Connor, K.; Beck, N.C. A systematic review of college student-athlete drinking: Prevalence rates, sport-related factors, and interventions. J. Subst. Abus. Treat. 2006, 31, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Watten, R.G. Sports, physical exercise and use of alcohol. Scand. J. Med. Sci. Sports 2007, 5, 364–368. [Google Scholar] [CrossRef] [PubMed]
- Windle, M.; Barnes, G.M. Similarities and Differences in Correlates of Alcohol Consumption and Problem Behaviors Among Male and Female Adolescents. Int. J. Addict. 1988, 23, 707–728. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.K.; Callaci, J.J.; Lauing, K.L.; Otis, J.S.; Radek, K.A.; Jones, M.K.; Kovacs, E.J. Alcohol Exposure and Mechanisms of Tissue Injury and Repair. Alcohol. Clin. Exp. Res. 2011, 35, 392–399. [Google Scholar] [CrossRef]
- Barnes, M.J. Alcohol: Impact on Sports Performance and Recovery in Male Athletes. Sports Med. 2014, 44, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Parr, E.; Camera, D.; Areta, J.; Burke, L.M.; Phillips, S.; Hawley, J.A.; Coffey, V.G. Alcohol Ingestion Impairs Maximal Post-Exercise Rates of Myofibrillar Protein Synthesis following a Single Bout of Concurrent Training. PLoS ONE 2014, 9, e88384. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.H.; Frost, R.A.; Deshpande, N.; Kumar, V.; Vary, T.C.; Jefferson, L.S.; Kimball, S.R. Alcohol impairs leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle. Am. J. Physiol. Metab. 2003, 285, E1205–E1215. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.H.; A Frost, R.; Kumar, V.; Wu, D.; Vary, T.C. Impaired protein synthesis induced by acute alcohol intoxication is associated with changes in eIF4E in muscle and eIF2B in liver. Alcohol. Clin. Exp. Res. 2000, 24, 322–331. [Google Scholar] [CrossRef]
- Vargas, R.; Lang, C.H. Alcohol Accelerates Loss of Muscle and Impairs Recovery of Muscle Mass Resulting from Disuse Atrophy. Alcohol. Clin. Exp. Res. 2008, 32, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Jänicke-Lorenz, J.; Lorenz, R. Alcoholism and fracture healing. Arch. Orthop. Trauma. Surg. 1984, 103, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Messingham, K.A.; Faunce, D.E.; Kovacs, E.J. Alcohol, injury, and cellular immunity. Alcohol 2002, 28, 137–149. [Google Scholar] [CrossRef]
- Maughan, R.J. Alcohol and football. J. Sports Sci. 2006, 24, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Stokes, K.A.; Jones, B.; Bennett, M.; Close, G.L.; Gill, N.; Hull, J.H.; Kasper, A.M.; Kemp, S.P.; Mellalieu, S.D.; Peirce, N.; et al. Returning to Play after Prolonged Training Restrictions in Professional Collision Sports. Endoscopy 2020, 41, 895–911. [Google Scholar] [CrossRef] [PubMed]
- Impey, S.G.; Hearris, M.A.; Hammond, K.M.; Bartlett, J.D.; Louis, J.; Close, G.; Morton, J.P. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sports Med. 2018, 48, 1031–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frankenfield, D. Energy Expenditure and Protein Requirements After Traumatic Injury. Nutr. Clin. Pr. 2006, 21, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D. Dietary strategies to attenuate muscle loss during recovery from injury. Nestle Nutr. Inst. Workshop Ser. 2013, 75, 51–61. [Google Scholar]
- Waters, R.L.; Campbell, J.; Perry, J. Energy Cost of Three-Point Crutch Ambulation in Fracture Patients. J. Orthop. Trauma 1987, 1, 170–173. [Google Scholar] [CrossRef]
- Layman, D.K. Dietary Guidelines should reflect new understandings about adult protein needs. Nutr. Metab. 2009, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Layman, D.K.; Boileau, R.A.; Erickson, D.J.; Painter, J.E.; Shiue, H.; Sather, C.; Christou, D.D. A Reduced Ratio of Dietary Carbohydrate to Protein Improves Body Composition and Blood Lipid Profiles during Weight Loss in Adult Women. J. Nutr. 2003, 133, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Weigle, D.S.; Breen, P.A.; Matthys, C.C.; Callahan, H.S.; Meeuws, K.E.; Burden, V.R.; Purnell, J.Q. A high-protein diet induces sustained reductions in appetite, ad libitum caloric intake, and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations. Am. J. Clin. Nutr. 2005, 82, 41–48. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turnagöl, H.H.; Koşar, Ş.N.; Güzel, Y.; Aktitiz, S.; Atakan, M.M. Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients 2022, 14, 53. https://doi.org/10.3390/nu14010053
Turnagöl HH, Koşar ŞN, Güzel Y, Aktitiz S, Atakan MM. Nutritional Considerations for Injury Prevention and Recovery in Combat Sports. Nutrients. 2022; 14(1):53. https://doi.org/10.3390/nu14010053
Chicago/Turabian StyleTurnagöl, Hüseyin Hüsrev, Şükran Nazan Koşar, Yasemin Güzel, Selin Aktitiz, and Muhammed Mustafa Atakan. 2022. "Nutritional Considerations for Injury Prevention and Recovery in Combat Sports" Nutrients 14, no. 1: 53. https://doi.org/10.3390/nu14010053