The Association between Healthy Diet and Burnout Symptoms among Finnish Municipal Employees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Physical Examination
2.3. Laboratory Tests
2.4. Psychosocial and Work-Related Factors
2.5. Food Frequency Questionnaire
2.6. Statistical Analyses
2.7. Informed Consent and Ethical Approval
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lastovkova, A.; Carder, M.; Rasmussen, H.M.; Sjoberg, L.; De Groene, G.J.; Sauni, R.; Vévoda, J.; Vevodova, S.; Lasfargues, G.; Svartengren, M.; et al. Burnout syndrome as an occupational disease in the European Union: An exploratory study. Ind. Health 2018, 56, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Maslach, C.; Schaufeli, W.; Leiter, M. Job Burnout. Annu. Rev. Psychol. 2001, 52, 397–442. [Google Scholar] [CrossRef] [Green Version]
- Dyrbye, L.N.; Awad, K.M.; Fiscus, L.C.; Sinsky, C.A.; Shanafelt, T.D. Estimating the Attributable Cost of Physician Burnout in the United States. Ann. Intern. Med. 2019, 171, 600–601. [Google Scholar] [CrossRef]
- Maslach, C.; Jackson, S.; Leiter, M.P. Maslach Burnout Inventory Manual; Consulting Psychologists Press: Palo Alto, CA, USA, 1996. [Google Scholar]
- Näätänen, P.; Aro, A.; Matthiesen, S.; Salmela-Aro, K. Bergen Burnout Indicator 15; Edita: Helsinki, Finnland, 2003. [Google Scholar]
- Ochentel, O.; Humphrey, C.; Pfeifer, K. Efficacy of Exercise Therapy in Persons with Burnout. A Systematic Review and Meta-Analysis. J. Sports Sci. Med. 2018, 17, 475–484. [Google Scholar] [PubMed]
- Nevanperä, N.J.; Hopsu, L.; Kuosma, E.; Ukkola, O.; Uitti, J.; Laitinen, J.H. Occupational burnout, eating behavior, and weight among working women. Am. J. Clin. Nutr. 2012, 95, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel, M.K. Nutrition Strategies for Reducing Risk of Burnout Among Physicians and Health Care Professionals. Am. J. Lifestyle Med. 2021, 15, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Chui, H.; Bryant, E.; Sarabia, C.; Maskeen, S.; Stewart-Knox, B. Burnout, eating behaviour traits and dietary patterns. Br. Food J. 2019, 122, 404–413. [Google Scholar] [CrossRef]
- Gorter, R.C.; Eijkman, M.A.J.; Hoogstraten, J. Burnout and health among Dutch dentists. Eur. J. Oral Sci. 2000, 108, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Moorthy, M.V.; Demler, O.V.; Hu, F.B.; Ridker, P.M.; Chasman, D.I.; Mora, S. Assessment of Risk Factors and Biomarkers Associated with Risk of Cardiovascular Disease Among Women Consuming a Mediterranean Diet. JAMA Netw. Open 2018, 1, e185708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgoulis, M.; Kontogianni, M.D.; Yiannakouris, N. Mediterranean Diet and Diabetes: Prevention and Treatment. Nutrients 2014, 6, 1406–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendall, C.L.; Mayr, H.L.; Opie, R.S.; Bes-Rastrollo, M.; Itsiopoulos, C.; Thomas, C.J. Central Obesity and the Mediterranean Diet: A Systematic Review of Intervention Trials. Crit. Rev. Food Sci. Nutr. 2018, 58, 3070–3084. [Google Scholar] [CrossRef]
- Galbete, C.; Kröger, J.; Jannasch, F.; Iqbal, K.; Schwingshackl, L.; Schwedhelm, C.; Weikert, C.; Boeing, H.; Schulze, M.B. Nordic diet, Mediterranean diet, and the risk of chronic diseases: The EPIC-Potsdam study. BMC Med. 2018, 16, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wade, A.T.; Davis, C.R.; Dyer, K.A.; Hodgson, J.M.; Woodman, R.J.; Keage, H.A.; Murphy, K.J. Mediterranean diet supplemented with dairy foods improves mood and processing speed in an Australian sample: Results from the MedDairy randomized controlled trial. Nutr. Neurosci. 2018, 1, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Tolkien, K.; Bradburn, S.; Murgatroyd, C. An anti-inflammatory diet as a potential intervention for depressive disorders: A systematic review and meta-analysis. Clin. Nutr. 2019, 38, 2045–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bush, K.; Kivlahan, D.R.; McDonell, M.B.; Fihn, S.D.; Bradley, K.A. The AUDIT alcohol consumption questions [AUDIT-C]: An effective brief screening test for problem drinking. Ambulatory Car Quality Improvement Project [ACQUIP]. Alcohol Use Disorders Identification Test. Arch. Inter. Med. 1998, 158, 1789–1795. [Google Scholar] [CrossRef] [Green Version]
- Bech, P.; Rasmussen, N.A.; Olsen, L.R.; Noerholma, V.; Abildgaard, W. The sensitivity and specificity of the Major Depression Inventory, using the Present State Examination as the index of diagnostic validity. J. Affect. Disord. 2001, 66, 159–164. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A Brief Measure for Assessing Generalized. Anxiety Disord. 2006, 166, 1092–1097. [Google Scholar]
- Korkalo, L.; Vepsäläinen, H.; Ray, C.; Skaffari, E.; Lehto, R.; Hauta-Alus, H.H.; Nissinen, K.; Meinilä, J.; Roos, E.; Erkkola, M. Parents’ Reports of Preschoolers’ Diets: Relative Validity of a Food Frequency Questionnaire and Dietary Patterns. Nutrients 2019, 11, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Määttä, S.; Vepsäläinen, H.; Lehto, R.; Erkkola, M.; Roos, E.; Ray, C. Reproducibility of Preschool Personnel and Guardian Reports on Energy Balance-Related Behaviors and Their Correlates in Finnish Preschool Children. Children 2018, 5, 144. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.; Tovar, J.; Johansson, M.; Radeborg, K.; Björck, I. A diet based on multiple functional concepts improves cognitive performance in healthy subjects. Nutr. Metab. 2013, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012; Nordisk Ministerråd: Copenhagen, Dänemark, 2013. [Google Scholar]
- Harrell, F.E. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis; Springer: New York, NY, USA, 2001. [Google Scholar]
- West, P.C.P.; Dyrbye, P.L.N.; Erwin, P.J.; Shanafelt, P.T.D. Interventions to prevent and reduce physician Burnout: A systematic review and meta-analysis. Lancet 2016, 388, 2272–2281. [Google Scholar] [CrossRef]
- Panagioti, M.; Panagopoulou, E.; Bower, P.; Lewith, G.; Kontopantelis, E.; Chew-Graham, C.; Dawson, S.; van Marwijk, H.; Geraghty, K.; Esmail, A. Controlled Interventions to Reduce Burnout in Physicians: A Systematic Review and Meta-analysis. JAMA Intern. Med. 2017, 177, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic impact goal through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosma-den Boer, M.; van Vetten, M.-L.; Pruimboom, L. Chronic inflammatory diseases are stimulated by current lifestyle: How diet, stress levels and medication prevent our body from recovering. Nutr. Metab. 2012, 9, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, J.A.; Neufeld, K.A.M. Gut-brain Axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013, 36, 305–312. [Google Scholar] [CrossRef]
- Valles-Colomer, M.; Falony, G.; Darzi, Y.; Tigchelaar, E.F.; Wang, J.; Tito, R.Y.; Schiweck, C.; Kurilshikov, A.; Joossens, M.; Wijmenga, C. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019, 4, 623–632. [Google Scholar] [CrossRef]
- Gentile, C.L.; Weir, T.L. The gut microbiota at the intersection of diet and human health. Science 2018, 362, 776–780. [Google Scholar] [CrossRef] [Green Version]
- Vangay, P.; Johnson, A.; Ward, T.L.; Al-Ghalith, G.A.; Shields-Cutler, R.R.; Hillmann, B.M.; Lucas, S.K.; Beura, L.K.; Thompson, E.A.; Till, L.M.; et al. US Immigration Westernizes the Human Gut Microbiome. Cell 2018, 175, 962–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2015, 7, 17–44. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.-W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, C.A.; Garrett, W.S. Gut Microbiota, Inflammation, and Colorectal Cancer. Annu. Rev. Microbiol. 2016, 70, 395–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Errisuriz, V.L.; Pasch, K.E.; Perry, C.L. Perceived stress and dietary choices: The moderating role of stress management. Eat. Behav. 2016, 22, 211–216. [Google Scholar] [CrossRef]
- Richardson, A.S.; Arsenault, J.E.; Cates, S.C.; Muth, M.K. Perceived Stress, Unhealthy Eating Behaviors, and Severe Obesity in Low-Income Women. Nutr. J. 2015, 14, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.-Y.; Sung, F.-C. A review of the healthy worker effect in occupational epidemiology. Occup. Med. 1999, 49, 225–229. [Google Scholar] [CrossRef] [Green Version]
- The Personnel Report of the City of Pori. Available online: http://docplayer.fi/2645481-Porin-kaupungi-henkilostoraportti-2014.html (accessed on 3 April 2018).
- Shih, T.-H.; Fan, X. Comparing response rates in e-mail and paper surveys: A meta-analysis. Educ. Res. Rev. 2009, 4, 26–40. [Google Scholar] [CrossRef]
Healthy Food Groups | Unhealthy Food Groups |
---|---|
Fat-free milk and sour milk, low-fat cheese (fat < 20%) | Red meat, sausages, red cold meat |
Unflavored nuts, seeds, and almonds | Juices and beverages sweetened with sugar |
Legumes (peas, lentils, beans) | Savory bakery products such as pies and pastries, potato chips and nachos, popcorn, salty nuts |
Fresh vegetables | Sweet bakery products (buns, pies, cookies, cakes), chocolate, sweets |
Fresh fruits and berries | Alcohol |
Whole grain pasta and rice, rye bread, rye crisp bread, breakfast cereal, muesli, porridge | High-fat dairy products: full-fat milk and sour milk, full-fat cheese (fat >20%), butter, butter/oil spreads (fat >80%) |
Fish and fish dishes | |
Margarines and oils (cooking, bread spread, salad dressing) | |
Cooked vegetables | |
Eggs | |
White meat |
Quartiles of BBI Score | P for Linearity | ||||
---|---|---|---|---|---|
I [≤23] n = 166 | II [24–30] n = 160 | III [31–37] n = 148 | IV [38–90] n = 156 | ||
Sociodemographic factors | |||||
Age, mean [SD] | 48.5 [10.4] | 48.3 [9.8] | 49.2 [9.6] | 49.6 [9.5] | 0.33 |
Education years, mean [SD] | 13.6 [2.5] | 14.2 [2.8] | 13.8 [2.6] | 14.4 [2.7] | 0.023 |
Cohabiting, n [%] | 129 [78] | 130 [81] | 123 [83] | 123 [79] | 0.49 |
Shift work, n [%] | 53 [32] | 42 [26] | 37 [25] | 40 [26] | 0.13 |
Health behaviours | |||||
LTPA, hours per week, mean [SD] | 2.9 [2.5] | 2.7 [3.3] | 2.5 [3.2] | 2.2 [2.1] | 0.044 |
Good quality of sleep, n [%] | 138 [83] | 129 [81] | 117 [79] | 95 [61] | <0.001 |
AUDIT-C, mean [SD] | 2.6 [1.6] | 2.7 [1.7] | 3.0 [1.6] | 2.8 [1.6] | 0.11 |
Smoking, n [%] | 10 [6] | 15 [9] | 17 [12] | 10 [7] | 0.27 |
Clinical factors | |||||
Blood pressure, mmHg, mean [SD] | |||||
Systolic | 132 [18] | 130 [17] | 129 [16] | 132 [18] | 0.51 |
Diastolic | 85 [11] | 83 [10] | 84 [10] | 85 [11] | 0.96 |
Body Mass Index, kg/m2, mean [SD] | 26.6 [4.8] | 26.8 [4.6] | 26.6 [4.8] | 27.0 [5.4] | 0.60 |
Waist, cm, mean [SD] | 87.8 [12.3] | 88.9 [12.1] | 89.0 [13.5] | 89.3 [13.5] | 0.27 |
Total cholesterol, mmol/L, mean [SD] | 5.20 [0.90] | 5.29 [0.93] | 5.24 [0.85] | 5.34 [0.97] | 0.26 |
LDL cholesterol, mmol/L, mean [SD] | 2.94 [0.74] | 3.00 [0.75] | 2.98 [0.71] | 3.02 [0.77] | 0.37 |
HDL cholesterol, mmol/L, mean [SD] | 1.78 [0.49] | 1.79 [0.46] | 1.76 [0.39] | 1.82 [0.43] | 0.63 |
Triglycerides, mmol/L, mean [SD] | 1.05 [0.47] | 1.12 [0.63] | 1.11 [0.55] | 1.12 [0.62] | 0.24 |
Plasma glucose, mmol/L, mean [SD] | 5.50 [0.53] | 5.43 [0.49] | 5.52 [0.57] | 5.52 [0.59] | 0.80 |
Anxiety, GAD-7 score, mean [SD] | 1.2 [1.9] | 2.1 [2.7] | 3.0 [2.8] | 5.4 [3.9] | <0.001 |
Major Depression Inventory, mean [SD] | 2.5 [4.2] | 3.7 [4.3] | 5.3 [4.8] | 9.3 [6.9] | <0.001 |
Regular medication usage | |||||
Antihypertensives | 28 [17] | 28 [18] | 22 [15] | 32 [21] | 0.65 |
Statins | 6 [4] | 5 [3] | 12 [8] | 7 [4] | 0.34 |
Quartiles of BBI Score | P for Linearity * | ||||
---|---|---|---|---|---|
I [≤23] n = 166 Mean [SD] | II [24–30] n = 160 Mean [SD] | III [31–37] n = 148 Mean [SD] | IV [38–90] n = 156 Mean [SD] | ||
Healthy foods | 11.99 [0.36] | 11.27 [0.34] | 11.09 [0.35] | 10.63 [0.33] | 0.003 |
Fat-free milk and sour milk, low-fat cheese (fat < 20%) | 1.61 [0.12] | 1.33 [0.11] | 1.42 [0.11] | 1.30 [0.11] | 0.049 |
Unflavored nuts, seeds, and almonds | 0.37 [0.04] | 0.42 [0.05] | 0.37 [0.04] | 0.33 [0.04] | 0.52 |
Legumes | 0.15 [0.02] | 0.13 [0.02] | 0.17 [0.02] | 0.24 [0.03] | 0.060 |
Fresh vegetables | 1.61 [0.07] | 1.53 [0.07] | 1.48 [0.07] | 1.41 [0.07] | 0.026 |
Fruits and berries | 2.10 [0.10] | 1.90 [0.08] | 1.89 [0.09] | 1.71 [0.08] | 0.003 |
Whole grain products | 2.43 [0.12] | 2.39 [0.11] | 2.26 [0.10] | 2.16 [0.09] | 0.064 |
Fish and fish dishes | 0.29 [0.02] | 0.30 [0.02] | 0.29 [0.02] | 0.29 [0.02] | 0.90 |
Margarines and oils | 1.80 [0.10] | 1.76 [0.11] | 1.74 [0.11] | 1.80 [0.10] | 0.62 |
Cooked vegetables | 0.83 [0.05] | 0.74 [0.04] | 0.76 [0.05] | 0.71 [0.04] | 0.040 |
Eggs | 0.35 [0.03] | 0.32 [0.02] | 0.33 [0.02] | 0.33 [0.03] | 0.72 |
White meat | 0.44 [0.04] | 0.45 [0.05] | 0.37 [0.03] | 0.34 [0.02] | 0.049 |
Unhealthy foods | 3.78 [0.19] | 3.94 [0.18] | 4.21 [0.17] | 3.96 [0.17] | 0.22 |
Red meat, sausages, red cold meat | 1.25 [0.08] | 1.24 [0.06] | 1.24 [0.06] | 1.23 [0.07] | 0.88 |
Juices and beverages sweetened with sugar | 0.10 [0.02] | 0.08 [0.02] | 0.10 [0.03] | 0.16 [0.04] | 0.22 |
Savory bakery products | 0.16 [0.02] | 0.13 [0.02] | 0.18 [0.02] | 0.20 [0.02] | 0.13 |
Sweet bakery products | 0.92 [0.07] | 1.03 [0.08] | 1.06 [0.07] | 1.00 [0.06] | 0.36 |
Alcohol | 0.14 [0.02] | 0.14 [0.02] | 0.17 [0.02] | 0.18 [0.02] | 0.19 |
High-fat dairy products | 1.21 [0.11] | 1.32 [0.10] | 1.46 [0.11] | 1.19 [0.10] | 0.56 |
Model 1 β [95% CI] | Model 2 β [95% CI] | Model 3 β [95% CI] | |
---|---|---|---|
Healthy food items | −0.12 [−0.20 to −0.04] | −0.13 [−0.21 to −0.05] | −0.08 [−0.14 to −0.01] |
Unhealthy food items | 0.07 [−0.00 to 0.16] | 0.09 [0.01 to 0.16] | 0.06 [−0.01 to 0.13] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penttinen, M.A.; Virtanen, J.; Laaksonen, M.; Erkkola, M.; Vepsäläinen, H.; Kautiainen, H.; Korhonen, P. The Association between Healthy Diet and Burnout Symptoms among Finnish Municipal Employees. Nutrients 2021, 13, 2393. https://doi.org/10.3390/nu13072393
Penttinen MA, Virtanen J, Laaksonen M, Erkkola M, Vepsäläinen H, Kautiainen H, Korhonen P. The Association between Healthy Diet and Burnout Symptoms among Finnish Municipal Employees. Nutrients. 2021; 13(7):2393. https://doi.org/10.3390/nu13072393
Chicago/Turabian StylePenttinen, Markus A., Jenni Virtanen, Marika Laaksonen, Maijaliisa Erkkola, Henna Vepsäläinen, Hannu Kautiainen, and Päivi Korhonen. 2021. "The Association between Healthy Diet and Burnout Symptoms among Finnish Municipal Employees" Nutrients 13, no. 7: 2393. https://doi.org/10.3390/nu13072393