Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Hand Grip Strength
2.3. Study Variables
2.4. Statistical Analyses
3. Results
3.1. Study Subjects
3.2. Association between Serum Vitamin E and Low Hand Grip Strength
3.3. Association between Serum Vitamin E Quintiles and Hand Grip Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohannon, R.W. Muscle strength: Clinical and prognostic value of hand-grip dynamometry. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Norman, K.; Stobaus, N.; Gonzalez, M.C.; Schulzke, J.D.; Pirlich, M. Hand grip strength: Outcome predictor and marker of nutritional status. Clin. Nutr. 2011, 30, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, S.K.; Lee, D.R.; Lee, J. The Relationship between Handgrip Strength and Cognitive Function in Elderly Koreans over 8 Years: A Prospective Population-Based Study Using Korean Longitudinal Study of Ageing. Korean J. Fam. Med. 2019, 40, 9–15. [Google Scholar] [CrossRef]
- Gi, Y.M.; Jung, B.; Kim, K.W.; Cho, J.H.; Ha, I.H. Low handgrip strength is closely associated with anemia among adults: A cross-sectional study using Korea National Health and Nutrition Examination Survey (KNHANES). PLoS ONE 2020, 15, e0218058. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef]
- Ahn, S.; Jun, S.; Kim, S.-A.; Ha, K.; Joung, H. Current status and trends in estimated intakes and major food groups of vitamin E among Korean adults: Using the 1~6thKorea National Health and Nutrition Examination Survey. J. Nutr. Health 2017, 50, 483–493. [Google Scholar] [CrossRef]
- Kim, Y.N.; Cho, Y.O. Vitamin E status of 20- to 59-year-old adults living in the Seoul metropolitan area of South Korea. Nutr. Res. Pr. 2015, 9, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S. Principles of Nutritional Assessment; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Chung, E.; Mo, H.; Wang, S.; Zu, Y.; Elfakhani, M.; Rios, S.R.; Chyu, M.C.; Yang, R.S.; Shen, C.L. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr. Res. 2018, 49, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Glynn, R.J.; Ridker, P.M.; Goldhaber, S.Z.; Zee, R.Y.; Buring, J.E. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism: Report from the Women’s Health Study. Circulation 2007, 116, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Chong, E.W.; Wong, T.Y.; Kreis, A.J.; Simpson, J.A.; Guymer, R.H. Dietary antioxidants and primary prevention of age related macular degeneration: Systematic review and meta-analysis. BMJ 2007, 335, 755. [Google Scholar] [CrossRef]
- Mangialasche, F.; Xu, W.; Kivipelto, M.; Costanzi, E.; Ercolani, S.; Pigliautile, M.; Cecchetti, R.; Baglioni, M.; Simmons, A.; Soininen, H.; et al. Tocopherols and tocotrienols plasma levels are associated with cognitive impairment. Neurobiol. Aging 2012, 33, 2282–2290. [Google Scholar] [CrossRef]
- Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 2008, 123, 739–752. [Google Scholar] [CrossRef]
- Semba, R.D.; Blaum, C.; Guralnik, J.M.; Moncrief, D.T.; Ricks, M.O.; Fried, L.P. Carotenoid and vitamin E status are associated with indicators of sarcopenia among older women living in the community. Aging Clin. Exp. Res. 2003, 15, 482–487. [Google Scholar] [CrossRef]
- Ble, A.; Cherubini, A.; Volpato, S.; Bartali, B.; Walston, J.D.; Windham, B.G.; Bandinelli, S.; Lauretani, F.; Guralnik, J.M.; Ferrucci, L. Lower plasma vitamin E levels are associated with the frailty syndrome: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 278–283. [Google Scholar] [CrossRef]
- Ter Borg, S.; Luiking, Y.C.; van Helvoort, A.; Boirie, Y.; Schols, J.; de Groot, C. Low Levels of Branched Chain Amino Acids, Eicosapentaenoic Acid and Micronutrients Are Associated with Low Muscle Mass, Strength and Function in Community-Dwelling Older Adults. J. Nutr. Health Aging 2019, 23, 27–34. [Google Scholar] [CrossRef]
- Sayer, A.A.; Syddall, H.; Martin, H.; Patel, H.; Baylis, D.; Cooper, C. The developmental origins of sarcopenia. J. Nutr. Health Aging 2008, 12, 427–432. [Google Scholar] [CrossRef]
- Kim, D.W.; Song, S.; Lee, J.E.; Oh, K.; Shim, J.; Kweon, S.; Paik, H.Y.; Joung, H. Reproducibility and validity of an FFQ developed for the Korea National Health and Nutrition Examination Survey (KNHANES). Public Health Nutr. 2015, 18, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S13–S28. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef]
- Killip, S.; Bennett, J.M.; Chambers, M.D. Iron deficiency anemia. Am. Fam. Physician 2007, 75, 671–678. [Google Scholar]
- Quality Control of the Clinical Laboratory for the Korea National Health and Nutrition Examination Survey (KNHANES). Available online: https://www.prism.go.kr/homepage (accessed on 21 November 2018).
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Nadaraya, E.A. On estimating regression. Theory Probab. Its Appl. 1964, 9, 141–142. [Google Scholar] [CrossRef]
- Cesari, M.; Pahor, M.; Bartali, B.; Cherubini, A.; Penninx, B.W.; Williams, G.R.; Atkinson, H.; Martin, A.; Guralnik, J.M.; Ferrucci, L. Antioxidants and physical performance in elderly persons: The Invecchiare in Chianti (InCHIANTI) study. Am. J. Clin. Nutr. 2004, 79, 289–294. [Google Scholar] [CrossRef]
- Welch, A.A.; Jennings, A.; Kelaiditi, E.; Skinner, J.; Steves, C.J. Cross-Sectional Associations Between Dietary Antioxidant Vitamins C, E and Carotenoid Intakes and Sarcopenic Indices in Women Aged 18–79 Years. Calcif. Tissue Int. 2020, 106, 331–342. [Google Scholar] [CrossRef]
- Fingeret, M.; Vollenweider, P.; Marques-Vidal, P. No association between vitamin C and E supplementation and grip strength over 5 years: The Colaus study. Eur. J. Nutr. 2019, 58, 609–617. [Google Scholar] [CrossRef]
- Robinson, S.M.; Jameson, K.A.; Batelaan, S.F.; Martin, H.J.; Syddall, H.E.; Dennison, E.M.; Cooper, C.; Sayer, A.A.; Hertfordshire Cohort Study, G. Diet and its relationship with grip strength in community-dwelling older men and women: The Hertfordshire cohort study. J. Am. Geriatr. Soc. 2008, 56, 84–90. [Google Scholar] [CrossRef]
- Borel, P.; Moussa, M.; Reboul, E.; Lyan, B.; Defoort, C.; Vincent-Baudry, S.; Maillot, M.; Gastaldi, M.; Darmon, M.; Portugal, H.; et al. Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphisms in genes involved in lipid metabolism. J. Nutr. 2007, 137, 2653–2659. [Google Scholar] [CrossRef]
- dos Santos, S.L.; Baraibar, M.A.; Lundberg, S.; Eeg-Olofsson, O.; Larsson, L.; Friguet, B. Oxidative proteome alterations during skeletal muscle ageing. Redox Biol. 2015, 5, 267–274. [Google Scholar] [CrossRef]
- Buonocore, D.; Rucci, S.; Vandoni, M.; Negro, M.; Marzatico, F. Oxidative system in aged skeletal muscle. Muscles Ligaments Tendons J. 2011, 1, 85–90. [Google Scholar]
- Aragno, M.; Mastrocola, R.; Catalano, M.G.; Brignardello, E.; Danni, O.; Boccuzzi, G. Oxidative stress impairs skeletal muscle repair in diabetic rats. Diabetes 2004, 53, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Xing, Q.; Li, Y.; Han, X.; Sun, L. Dexmedetomidine protects against ischemia-reperfusion injury in rat skeletal muscle. J. Surg. Res. 2014, 186, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Servais, S.; Letexier, D.; Favier, R.; Duchamp, C.; Desplanches, D. Prevention of unloading-induced atrophy by vitamin E supplementation: Links between oxidative stress and soleus muscle proteolysis? Free Radic. Biol. Med. 2007, 42, 627–635. [Google Scholar] [CrossRef]
- Meydani, M.; Fielding, R.A.; Cannon, J.G.; Blumberg, J.B.; Evans, W.J. Muscle uptake of vitamin E and its association with muscle fiber type. J. Nutr. Biochem. 1997, 8, 74–78. [Google Scholar] [CrossRef]
- Spencer, A.P.; Carson, D.S.; Crouch, M.A. Vitamin E and coronary artery disease. Arch. Intern. Med. 1999, 159, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Janssen, H.C.; Emmelot-Vonk, M.H.; Verhaar, H.J.; van der Schouw, Y.T. Vitamin D and muscle function: Is there a threshold in the relation? J. Am. Med. Dir. Assoc. 2013, 14, 627.e13–627.e18. [Google Scholar] [CrossRef]
- Krzywanski, J.; Mikulski, T.; Pokrywka, A.; Mlynczak, M.; Krysztofiak, H.; Fraczek, B.; Ziemba, A. Vitamin B12 Status and Optimal Range for Hemoglobin Formation in Elite Athletes. Nutrients 2020, 12, 1038. [Google Scholar] [CrossRef]
- Thurnham, D.I.; Davies, J.A.; Crump, B.J.; Situnayake, R.D.; Davis, M. The use of different lipids to express serum tocopherol: Lipid ratios for the measurement of vitamin E status. Ann. Clin. Biochem. 1986, 23 Pt 5, 514–520. [Google Scholar] [CrossRef]
- NIH. Vitamin E Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/VitaminE-HealthProfessional/ (accessed on 26 March 2021).
Q1 (n = 429) <10.51 mg/L | Q2 (n = 431) 10.51–12.58 mg/L | Q3 (n = 429) 12.59–14.69 mg/L | Q4 (n = 434) 14.70–17.80 mg/L | Q5 (n = 431) ≥17.81 mg/L | p | |
---|---|---|---|---|---|---|
Age (years) | 64.5 ± 9.3 | 63.5 ± 9.4 | 63.2 ± 9.2 | 62.7 ± 8.4 | 62.0 ± 8.4 | 0.001 |
Sex, women | 175 (40.8) | 207 (48.0) | 238 (55.5) | 259 (59.7) | 264 (61.3) | <0.001 |
Height, cm | 162.2 ± 8.3 | 161.5 ± 8.7 | 160.6 ± 8.8 | 160.4 ± 8.8 | 160.1 ± 8.5 | 0.001 |
Weight, kg | 63.7 ± 10.6 | 63.2 ± 10.8 | 62.2 ± 10.2 | 62.6 ± 10.6 | 62.2 ± 10.6 | 0.150 |
BMI, kg/m2 | 24.2 ± 3.4 | 24.1 ± 3.0 | 24.0 ± 3.0 | 24.2 ± 2.9 | 24.2 ± 3.1 | 0.923 |
Low handgrip strength a | 245 (57.1) | 217 (50.3) | 205 (47.8) | 206 (47.5) | 188 (43.6) | 0.002 |
High household income(8.8 USD) | 192 (44.8) | 216 (50.1) | 223 (52.0) | 237 (54.6) | 236 (54.8) | 0.020 |
Educational status (≥high school) | 223 (52.0) | 228 (52.9) | 231 (53.8) | 236 (54.4) | 240 (55.7) | 0.847 |
Regular alcohol consumption | 197 (45.9) | 201 (46.6) | 203 (47.3) | 203 (46.8) | 195 (45.2) | 0.978 |
Current smoking | 85 (19.8) | 54 (12.5) | 67 (15.6) | 63 (14.5) | 59 (13.7) | 0.034 |
Resistance exercise | 0.908 | |||||
None | 322 (75.1) | 331 (76.8) | 338 (78.8) | 341 (78.6) | 334 (77.5) | |
Intermittent | 51 (11.9) | 51 (11.8) | 40 (9.3) | 47 (10.8) | 47 (10.9) | |
Regular | 56 (13.1) | 49 (11.4) | 51 (11.9) | 46 (10.6) | 50 (11.6) | |
Comorbidities | ||||||
Hypertension | 215 (50.1) | 207 (48.0) | 197 (45.9) | 197 (45.4) | 199 (46.2) | 0.625 |
Diabetes | 111 (25.9) | 79 (18.3) | 78 (18.2) | 72 (16.6) | 82 (19.0) | 0.006 |
Anemia | 53 (12.4) | 30 (7.0) | 31 (7.2) | 22 (5.1) | 17 (3.9) | <0.001 |
Nutrition | ||||||
Total calorie intake, kcal/day | 1909.9 ± 796.6 | 1971.0 ± 782.7 | 1908.5 ± 813.5 | 1834.1 ± 812.4 | 1861.6 ± 812.4 | 0.119 |
Total protein intake, g/day | 63.9 ± 32.9 | 67.7 ± 32.8 | 65.2 ± 32.9 | 63.7 ± 32.9 | 65.8 ± 34.9 | 0.410 |
Use of dietary supplements | 197 (45.9) | 210 (48.7) | 239 (55.7) | 259 (59.7) | 292 (67.7) | <0.001 |
Laboratory | ||||||
Fasting plasma glucose, mg/dL | 106.4 ± 22.4 | 104.4 ± 23.2 | 105.7 ± 32.2 | 105.4 ± 24.2 | 107.6 ± 30.5 | 0.505 |
Total cholesterol, mg/dL | 164.4 ± 33.5 | 183.9 ± 30.4 | 196.8 ± 34.1 | 207.4 ± 34.3 | 219.6 ± 42.2 | <0.001 |
hsCRP, g/dL | 0.60 [0.40, 1.19] | 0.53 [0.36, 1.08] | 0.60 [0.39, 1.15] | 0.60 [0.40, 1.07] | 0.68 [0.43, 1.23] | 0.006 |
Q1 | Q2 | Q3 | Q4 | Q5 | |||||
---|---|---|---|---|---|---|---|---|---|
Regression Models | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | OR (95% CI) | p | OR (95% CI) | p |
Model 1 | 1.39 (1.03–1.87) | 0.031 | 1.10 (0.82–1.48) | 0.523 | 1.00 (reference) | 1.39 (1.03–1.87) | 0.799 | 1.10 (0.82–1.48) | 0.675 |
Model 2 | 1.38 (1.02–1.86) | 0.037 | 1.10 (0.82–1.48) | 0.530 | 1.00 (reference) | 1.38 (1.02–1.86) | 0.769 | 1.10 (0.82–1.48) | 0.704 |
Model 3 | 1.40 (1.02–1.91) | 0.036 | 1.12 (0.83–1.51) | 0.456 | 1.00 (reference) | 1.40 (1.02–1.91) | 0.778 | 1.12 (0.83–1.51) | 0.544 |
Model 4 | 1.38 (1.01–1.89) | 0.045 | 1.12 (0.83–1.52) | 0.453 | 1.00 (reference) | 1.38 (1.01–1.89) | 0.834 | 1.12 (0.83–1.52) | 0.560 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Shin, S.; Hong, N.; Rhee, Y. Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018. Nutrients 2021, 13, 1598. https://doi.org/10.3390/nu13051598
Kim Y, Shin S, Hong N, Rhee Y. Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018. Nutrients. 2021; 13(5):1598. https://doi.org/10.3390/nu13051598
Chicago/Turabian StyleKim, Yongjae, Sungjae Shin, Namki Hong, and Yumie Rhee. 2021. "Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018" Nutrients 13, no. 5: 1598. https://doi.org/10.3390/nu13051598
APA StyleKim, Y., Shin, S., Hong, N., & Rhee, Y. (2021). Low Serum Vitamin E Level Associated with Low Hand Grip Strength in Community-Dwelling Adults: Korean National Health and Nutrition Examination Survey (KNHANES VII) 2016–2018. Nutrients, 13(5), 1598. https://doi.org/10.3390/nu13051598