Effects of a Mediterranean Diet, Dairy, and Meat Products on Different Phenotypes of Dyslipidemia: A Preliminary Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Dietary Assessment
Lifestyle Intervention
- General advice with weekly counseling on food frequency for patients with primary hypercholesterolemia and normal weight patients.
- General advice with counseling on food frequency for non-overweight patients with mixed hyperlipemia or hypertriglyceridemia or with a reduction in alcohol and carbohydrates.
- General advice based on the frequency of food and control of food with an overall energy intake of 1700 kcal/day for overweight women.
- General advice based on the frequency of food and control of food portions with a total energy intake of 2100 kcal/day for overweight men.
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Population and Adherence to an MD
3.2. Cross-Sectional Analysis: Relationship between Lipid Profile and Different Food Categories
3.3. Follow-Up Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pol, T.; Held, C.; Westerbergh, J.; Lindbäck, J.; Alexander, J.H.; Alings, M.; Erol, C.; Goto, S.; Halvorsen, S.; Huber, K.; et al. Dyslipidemia and Risk of Cardiovascular Events in Patients With Atrial Fibrillation Treated With Oral Anticoagulation Therapy: Insights From the ARISTOTLE (Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation) Trial. J. Am. Heart Assoc. 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care 2013, 40, 195–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.N.; Cunningham, J.A.; Thouin, S.R.; Gurvich, T.; Liu, D. Hyperlipidemia. Prim. Care 2000, 27, 541–587. [Google Scholar] [CrossRef]
- Musunuru, K. Atherogenic dyslipidemia: Cardiovascular risk and dietary intervention. Lipids 2010, 45, 907–914. [Google Scholar] [CrossRef] [Green Version]
- Manjunath, C.N.; Rawal, J.R.; Irani, P.M.; Madhu, K. Atherogenic dyslipidemia. Indian J. Endocrinol. Metab. 2013, 17, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Lin, X.; Hemler, E.; Hu, F.B. Diet and Cardiovascular Disease: Advances and Challenges in Population-Based Studies. Cell Metab. 2018, 27, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattioli, A.V.; Palmiero, P.; Manfrini, O.; Puddu, P.E.; Nodari, S.; Dei Cas, A.; Mercuro, G.; Scrutinio, D.; Palermo, P.; Sciomer, S.; et al. Mediterranean diet impact on cardiovascular diseases: A narrative review. J. Cardiovasc. Med. Hagerstown Md 2017, 18, 925–935. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Lăcătușu, C.-M.; Grigorescu, E.-D.; Floria, M.; Onofriescu, A.; Mihai, B.-M. The Mediterranean Diet: From an Environment-Driven Food Culture to an Emerging Medical Prescription. Int. J. Environ. Res. Public Health 2019, 16, 942. [Google Scholar] [CrossRef] [Green Version]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.-P.; Côté, J.A.; Labonté, M.-È.; Brassard, D.; Tessier-Grenier, M.; Desroches, S.; Couture, P.; Lamarche, B. Comprehensive Review of the Impact of Dairy Foods and Dairy Fat on Cardiometabolic Risk123. Adv. Nutr. 2016, 7, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.J.; Clark, M.; Razak, A.A.; Salter, A. The impact of reduced red and processed meat consumption on cardiovascular risk factors; an intervention trial in healthy volunteers. Food Funct. 2019, 10, 6690–6698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2019, 3, CD009825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasta, A.; Formisano, E.; Cremonini, A.L.; Maganza, E.; Parodi, E.; Piras, S.; Pisciotta, L. Diet and Nutraceutical Supplementation in Dyslipidemic Patients: First Results of an Italian Single Center Real-World Retrospective Analysis. Nutrients 2020, 12, 2056. [Google Scholar] [CrossRef]
- Brinton, E.A. Management of hypertriglyceridemia for prevention of atherosclerotic cardiovascular disease. Cardiol. Clin. 2015, 33, 309–323. [Google Scholar] [CrossRef]
- Briggs, M.A.; Petersen, K.S.; Kris-Etherton, P.M. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep. 2010, 12, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet Lond. Engl. 2017, 390, 2050–2062. [Google Scholar] [CrossRef] [Green Version]
- Praagman, J.; Beulens, J.W.; Alssema, M.; Zock, P.L.; Wanders, A.J.; Sluijs, I.; van der Schouw, Y.T. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition-Netherlands cohort. Am. J. Clin. Nutr. 2016, 103, 356–365. [Google Scholar] [CrossRef]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Otto, M.C.; Mozaffarian, D.; Kromhout, D.; Bertoni, A.G.; Sibley, C.T.; Jacobs, D.R.; Nettleton, J.A. Dietary intake of saturated fat by food source and incident cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2012, 96, 397–404. [Google Scholar] [CrossRef] [Green Version]
- Sofi, F.; Macchi, C.; Abbate, R.; Gensini, G.F.; Casini, A. Mediterranean diet and health status: An updated meta-analysis and a proposal for a literature-based adherence score. Public Health Nutr. 2014, 17, 2769–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastorini, C.-M.; Milionis, H.J.; Esposito, K.; Giugliano, D.; Goudevenos, J.A.; Panagiotakos, D.B. The effect of Mediterranean diet on metabolic syndrome and its components: A meta-analysis of 50 studies and 534,906 individuals. J. Am. Coll. Cardiol. 2011, 57, 1299–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platania, A.; Zappala, G.; Mirabella, M.U.; Gullo, C.; Mellini, G.; Beneventano, G.; Maugeri, G.; Marranzano, M. Association between Mediterranean diet adherence and dyslipidaemia in a cohort of adults living in the Mediterranean area. Int. J. Food Sci. Nutr. 2018, 69, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Ascherio, A.; Colditz, G.A.; Speizer, F.E.; Hennekens, C.H.; Willett, W.C. Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am. J. Clin. Nutr. 1999, 70, 1001–1008. [Google Scholar] [CrossRef] [Green Version]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Hu, F.B.; Sun, Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: Two prospective longitudinal cohort studies. BMJ 2016, 355, i5796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordan, R.; Zabetakis, I. Invited review: The anti-inflammatory properties of dairy lipids. J. Dairy Sci. 2017, 100, 4197–4212. [Google Scholar] [CrossRef]
- Lordan, R.; Vidal, N.P.; Huong Pham, T.; Tsoupras, A.; Thomas, R.H.; Zabetakis, I. Yoghurt fermentation alters the composition and antiplatelet properties of milk polar lipids. Food Chem. 2020, 332, 127384. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Zabetakis, I.; Demopoulos, C.A. Forty Years Since the Structural Elucidation of Platelet-Activating Factor (PAF): Historical, Current, and Future Research Perspectives. Molecules 2019, 24, 4414. [Google Scholar] [CrossRef] [Green Version]
- Linares, D.M.; Gómez, C.; Renes, E.; Fresno, J.M.; Tornadijo, M.E.; Ross, R.P.; Stanton, C. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- United Nations Food and Agricultural Organization (FAO). Average Supply of Meat across the Population, Measured in Kilograms Per Person Per Year. Available online: http://www.fao.org/faostat/en/#home (accessed on 18 January 2021).
- Meat Food Supply Quantity (Kg/Capita/Yr) (Fao, 2020). Available online: https://ourworldindata.org/grapher/meat-supply-per-person (accessed on 18 January 2021).
- Per Capita Consumption of Processed and Fresh Dairy Products in Milk Solids. OECD/FAO (2020), “OECD-FAO Agricultural Outlook”, OECD Agriculture Statistics (Database). Available online: http://dx.doi.org/10.1787/agr-outl-data-en (accessed on 18 January 2021).
- George, E.S.; Marshall, S.; Mayr, H.L.; Trakman, G.L.; Tatucu-Babet, O.A.; Lassemillante, A.-C.M.; Bramley, A.; Reddy, A.J.; Forsyth, A.; Tierney, A.C.; et al. The effect of high-polyphenol extra virgin olive oil on cardiovascular risk factors: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2019, 59, 2772–2795. [Google Scholar] [CrossRef] [PubMed]
- Sialvera, T.E.; Papadopoulou, A.; Efstathiou, S.P.; Trautwein, E.A.; Ras, R.T.; Kollia, N.; Farajian, P.; Goumas, G.; Dimakopoulos, I.; Papavasiliou, K.; et al. Structured advice provided by a dietitian increases adherence of consumers to diet and lifestyle changes and lowers blood low-density lipoprotein (LDL)-cholesterol: The Increasing Adherence of Consumers to Diet & Lifestyle Changes to Lower (LDL) Cholesterol (ACT) randomised controlled trial. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2018, 31, 197–208. [Google Scholar] [CrossRef]
- Poli, A. The PURE study and the enigmatic aspects of the diet: Is it possible that an high saturated fat consumption would not be harmful? Eur. Heart J. Suppl. J. Eur. Soc. Cardiol. 2020, 22, E113–E115. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.T.; Barnes, K.; Ball, L.; Ross, L.J.; Sladdin, I.; Mitchell, L.J. How Effective Are Dietitians in Weight Management? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Healthcare 2019, 7, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; et al. Lipid-lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Nutr. Rev. 2017, 75, 731–767. [Google Scholar] [CrossRef]
- Formisano, E.; Pasta, A.; Cremonini, A.L.; Favari, E.; Ronca, A.; Carbone, F.; Semino, T.; Di Pierro, F.; Sukkar, S.G.; Pisciotta, L. Efficacy of Nutraceutical Combination of Monacolin K, Berberine, and Silymarin on Lipid Profile and PCSK9 Plasma Level in a Cohort of Hypercholesterolemic Patients. J. Med. Food 2020, 23, 658–666. [Google Scholar] [CrossRef]
VARIABLE | VALUE |
---|---|
Sex [F/M: n; %] | 53 (50.0%)/53 (50.0%) |
Age [years: mean ± SD; median; IQR] | 54 ± 14; 55 (45–64) |
Weight [kg: mean ± SD; median; IQR] | 73.9 ± 17.3; 72.5 (60.0–84.0) |
BMI [kg/m2: mean ± SD; median; IQR] | 26.1 ± 4.7; 25.8 (22.6–29.2) |
SBP [mm/Hg: mean ± SD; median; IQR] | 137 ± 17; 135 (128–146) |
DBP [mm/Hg: mean ± SD; median; IQR] | 82 ± 9; 80 (77–88) |
Smoking habits [Never + Past/Current: n; %] | 84 (79.2%)/22 (20.8%) |
Risk SCORE [%: mean(SD; median; IQR] | 4.0 ± 6.3; 1.4 (0.6–4.2) |
Low-Risk: <1% [n; %] | 41 (38.7%) |
Moderate-Risk: ≥1% and <5% [n; %] | 41 (38.7%) |
High-Risk: ≥5% and <10% [n; %] | 10 (9.4%) |
Very-High-Risk: ≥10% [n; %] | 14 (13.2%) |
TC [mg/dl: mean ± SD; median, IQR] | 245 ± 55; 248 (210–278) |
HDL-C [mg/dl: mean ± SD; median, IQR] | 57 ± 19; 53 (42–66) |
LDL-C [mg/dl: mean ± SD; median, IQR] | 159 ± 51; 154 (130–189) |
TG [mg/dl: mean ± SD; median, IQR] | 186 ± 156; 127 (97–208) |
Patients [n, %] | TC [Median, IQR] | HDL-C [Median, IQR] | LDL-C [Median, IQR] | TG [Median, IQR] | |
---|---|---|---|---|---|
Fruit | |||||
<150 g/day | 26 (24.5%) | 238 (229–250) | 52 (42–58) | 156 (148–164) | 220 (142–270) |
150–300 g/day | 20 (18.9%) | 238 (232–247) | 54 (48–66) | 161 (147–164) | 209 (132–227) |
>300 g/day | 60 (56.6%) | 251 (239–259) | 59 (51–68) | 163 (150–165) | 149 (134–225) |
p-value † | p = 0.003 <150 vs. >300 g/day p = 0.01 (p = 0.003) 150–300 vs. >300 g/day p = 0.04 (p = 0.01) | p = 0.03 <150 vs. >300 g/day p = 0.04 (p = 0.01) | NS | NS | |
Vegetables | |||||
<100 g/day | 36 (34.0%) | 237 (230–249) | 51 (45–60) | 155 (149–164) | 217 (145–235) |
100–250 g/day | 32 (30.2%) | 249 (238–257) | 57 (51–70) | 163 (155–164) | 145 (126–222) |
>250 g/day | 38 (35.8%) | 249 (238–259) | 57 (52–68) | 164 (149–166) | 149 (137–217) |
p-value † | p = 0.01 <100 vs. >250 g/day p = 0.02 (p = 0.008) <100 vs. 100–250 g/day p = 0.06 (p = 0.02) | p = 0.04 <100 vs. >250 g/day p = 0.10 (p = 0.03) <100 vs. 100–250 g/day p = 0.06 (p = 0.02) | NS | NS | |
Legumes | |||||
<70 g/week | 50 (47.2%) | 245 (233–255) | 55 (49–67) | 162 (149–164) | 157 (134–229) |
70–140 g/week | 46 (43.4%) | 246 (236–259) | 56 (50–68) | 164 (150–165) | 149 (148–163) |
>140 g/week | 10 (9.4%) | 239 (237–254) | 56 (49–61) | 157 (128–227) | 216 (153–231) |
p-value † | NS | NS | NS | NS | |
Cereals | |||||
<130 g/day | 40 (37.7%) | 247 (233–259) | 57 (50–68) | 162 (149–165) | 150 (130–230) |
130–200 g/day | 20 (18.9%) | 244 (237–256) | 58 (50–64) | 163 (155–165) | 180 (137–230) |
>200 g/day | 46 (43.4%) | 243 (235–253) | 55 (49–62) | 163 (149–165) | 198 (139–227) |
p-value † | NS | NS | NS | NS | |
Fish | |||||
<100 g/week | 32 (30.2%) | 240 (232–252) | 55 (45–64) | 161 (149–164) | 212 (125–252) |
100–250 g/week | 58 (54.7%) | 248 (236–258) | 59 (50–67) | 164 (149–165) | 150 (133–220) |
>250 g/week | 16 (15.1%) | 241 (237–254) | 54 (50–63) | 150 (149–165) | 209 (150–231) |
p-value † | NS | NS | NS | NS | |
Meat Products | |||||
>120 g/day | 21 (19.8%) | 236 (228–249) | 48 (40–56) | 158 (148–165) | 228 (169–270) |
80–120 g/day | 31 (29.2%) | 240 (233–249) | 53 (49–61) | 155 (148–164) | 214 (139–230) |
<80 g/day | 54 (50.9%) | 253 (240–259) | 60 (52–69) | 164 (156–165) | 147 (127–212) |
p-value † | p = 0.001 <80 vs. >120 g/day p = 0.001 (p < 0.0001) <80 vs. 80–120 g/day p = 0.06 (p = 0.02) | p < 0.0001 <80 vs. 80–120 g/day p = 0.06 (p = 0.02) <80 vs. >120 g/day p < 0.0001 (p < 0.0001) | NS | p = 0.008 <80 vs. >120 g/day p = 0.009 (p = 0.003) | |
Dairy Products | |||||
>270 g/day | 51 (48.1%) | 249 (240–259) | 58 (52–68) | 164 (150–166) | 145 (127–216) |
180–270 g/day | 11 (10.4%) | 237 (231–255) | 53 (42–61) | 161 (152–165) | 219 (149–240) |
<180 g/day | 44 (41.5%) | 240 (233–253) | 53 (47–66) | 156 (148–164) | 211 (138–258) |
p-value † | p = 0.01 <180 vs. >270 g/day p = 0.02 (p = 0.005) | p = 0.074 <180 vs. >270 g/day p = 0.04 | p = 0.02 <180 vs. >270 g/day p = 0.02 (p = 0.006) | p = 0.02 <180 vs. >270 g/day p = 0.04 (p = 0.01) | |
Alcohol | |||||
>2 AU/day | 35 (33.0%) | 239 (233–254) | 54 (47–67) | 157 (149–164) | 213 (147–234) |
1–2 AU/day | 34 (32.1%) | 241 (234–252) | 53 (48–60) | 161 (149–164) | 180 (124–236) |
<1 AU/day | 37 (34.9%) | 253 (242–260) | 59 (54–68) | 164 (150–165) | 146 (134–213) |
p-value † | p = 0.009 1–2 vs. <1 AU p = 0.02 (p = 0.006) >2 vs. <1 AU p = 0.04 (p = 0.01) | p = 0.01 1–2 vs. <1 AU p = 0.05 (p = 0.02) >2 vs. <1 AU p = 0.12 (p = 0.04) | NS | >2 vs. <1 AU p = 0.01 | |
Olive Oil | |||||
Occasional | 3 (2.8%) | 255 (233–259) | 60 (43–63) | 166 (166–166) | 150 (149–234) |
Frequent | 5 (4.7%) | 247 (245–248) | 59 (51–71) | 163 (155–169) | 135 (106–230) |
Regular | 98 (92.5%) | 243 (235–256) | 56 (49–67) | 162 (149–165) | 191 (134–228) |
p-value † | NS | NS | NS | NS |
VARIABLE and PREDICTORS | β | SE | p-Value | r2 | F (p-Value) † |
---|---|---|---|---|---|
TC | 0.317 | 4.952 (<0.0001) | |||
Fruit (high intake: >300 g/day) | 2.373 | 1.434 | 0.101 | ||
Vegetables (high intake: >250 g/day) | 2.628 | 1.429 | 0.069 | ||
Legumes (high intake: >140 g/day) | 1.292 | 1.726 | 0.456 | ||
Cereals (high intake: >200 g/day) | −0.387 | 1.186 | 0.745 | ||
Fish (high intake: >250 g/day) | 0.594 | 1.830 | 0.746 | ||
Meat products (low intake: <80 g/day) | 4.784 | 1.408 | 0.001 | ||
Dairy Products (low intake: <180 g/day) | −2.596 | 1.160 | 0.028 | ||
Olive Oil (Frequent use) | −5.495 | 2.868 | 0.058 | ||
Alcohol (low intake: < 1 AU/day) | 2.082 | 1.340 | 0.124 | ||
HDL-C | 0.268 | 3.904 (<0.0001) | |||
Fruit (high intake: >300 g/day) | 1.791 | 1.353 | 0.189 | ||
Vegetables (high intake: >250 g/day) | 1.626 | 1.347 | 0.230 | ||
Legumes (high intake: >140 g/day) | 1.53 | 1.627 | 0.350 | ||
Cereals (high intake: >200 g/day) | −0.328 | 1.118 | 0.770 | ||
Fish (high intake: >250 g/day) | −0.766 | 1.726 | 0.658 | ||
Meat products (low intake: <80 g/day) | 5.359 | 1.328 | <0.0001 | ||
Dairy Products (low intake: <180 g/day) | −2.433 | 1.094 | 0.048 | ||
Olive Oil (Frequent use) | −2.643 | 2.704 | 0.331 | ||
Alcohol (low intake: < 1 AU/day) | 1.034 | 1.264 | 0.416 | ||
LDL-C | 0.149 | 1.540 (0.149) | |||
Fruit (high intake: >300 g/day) | 0.406 | 1.187 | 0.733 | ||
Vegetables (high intake: >250 g/day) | 1.700 | 1.229 | 0.171 | ||
Legumes (high intake: >140 g/day) | 0.301 | 1.515 | 0.843 | ||
Cereals (high intake: >200 g/day) | 0.038 | 1.013 | 0.970 | ||
Fish (high intake: >250 g/day) | −0.602 | 1.589 | 0.706 | ||
Meat products (low intake: <80 g/day) | 1.186 | 1.246 | 0.344 | ||
Dairy Products (low intake: <180 g/day) | −2.190 | 0.976 | 0.028 | ||
Olive Oil (Frequent use) | −4.877 | 2.663 | 0.071 | ||
Alcohol (low intake: < 1 AU/day) | 0.840 | 1.185 | 0.481 | ||
TG | 0.233 | 3.202 (0.002) | |||
Fruit (high intake: >300 g/day) | −6.806 | 7.468 | 0.364 | ||
Vegetables (high intake: >250 g/day) | −9.251 | 7.474 | 0.219 | ||
Legumes (high intake: >140 g/day) | −0.479 | 9.005 | 0.958 | ||
Cereals (high intake: >200 g/day) | 3.714 | 6.225 | 0.552 | ||
Fish (high intake: >250 g/day) | 0.955 | 9.530 | 0.920 | ||
Meat products (low intake: <80 g/day) | −19.321 | 7.358 | 0.010 | ||
Dairy Products (low intake: <180 g/day) | 15.326 | 6.065 | 0.013 | ||
Alcohol (low intake: < 1 AU/day) | −9.931 | 7.080 | 0.164 | ||
Olive Oil (Frequent use) | 17.823 | 14.928 | 0.235 |
VARIABLE | VALUE |
---|---|
Sex [F/M: n; %] | 34 (47.2%)/38 (52.8%) |
Age [years: mean ± SD; median; IQR] | 55 ± 13; 55 (48–64) |
SBP [mm/Hg: mean ± SD; median; IQR] | 138 ± 17; 136 (130–150) |
DBP [mm/Hg: mean ± SD; median; IQR] | 83 ± 10; 81 (78–89) |
Smoking habits [Never + Past/Current: n; %] | 55 (76.4%)/17 (23.6%) |
Risk SCORE [%: mean(SD; median; IQR] | 4.3 ± 7.0; 1.5 (0.7–4.1) |
Low-Risk: <1% [n; %] | 25 (34.7%) |
Moderate-Risk: ≥1% and <5% [n; %] | 31 (43.1%) |
High-Risk: ≥5% and <10% [n; %] | 6 (8.3%) |
Very-High-Risk: ≥10% [n; %] | 10 (13.9%) |
Lipid Lowering Intervention | |
Diet alone [n; %] | 31 (43.1%) |
Lipid-lowering Nutraceuticals [n; %] | 13 (18.1%) |
Lipid-lowering Drugs [n; %] | 28 (38.9%) |
VARIABLES | Baseline [Mean ± SD; Median; IQR] | Follow-up [Mean ± SD; Median; IQR] | Absolute Variation [Mean ± SD; Median; IQR] | Percentage Variation [%] | p-Value † |
---|---|---|---|---|---|
Weight [kg: mean ± SD; median; IQR] | 75.7 ± 17.5; 74.3 (62.5, 84.0) | 72.8 ± 15.8; 71.0 (60.0, 83.5) | −2.5 ± 3.5; −2.0 (−3.3, 0) | −3.2% | <0.0001 |
BMI [kg/m2: mean ± SD; median; IQR] | 26.3 ± 4.7; 26.0 (22.9, 28.8) | 25.2 ± 4.0; 25.5 (22.1, 27.4) | −9 ± 1.2; −0.6 (−1.2, 0) | −3.3% | <0.0001 |
MEDI-LITE [Points: mean ± SD; median; IQ range] | 10 ± 3; 10 (8, 12) | 13 ± 2; 14 (12, 15) | 3 ± 3; 3 (1, 5) | +43.4% | <0.0001 |
TC [mg/dl: mean ± SD; median, IQR] | |||||
Diet alone | 249 ± 36; 255 (222, 267) | 207 ± 54; 204 (158, 248) | −42 ± 54; −23 (−87, −1) | −16.2% | 0.002 |
Lipid-lowering Nutraceuticals | 257 ± 39; 261 (232, 270) | 211 ± 39; 204 (190, 213) | −38 ± 34; −42 (−67, 0) | −15.1% | 0.046 |
Lipid-lowering Drugs | 238 ± 67; 234 (179, 294) | 170 ± 30; 173 (140, 196) | −83 ± 61; −73 (−119, −33) | −29.3% | <0.0001 |
HDL-C [mg/dl: mean ± SD; median, IQR] | |||||
Diet alone | 58 ± 21; 53 (42, 67) | 60 ± 20; 54 (47, 68) | 0 ± 7; 0 (−3, 4) | 2.5% | 0.641 |
Lipid-lowering Nutraceuticals | 58 ± 26; 46 (40, 63) | 55 ± 17; 50 (40, 72) | 0 ± 9; 0 (−2, 7) | 3.4% | 0.753 |
Lipid-lowering Drugs | 54 ± 15; 52 (42, 66) | 50 ± 12; 48 (40, 61) | −2 ± 8; −3 (−5, 4) | −2.5% | 0.383 |
LDL-C [mg/dl: mean ± SD; median, IQR] | |||||
Diet alone | 161 ± 35; 150 (138, 187) | 123 ± 47; 129 (83, 170) | −32 ± 49; −22 (−78, 0) | −18.6% | 0.026 |
Lipid-lowering Nutraceuticals | 180 ± 33; 179 (154, 196) | 132 ± 34; 131 (102, 145) | −39 ± 37; −39 (−52, −9) | −22.6% | 0.068 |
Lipid-lowering Drugs | 146 ± 60; 147 (95, 185) | 90 ± 29; 100 (70, 112) | −71 ± 50; −66 (−111, −22) | −38.3% | 0.001 |
TG [mg/dl: mean ± SD; median, IQR] | |||||
Diet alone | 184 ± 123; 130 (103, 254) | 129 ± 66; 111 (85, 167) | −39 ± 83; −17 (−44, 0) | −15.2% | 0.025 |
Lipid-lowering Nutraceuticals | 192 ± 149; 119 (102, 208) | 125 ± 56; 102 (90, 177) | −54 ± 104; −10 (−81, 0) | −16.8% | 0.173 |
Lipid-lowering Drugs | 218 ± 228; 138 (104, 206) | 152 ± 105; 123 (90, 158) | −80 ± 200; −45 (−63, 0) | −16.7% | 0.013 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, E.; Pasta, A.; Cremonini, A.L.; Di Lorenzo, I.; Sukkar, S.G.; Pisciotta, L. Effects of a Mediterranean Diet, Dairy, and Meat Products on Different Phenotypes of Dyslipidemia: A Preliminary Retrospective Analysis. Nutrients 2021, 13, 1161. https://doi.org/10.3390/nu13041161
Formisano E, Pasta A, Cremonini AL, Di Lorenzo I, Sukkar SG, Pisciotta L. Effects of a Mediterranean Diet, Dairy, and Meat Products on Different Phenotypes of Dyslipidemia: A Preliminary Retrospective Analysis. Nutrients. 2021; 13(4):1161. https://doi.org/10.3390/nu13041161
Chicago/Turabian StyleFormisano, Elena, Andrea Pasta, Anna Laura Cremonini, Ilaria Di Lorenzo, Samir Giuseppe Sukkar, and Livia Pisciotta. 2021. "Effects of a Mediterranean Diet, Dairy, and Meat Products on Different Phenotypes of Dyslipidemia: A Preliminary Retrospective Analysis" Nutrients 13, no. 4: 1161. https://doi.org/10.3390/nu13041161
APA StyleFormisano, E., Pasta, A., Cremonini, A. L., Di Lorenzo, I., Sukkar, S. G., & Pisciotta, L. (2021). Effects of a Mediterranean Diet, Dairy, and Meat Products on Different Phenotypes of Dyslipidemia: A Preliminary Retrospective Analysis. Nutrients, 13(4), 1161. https://doi.org/10.3390/nu13041161