Placebo Effect of Caffeine on Substrate Oxidation during Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Pre Experimental Trial
2.4. Experimental Protocol
2.5. Statistical Analysis
3. Results
3.1. Pre-Exercise Heart Rate, Blood Pressure and Urine Specific Gravity
3.2. Substrate Oxidation, Energy Expenditure, Heart Rate, and Exertion during the Step Incremental Test
3.3. Maximal Fat Oxidation Rate and Fatmax
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baltazar-Martins, J.G.; Brito De Souza, D.; Aguilar, M.; Grgic, J.; Del Coso, J. Infographic. The road to the ergogenic effect of caffeine on exercise performance. Br. J. Sports Med. 2019, 54, 618–619. [Google Scholar] [CrossRef]
- Salinero, J.J.; Lara, B.; Del Coso, J. Effects of acute ingestion of caffeine on team sports performance: A systematic review and meta-analysis. Res. Sport. Med. 2019, 27, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguilar-Navarro, M.; Muñoz, G.; Salinero, J.J.; Muñoz-Guerra, J.; Fernández-álvarez, M.; Plata, M.D.M.; Del Coso, J. Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients 2019, 11, 286. [Google Scholar] [CrossRef] [Green Version]
- Wickham, K.A.; Spriet, L.L. Administration of Caffeine in Alternate Forms. Sport. Med. 2018, 48, 79–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collado-Mateo, D.; Lavín-Pérez, A.M.; Merellano-Navarro, E.; Del Coso, J. Effect of acute caffeine intake on the fat oxidation rate during exercise: A systematic review and meta-analysis. Nutrients 2020, 12, 3603. [Google Scholar] [CrossRef]
- Ramírez-Maldonado, M.; Jurado-Fasoli, L.; del Coso, J.; Ruiz, J.R.; Amaro-Gahete, F.J. Caffeine increases maximal fat oxidation during a graded exercise test: Is there a diurnal variation? J. Int. Soc. Sports Nutr. 2021, 18, 1–9. [Google Scholar] [CrossRef]
- Gutiérrez-Hellín, J.; Del Coso, J. Effects of p -Synephrine and Caffeine Ingestion on Substrate Oxidation during Exercise. Med. Sci. Sports Exerc. 2018, 50, 1899–1906. [Google Scholar] [CrossRef]
- Ruiz-Moreno, C.; Gutiérrez-Hellín, J.; Amaro-Gahete, F.J.; González-García, J.; Giráldez-Costas, V.; Pérez-García, V.; Del Coso, J. Caffeine increases whole-body fat oxidation during 1 h of cycling at Fatmax. Eur. J. Nutr. 2020, in press. [Google Scholar] [CrossRef]
- Kurobe, K.; Nakao, S.; Nishiwaki, M.; Matsumoto, N. Combined effect of coffee ingestion and repeated bouts of low-intensity exercise on fat oxidation. Clin. Physiol. Funct. Imaging 2017, 37, 148–154. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Yang, J.; Wang, Y. Low, but not high, dose caffeine is a readily available probe for adenosine actions. Mol. Asp. Med. 2017, 55, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Costill, D.L.; Fink, W.J.; Lower1, R.W. Influence of caffeine and carbohydrate feedings on endurance performance. Med. Sci. Sports 1979, 11, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Lyons, M.; Hankey, J. Placebo effects of caffeine on short-term resistance exercise to failure. Int. J. Sports Physiol. Perform. 2009, 4, 244–253. [Google Scholar] [CrossRef]
- Anderson, D.E.; German, R.E.; Harrison, M.E.; Bourassa, K.N.; Taylor, C.E. Real and perceived effects of caffeine on sprint cycling in experienced cyclists. J. Strength Cond. Res. 2020, 34, 929–933. [Google Scholar] [CrossRef]
- Hurst, P.; Schipof-Godart, L.; Hettinga, F.; Roelands, B.; Beedie, C. Improved 1000-m running performance and pacing strategy with caffeine and placebo: A balanced placebo design study. Int. J. Sports Physiol. Perform. 2020, 15, 483–488. [Google Scholar] [CrossRef]
- Beedie, C.J.; Stuart, E.M.; Coleman, D.A.; Foad, A.J. Placebo effects of caffeine on cycling performance. Med. Sci. Sports Exerc. 2006, 38, 2159–2164. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Krzysztofik, M.; Kaszuba, M.; Leońska-Duniec, A.; Czarny, W.; Del Coso, J.; Wilk, M. Placebo effect of caffeine on maximal strength and strength endurance in healthy recreationally trained women habituated to caffeine. Nutrients 2020, 12, 3813. [Google Scholar] [CrossRef] [PubMed]
- Foad, A.J.; Beedie, C.J.; Coleman, D.A. Pharmacological and psychological effects of caffeine ingestion in 40-km cycling performance. Med. Sci. Sports Exerc. 2008, 40, 158–165. [Google Scholar] [CrossRef]
- Colloca, L. Preface: The Fascinating Mechanisms and Implications of the Placebo Effect. Int. Rev. Neurobiol. 2018, 138, xv–xx. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Filip, A.; Wilk, M.; Krzysztofik, M.; Del Coso, J. Inconsistency in the ergogenic effect of caffeine in athletes who regularly consume caffeine: Is it due to the disparity in the criteria that defines habitual caffeine intake? Nutrients 2020, 12, 1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaud, M.J. Metabolism of caffeine and other components of coffee. In Caffeine, Coffee, and Health; Garattini, S., Ed.; Raven Press: New York, NY, USA, 1993; pp. 43–95. [Google Scholar]
- Borg, G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand. J. Work Environ. Health 1990, 16, 55–58. [Google Scholar] [CrossRef]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [PubMed] [Green Version]
- Volpe, S.L.; Poule, K.A.; Bland, E.G. Estimation of prepractice hydration status of National Collegiate Athletic Association Division I athletes. J. Athl. Train. 2009, 44, 624–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, E. On simple formulae for calculating the heat expenditure and the quantities of carbohydrate and fat oxidized in metabolism of men and animals, from gaseous exchange (Oxygen intake and carbonic acid output) and urine-N. Acta Physiol. Pharmacol. Neerl. 1957, 6, 795–802. [Google Scholar]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez-Hellín, J.; Del Coso, J. Acute p-synephrine ingestion increases fat oxidation rate during exercise. Br. J. Clin. Pharmacol. 2016, 82, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Shabir, A.; Hooton, A.; Spencer, G.; Storey, M.; Ensor, O.; Sandford, L.; Tallis, J.; Saunders, B.; Higgins, M.F. The Influence of Caffeine Expectancies on Simulated Soccer Performance in Recreational Individuals. Nutrients 2019, 11, 2289. [Google Scholar] [CrossRef] [Green Version]
- Tallis, J.; Muhammad, B.; Islam, M.; Duncan, M.J. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve 2016, 54, 479–486. [Google Scholar] [CrossRef]
- Beedie, C.; Benedetti, F.; Barbiani, D.; Camerone, E.; Lindheimer, J.; Roelands, B. Incorporating methods and findings from neuroscience to better understand placebo and nocebo effects in sport. Eur. J. Sport Sci. 2020, 20, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Colagiuri, B.; Schenk, L.A.; Kessler, M.D.; Dorsey, S.G.; Colloca, L. The placebo effect: From concepts to genes. Neuroscience 2015, 307, 171–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeusen, R.; Roelands, B.; Spriet, L.L. Caffeine, Exercise and the Brain. Nestle Nutr. Inst. Workshop Ser. 2013, 20, 1–12. [Google Scholar]
- Benedetti, F.; Dogue, S. Different placebos, different mechanisms, different outcomes: Lessons for clinical trials. PLoS ONE 2015, 10, e0140967. [Google Scholar] [CrossRef] [Green Version]
- Noakes, T.D.; St. Clair Gibson, A.; Lambert, E.V. From catastrophe to complexity: A novel model of integrative central neural regulation of effort and fatigue during exercise in humans: Summary and conclusions. Br. J. Sports Med. 2005, 39, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Doherty, M.; Smith, P.M. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef]
- Saunders, B.; de Oliveira, L.F.; da Silva, R.P.; de Salles Painelli, V.; Gonçalves, L.S.; Yamaguchi, G.; Mutti, T.; Maciel, E.; Roschel, H.; Artioli, G.G.; et al. Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scand. J. Med. Sci. Sport. 2017, 27, 1240–1247. [Google Scholar] [CrossRef]
- Graham, T.E.; Spriet, L.L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J. Appl. Physiol. 1995, 78, 867–874. [Google Scholar] [CrossRef]
- Ruíz-Moreno, C.; Lara, B.; Brito de Souza, D.; Gutiérrez-Hellín, J.; Romero-Moraleda, B.; Cuéllar-Rayo, Á.; Del Coso, J. Acute caffeine intake increases muscle oxygen saturation during a maximal incremental exercise test. Br. J. Clin. Pharmacol. 2020, 86, 861–867. [Google Scholar] [CrossRef]
- Shabir, A.; Hooton, A.; Tallis, J.; Higgins, M.F. The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients 2018, 10, 1528. [Google Scholar] [CrossRef] [Green Version]
- Salinero, J.J.; Lara, B.; Abian-Vicen, J.; Gonzalez-Millán, C.; Areces, F.; Gallo-Salazar, C.; Ruiz-Vicente, D.; Del Coso, J. The use of energy drinks in sport: Perceived ergogenicity and side effects in male and female athletes. Br. J. Nutr. 2014, 112, 1494–1502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable (Units) | Placebo | Received Caffeine | Informed Caffeine | p |
---|---|---|---|---|
Resting heart rate (beat/min) | 53 ± 8 | 52 ± 8 | 53 ± 9 | 0.509 |
Systolic blood pressure (mmHg) | 116 ± 12 | 119 ± 9 | 117 ± 9 | 0.639 |
Diastolic blood pressure (mmHg) | 66 ± 10 | 68 ± 7 | 66 ± 6 | 0.191 |
Urine specific gravity | 1.013 ± 0.006 | 1.014 ± 0.005 | 1.017 ± 0.003 | 0.271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez-Hellín, J.; Ruiz-Moreno, C.; Aguilar-Navarro, M.; Muñoz, A.; Varillas-Delgado, D.; Amaro-Gahete, F.J.; Roberts, J.D.; Del Coso, J. Placebo Effect of Caffeine on Substrate Oxidation during Exercise. Nutrients 2021, 13, 782. https://doi.org/10.3390/nu13030782
Gutiérrez-Hellín J, Ruiz-Moreno C, Aguilar-Navarro M, Muñoz A, Varillas-Delgado D, Amaro-Gahete FJ, Roberts JD, Del Coso J. Placebo Effect of Caffeine on Substrate Oxidation during Exercise. Nutrients. 2021; 13(3):782. https://doi.org/10.3390/nu13030782
Chicago/Turabian StyleGutiérrez-Hellín, Jorge, Carlos Ruiz-Moreno, Millán Aguilar-Navarro, Alejandro Muñoz, David Varillas-Delgado, Francisco J. Amaro-Gahete, Justin D. Roberts, and Juan Del Coso. 2021. "Placebo Effect of Caffeine on Substrate Oxidation during Exercise" Nutrients 13, no. 3: 782. https://doi.org/10.3390/nu13030782