Glycaemic and Appetite Suppression Effect of a Vegetable-Enriched Bread
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design and Methods
2.3. Measurements
2.4. Appetite Assessment
2.5. Preparation and Nutritional Characterisation of Breads
2.6. Statistical Analyses
3. Results
3.1. Nutrient Analysis
3.2. Participants
3.3. Glucose and Insulin Response
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health. A Focus on nutrition: Key findings of the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Breen, C.; Ryan, M.; Gibney, M.J.; Corrigan, M.; O’Shea, D. Glycemic, insulinemic, and appetite responses of patients with type 2 diabetes to commonly consumed breads. Diabetes Educ. 2013, 39, 376–386. [Google Scholar] [CrossRef]
- Gonzalez-Anton, C.; Artacho, R.; Ruiz-Lopez, M.D.; Gil, A.; Mesa, M.D. Modification of appetite by bread consumption: A systematic review of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2017, 57, 3035–3050. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kim, Y.; Lim, H. Glycaemic indices and glycaemic loads of common Korean carbohydrate-rich foods. Br. J. Nutr. 2018, 121, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Sajdakowska, M.; Gebski, J.; Zakowska-Biemans, S.; Jezewska-Zychowicz, M. Willingness to eat bread with health benefits: Habits, taste and health in bread choice. Public Health 2019, 167, 78–87. [Google Scholar] [CrossRef]
- Food Standard Australia and New Zealand. Wholegrain Food. Available online: https://www.foodstandards.gov.au/consumer/nutrition/wholegrain/Pages/default.aspx (accessed on 28 October 2021).
- Williams, B.A.; Mikkelsen, D.; Flanagan, B.M.; Gidley, M.J. “Dietary fibre”: Moving beyond the “soluble/insoluble” classification for monogastric nutrition, with an emphasis on humans and pigs. J. Anim. Sci. Biotechnol. 2019, 10, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Reis Gallo, L.R.; Reis, C.E.G.; Mendonca, M.A.; da Silva, V.S.N.; Pacheco, M.T.B.; Botelho, R.B.A. Impact of Gluten-Free Sorghum Bread Genotypes on Glycemic and Antioxidant Responses in Healthy Adults. Foods 2021, 10, 2256. [Google Scholar] [CrossRef]
- Devi, A.; Chisholm, A.; Gray, A.; Tey, S.L.; Williamson-Poutama, D.; Cameron, S.L.; Brown, R.C. Nut-enriched bread is an effective and acceptable vehicle to improve regular nut consumption. Eur. J. Nutr. 2016, 55, 2281–2293. [Google Scholar] [CrossRef]
- Ostman, J.R.; Mullner, E.; Eriksson, J.; Kristinsson, H.; Gustafsson, J.; Witthoft, C.; Bergsten, P.; Moazzami, A.A. Glucose appearance rate rather than the blood glucose concentrations explains differences in postprandial insulin responses between wholemeal rye and refined wheat breads-Results from a cross-over meal study. Mol. Nutr Food Res. 2019, 63, 1800959. [Google Scholar] [CrossRef]
- Ho, H.; Lee, A.S.; Jovanovski, E.; Jenkins, A.L.; Desouza, R.; Vuksan, V. Effect of whole and ground Salba seeds (Salvia Hispanica L.) on postprandial glycemia in healthy volunteers: A randomized controlled, dose-response trial. Eur. J. Clin. Nutr. 2013, 67, 786–788. [Google Scholar] [CrossRef]
- Vuksan, V.; Jenkins, A.L.; Dias, A.G.; Lee, A.S.; Jovanovski, E.; Rogovik, A.L.; Hanna, A. Reduction in postprandial glucose excursion and prolongation of satiety: Possible explanation of the long-term effects of whole grain Salba (Salvia Hispanica L.). Eur J. Clin. Nutr. 2010, 64, 436–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.K.; Thomas, S.J.; Hall, R.S. Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. Eur. J. Clin. Nutr. 2005, 59, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Galaz, P.; Valdenegro, M.; Ramírez, C.; Nuñez, H.; Almonacid, S.; Simpson, R. Effect of drum drying temperature on drying kinetic and polyphenol contents in pomegranate peel. J. Food Eng. 2017, 208, 19–27. [Google Scholar] [CrossRef]
- Amoah, I.; Cairncross, C.; Rush, E. Swallowing and Liking of Vegetable-Enriched Bread Compared with Commercial Breads as Evaluated by Older Adults. Front. Nutr. 2020, 7, 599737. [Google Scholar] [CrossRef]
- Einhorn-Stoll, U. Pectin-water interactions in foods—From powder to gel. Food Hydrocoll. 2018, 78, 109–119. [Google Scholar] [CrossRef]
- Fissore, E.N.; Matkovic, L.; Wider, E.; Rojas, A.M.; Gerschenson, L.N. Rheological properties of pectin-enriched products isolated from butternut (Cucurbita moschata Duch ex Poiret). LWT—Food Sci. Technol. 2009, 42, 1413–1421. [Google Scholar] [CrossRef]
- Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 2001, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.; Savorani, F.; Christensen, S.; Engelsen, S.B.; Bugel, S.; Toubro, S.; Tetens, I.; Astrup, A. Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 136–143. [Google Scholar] [CrossRef]
- Hutchins, A.M.; Brown, B.D.; Cunnane, S.C.; Domitrovich, S.G.; Adams, E.R.; Bobowiec, C.E. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: A randomized study. Nutr. Res. 2013, 33, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Donkor, O.N.; Stojanovska, L.; Ginn, P.; Ashton, J.; Vasiljevic, T. Germinated grains-sources of bioactive compounds. Food Chem. 2012, 135, 950–959. [Google Scholar] [CrossRef]
- Marti, A.; Cardone, G.; Nicolodi, A.; Quaglia, L.; Pagani, M.A. Sprouted wheat as an alternative to conventional flour improvers in bread-making. LWT—Food Sci. Technol. 2017, 80, 230–236. [Google Scholar] [CrossRef]
- Singh, A.K.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of attributes of cereals by germination and fermentation: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1575–1589. [Google Scholar] [CrossRef]
- Wang, P.Y.; Fang, J.C.; Gao, Z.H.; Zhang, C.; Xie, S.Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2016, 7, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Zurbau, A.; Au-Yeung, F.; Blanco Mejia, S.; Khan, T.A.; Vuksan, V.; Jovanovski, E.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Relation of Different Fruit and Vegetable Sources with Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2020, 9, e017728. [Google Scholar] [CrossRef] [PubMed]
- Maltini, E.; Torreggiani, D.; Venir, E.; Bertolo, G. Water activity and the preservation of plant foods. Food Chem. 2003, 82, 79–86. [Google Scholar] [CrossRef]
- Health Canada. Draft Guidance Document on Food Health Claims Related to the Reduction in Post-Prandial Glycaemic Response; Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch: Ottawa, ON, Canada, 2013. [Google Scholar]
- Wolever, T.M.; Brand-Miller, J.C.; Abernethy, J.; Astrup, A.; Atkinson, F.; Axelsen, M.; Björck, I.; Brighenti, F.; Brown, R.; Brynes, A.; et al. Measuring the glycemic index of foods: Interlaboratory study. Am. J. Clin. Nutr. 2008, 87, 247S–257S. [Google Scholar] [CrossRef] [Green Version]
- Food Standards Australia New Zealand. Nutrient Profiling Scoring Calculator. Available online: https://www.foodstandards.gov.au/industry/npc/Pages/nutrition-panel-calculator.aspx (accessed on 8 November 2021).
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and abuse of HOMA modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef] [Green Version]
- Coe, S.; Ryan, L. White bread enriched with polyphenol extracts shows no effect on glycemic response or satiety, yet may increase postprandial insulin economy in healthy participants. Nutr. Res. 2016, 36, 193–200. [Google Scholar] [CrossRef]
- Holt, S.H.; Miller, J.C.; Petocz, P. An insulin index of foods: The insulin demand generated by 1000-kJ portions of common foods. Am. J. Clin. Nutr. 1997, 66, 1264–1276. [Google Scholar] [CrossRef] [PubMed]
- Juntunen, K.S.; Niskanen, L.K.; Liukkonen, K.H.; Poutanen, K.S.; Holst, J.J.; Mykkänen, H.M. Postprandial glucose, insulin, and incretin responses to grain products in healthy subjects. Am. J. Clin. Nutr. 2002, 75, 254–262. [Google Scholar] [CrossRef]
- Jones, B.; Bloom, S.R.; Buenaventura, T.; Tomas, A.; Rutter, G.A. Control of insulin secretion by GLP-1. Peptides 2018, 100, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Thakur, G.; Mitra, A.; Pal, K.; Rousseau, D. Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. Int J. Food Sci Nutr 2009, 60 (Suppl. 6), 126–136. [Google Scholar] [CrossRef]
- Umeno, A.; Horie, M.; Murotomi, K.; Nakajima, Y.; Yoshida, Y. Antioxidative and antidiabetic effects of natural polyphenols and isoflavones. Molecules 2016, 21, 708. [Google Scholar] [CrossRef] [Green Version]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O.; Jekle, M.; Becker, T. Development of fibre-enriched wheat breads: Impact of recovered agroindustrial by-products on physicochemical properties of dough and bread characteristics. Eur. Food Res. Technol. 2017, 243, 1973–1988. [Google Scholar] [CrossRef]
- Chambers, L.; McCrickerd, K.; Yeomans, M.R. Optimising foods for satiety. Trends Food Sci. Technol. 2015, 41, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Perry, B.; Wang, Y. Appetite regulation and weight control: The role of gut hormones. Nutr. Diabetes 2012, 2, e26. [Google Scholar] [CrossRef] [Green Version]
- Steinert, R.E.; Feinle-Bisset, C.; Asarian, L.; Horowitz, M.; Beglinger, C.; Geary, N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB. Physiol. Rev. 2017, 97, 411–463. [Google Scholar] [CrossRef] [Green Version]
- Ibrügger, S.; Kristensen, M.; Mikkelsen, M.S.; Astrup, A. Flaxseed dietary fiber supplements for suppression of appetite and food intake. Appetite 2012, 58, 490–495. [Google Scholar] [CrossRef]
- Slyper, A. Oral Processing, Satiation and Obesity: Overview and Hypotheses. Diabetes Metab. Syndr. Obes. 2021, 14, 3399–3415. [Google Scholar] [CrossRef] [PubMed]
- The International Organization for Standardization. Food products–Determination of the Glycaemic Index (GI) and Recommendation for Food Classification. ISO 26642:2010 Geneva, Switzerland; Available online: https://www.iso.org/standard/43633.html (accessed on 8 November 2021).
White Bread * | Wheatmeal Bread * | Vegetable Bread |
---|---|---|
Wheat flour | Wheat flour | Water |
Water | Water | Wheat flour |
Baker’s yeast | Wheatmeal flour | Wheatmeal flour |
Iodised salt | Baker’s Yeast | Flaxseed |
Canola oil | Vinegar | Pumpkin powder |
Acidity regulator (263) | Iodised salt | Sweet corn powder |
Soy flour | Wheat gluten | Sprouted wheat flour |
Emulsifiers (481, 472e) | Acidity regulator (263) | Salt |
Vitamin (Folic Acid) | Roasted barley malt flour | Baker’s yeast |
Canola oil | ||
Soy flour | ||
Emulsifiers (481, 472e) | ||
Vitamin (Folic Acid) |
Component | White Bread * | Wheatmeal Bread * | Vegetable Bread † |
---|---|---|---|
Moisture (g/100 g) | 36.6 | 38.2 | 39.1 |
Protein (g/100 g) | 8.5 | 8.8 | 7.5 * |
Dietary fibre (g/100 g) | 2.7 | 4.6 | 7.2 |
Insoluble fibre (g/100 g) | nd | nd | 5.5 |
Soluble fibre (g/100 g) | nd | nd | 1.7 |
Fat (g/100 g) | 1.6 | 1.7 | 4.8 * |
Carbohydrate (g/100 g) | 46.7 | 43.1 | 33.9 * |
Sodium (mg/100 g) | 392 | 398 | 380 |
Potassium (mg/100 g) | nd | nd | 300 |
Energy (kJ/100 g) | 1020 | 982 | 932 * |
β-Carotene (µg/100 g) | nd | nd | 236.8 |
Measure | Unit | Mean | Standard Deviation | Range | Interquartile Range |
---|---|---|---|---|---|
Age (years) | years | 23.1 | 7.0 | 23 | 4 |
Weight | kg | 106.7 | 18.0 | 60 | 12.8 |
Height | cm | 181.9 | 11.0 | 38 | 15.8 |
BMI | kg/m2 | 32.1 | 4.5 | 15 | 7.21 |
Glucose | mmol/L | 5.3 | 0.4 | 1.75 | 0.33 |
Insulin | pmol/L | 131 | 69.6 | 215 | 133.1 |
HOMAR-IR | mmol/L*pmol/L | 31 | 16.7 | 52.4 | 32.7 |
HOMAR-%B | p/mol/mmol | 1498 | 957 | 4794.6 | 1139.7 |
Bread | Mean/mmol*min/L | Standard Error | 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
White bread | 75.9 | 13.5 | 45.3 | 106.4 |
Wheatmeal bread | 67.0 | 9.9 | 44.7 | 89.3 |
Vegetable bread | 56.8 | 9.6 | 35.0 | 78.5 |
Bread | Mean/mmol*min/L | Standard Error | 95% Confidence Interval | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
White bread | 32,892 | 8058 | 14,663 | 51,121 |
Wheatmeal bread | 34,276 | 8594 | 14,835 | 53,718 |
Vegetable bread | 20,476 | 4425 | 10,466 | 30,488 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amoah, I.; Cairncross, C.; Merien, F.; Rush, E. Glycaemic and Appetite Suppression Effect of a Vegetable-Enriched Bread. Nutrients 2021, 13, 4277. https://doi.org/10.3390/nu13124277
Amoah I, Cairncross C, Merien F, Rush E. Glycaemic and Appetite Suppression Effect of a Vegetable-Enriched Bread. Nutrients. 2021; 13(12):4277. https://doi.org/10.3390/nu13124277
Chicago/Turabian StyleAmoah, Isaac, Carolyn Cairncross, Fabrice Merien, and Elaine Rush. 2021. "Glycaemic and Appetite Suppression Effect of a Vegetable-Enriched Bread" Nutrients 13, no. 12: 4277. https://doi.org/10.3390/nu13124277
APA StyleAmoah, I., Cairncross, C., Merien, F., & Rush, E. (2021). Glycaemic and Appetite Suppression Effect of a Vegetable-Enriched Bread. Nutrients, 13(12), 4277. https://doi.org/10.3390/nu13124277