A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Procedure
2.2. Analytical Procedures
2.3. RNA Extraction and Quantification
2.4. Quantitative Real-Time PCR (RT-qPCR) Methods and Data Analysis
2.5. Calculations
2.6. Statistics
3. Results
3.1. Impact of Dietary Fibre Supplementation on Muscle (Longissimus dorsi) Phenotype and Gene Expression
3.2. Impact of Dietary Fibre Supplementation on Subcutaneous Adipose Tissue, Caecum and Jejunum Genes Expression
3.3. Fasting Concentration of Circulating Metabolites
3.4. Fecal SCFAs Concentration
3.5. Fasting Nutrient Net Fluxes across the Splanchnic Area
4. Discussion
4.1. Overfeeding and Fibre Supplementation: Impact on Muscle Structure and Metabolic Activities
4.2. Overfeeding and Fibre Supplementation: Impact on Adipose Tissue mRNA Levels
4.3. Consequences of the Activation of Lipid Catabolism in the Peripheral Organs on Overall Energy Metabolism
4.4. Mediators of These Metabolic Adaptation to Fibre Supplementation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hales, C.M.; Fryar, C.D.; Carroll, M.D.; Freedman, D.S.; Ogden, C.L. Trends in Obesity and Severe Obesity Prevalence in US Youth and Adults by Sex and Age, 2007–2008 to 2015–2016. JAMA J. Am. Med. Assoc. 2018, 319, 1723–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Pfeiffer, A.F.H. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Brockman, D.A.; Chen, X.; Gallaher, D.D. Hydroxypropyl methylcellulose, a viscous soluble fiber, reduces insulin resistance and decreases fatty liver in Zucker Diabetic Fatty rats. Nutr. Metab. 2012, 9, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, f6879. [Google Scholar] [CrossRef] [Green Version]
- Veronese, N.; Solmi, M.; Caruso, M.G.; Giannelli, G.; Osella, A.R.; Evangelou, E.; Maggi, S.; Fontana, L.; Stubbs, B.; Tzoulaki, I. Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. Am. J. Clin. Nutr. 2018, 107, 436–444. [Google Scholar] [CrossRef] [Green Version]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health Implications of Dietary Fiber. J. Acad. Nutr. Diet. 2015, 115, 1861–1870. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Saha, D.C.; Reimer, R.A. Long-term intake of a high prebiotic fiber diet but not high protein reduces metabolic risk after a high fat challenge and uniquely alters gut microbiota and hepatic gene expression. Nutr. Res. 2014, 34, 789–796. [Google Scholar] [CrossRef]
- Jakobsdottir, G.; Xu, J.; Molin, G.; Ahrne, S.; Nyman, M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS ONE 2013, 8, e80476. [Google Scholar] [CrossRef] [Green Version]
- Isken, F.; Klaus, S.; Osterhoff, M.; Pfeiffer, A.F.; Weickert, M.O. Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6J mice. J. Nutr. Biochem. 2010, 21, 278–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, H.; Potu, R.; Lu, H.; Vezzoni de Almeida, V.; Stewart, T.; Ragland, D.; Armstrong, A.; Adeola, O.; Nakatsu, C.H.; Ajuwon, K.M. Dietary fat content and fiber type modulate hind gut microbial community and metabolic markers in the pig. PLoS ONE 2013, 8, e59581. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.B.; Remond, D.; Chambon, C.; Sayd, T.; Hebraud, M.; Capel, F.; Cohade, B.; Hafnaoui, N.; Bechet, D.; Coudy-Gandilhon, C.; et al. A mix of dietary fermentable fibers improves lipids handling by the liver of overfed minipigs. J. Nutr. Biochem. 2018, 65, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, C.; Li, P.; Lu, Y.; Chang, X.; Qi, K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by Regulating G Protein-coupled Receptors and Gut Microbiota. Sci. Rep. 2016, 6, 37589. [Google Scholar] [CrossRef] [Green Version]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015, 64, 1744–1754. [Google Scholar] [CrossRef] [Green Version]
- Den Besten, G.; Lange, K.; Havinga, R.; van Dijk, T.H.; Gerding, A.; van Eunen, K.; Muller, M.; Groen, A.K.; Hooiveld, G.J.; Bakker, B.M.; et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G900–G910. [Google Scholar] [CrossRef]
- Beauvieux, M.C.; Roumes, H.; Robert, N.; Gin, H.; Rigalleau, V.; Gallis, J.L. Butyrate ingestion improves hepatic glycogen storage in the re-fed rat. BMC Physiol. 2008, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Yin, J.; Zhang, J.; Ward, R.E.; Martin, R.J.; Lefevre, M.; Cefalu, W.T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009, 58, 1509–1517. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Ojima-Kato, T.; Saburi, W.; Mori, H.; Matsui, H.; Tanabe, S.; Suzuki, T. Supplemental epilactose prevents metabolic disorders through uncoupling protein-1 induction in the skeletal muscle of mice fed high-fat diets. Br. J. Nutr. 2015, 114, 1774–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfora, E.E.; Blaak, E.E. The role of polydextrose in body weight control and glucose regulation. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 395–400. [Google Scholar] [CrossRef]
- Den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.J.; et al. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARgamma-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes 2015, 64, 2398–2408. [Google Scholar] [CrossRef] [Green Version]
- Frampton, J.; Murphy, K.G.; Frost, G.; Chambers, E.S. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat. Metab. 2020, 2, 840–848. [Google Scholar] [CrossRef]
- Ndou, S.P.; Kiarie, E.; Walsh, M.C.; Ames, N.; de Lange, C.F.M.; Nyachoti, C.M. Interactive effects of dietary fibre and lipid types modulate gastrointestinal flows and apparent digestibility of fatty acids in growing pigs. Br. J. Nutr. 2019, 121, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Wealleans, A.L.; Bierinckx, K.; di Benedetto, M. Fats and oils in pig nutrition: Factors affecting digestion and utilization. Anim. Feed Sci. Tech. 2021, 277, 114950. [Google Scholar] [CrossRef]
- Polakof, S.; Remond, D.; Bernalier-Donadille, A.; Rambeau, M.; Pujos-Guillot, E.; Comte, B.; Dardevet, D.; Savary-Auzeloux, I. Metabolic adaptations to HFHS overfeeding: How whole body and tissues postprandial metabolic flexibility adapt in Yucatan mini-pigs. Eur. J. Nutr. 2018, 57, 119–135. [Google Scholar] [CrossRef]
- Savary-Auzeloux, I.; Mohamed, A.B.; Cohade, B.; Dardevet, D.; David, J.; Hafnaoui, N.; Migne, C.; Pujos-Guillot, E.; Remond, D.; Polakof, S. Profound Changes in Net Energy and Nitrogen Metabolites Fluxes within the Splanchnic Area during Overfeeding of Yucatan Mini Pigs That Remain Euglycemic. Nutrients 2019, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Poupin, N.; Tremblay-Franco, M.; Amiel, A.; Canlet, C.; Rémond, D.; Debrauwer, L.; Dardevet, D.; Thiele, I.; Aurich, M.K.; Jourdan, F.; et al. Arterio-venous metabolomics exploration reveals major changes across liver and intestine in the obese Yucatan minipig. Sci. Rep. 2019, 9, 12527. [Google Scholar] [CrossRef] [Green Version]
- Arufe, S.; Chiron, H.; Dore, J.; Savary-Auzeloux, I.; Saulnier, L.; Della Valle, G. Processing & rheological properties of wheat flour dough and bread containing high levels of soluble dietary fibres blends. Food Res. Int. (Ott. Ont.) 2017, 97, 123–132. [Google Scholar] [CrossRef]
- Katz, M.L.; Bergman, E.N. Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. Am. J. Physiol. 1969, 216, 946–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbe, F.; Menard, O.; Le Gouar, Y.; Buffiere, C.; Famelart, M.H.; Laroche, B.; Le Feunteun, S.; Dupont, D.; Remond, D. The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chem. 2013, 136, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Huntington, G.B. Portal blood flow and net absorption of ammonia-nitrogen, urea-nitrogen, and glucose in nonlactating Holstein cows. J. Dairy Sci. 1982, 65, 1155–1162. [Google Scholar] [CrossRef]
- Rodriguez-Lopez, J.M.; Cantalapiedra-Hijar, G.; Durand, D.; Isserty-Thomas, A.; Ortigues-Marty, I. Influence of the para-aminohippuric acid analysis method on the net hepatic flux of nutrients in lactating cows. J. Anim. Sci. 2014, 92, 1074–1082. [Google Scholar] [CrossRef] [Green Version]
- Pouteau, E.; Meirim, I.; Metairon, S.; Fay, L.B. Acetate, propionate and butyrate in plasma: Determination of the concentration and isotopic enrichment by gas chromatography/mass spectrometry with positive chemical ionization. J. Mass Spectrom. JMS 2001, 36, 798–805. [Google Scholar] [CrossRef]
- Gao, X.; Pujos-Guillot, E.; Sebedio, J.L. Development of a quantitative metabolomic approach to study clinical human fecal water metabolome based on trimethylsilylation derivatization and GC/MS analysis. Anal. Chem. 2010, 82, 6447–6456. [Google Scholar] [CrossRef]
- Watt, M.J.; Hoy, A.J. Lipid metabolism in skeletal muscle: Generation of adaptive and maladaptive intracellular signals for cellular function. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1315–E1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gueugneau, M.; Coudy-Gandilhon, C.; Theron, L.; Meunier, B.; Barboiron, C.; Combaret, L.; Taillandier, D.; Polge, C.; Attaix, D.; Picard, B.; et al. Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2015, 70, 566–576. [Google Scholar] [CrossRef]
- Malenfant, P.; Joanisse, D.R.; Theriault, R.; Goodpaster, B.H.; Kelley, D.E.; Simoneau, J.A. Fat content in individual muscle fibers of lean and obese subjects. Int. J. Obes. Relat. Metab. Disord. J. Int. Assoc. Study Obes. 2001, 25, 1316–1321. [Google Scholar] [CrossRef] [Green Version]
- Gavin, T.P.; Stallings, H.W.; Zwetsloot, K.A.; Westerkamp, L.M.; Ryan, N.A.; Moore, R.A.; Pofahl, W.E.; Hickner, R.C. Lower capillary density but no difference in VEGF expression in obese vs. lean young skeletal muscle in humans. J. Appl. Physiol. 2005, 98, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, B.A.; Alloosh, M.; Wenzel, J.W.; Sturek, M.; Kostrominova, T.Y. Effect of diet-induced obesity and metabolic syndrome on skeletal muscles of Ossabaw miniature swine. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E848–E857. [Google Scholar] [CrossRef] [Green Version]
- Guillerm-Regost, C.; Louveau, I.; Sebert, S.P.; Damon, M.; Champ, M.M.; Gondret, F. Cellular and biochemical features of skeletal muscle in obese Yucatan minipigs. Obesity 2006, 14, 1700–1707. [Google Scholar] [CrossRef]
- Tanner, C.J.; Barakat, H.A.; Dohm, G.L.; Pories, W.J.; MacDonald, K.G.; Cunningham, P.R.; Swanson, M.S.; Houmard, J.A. Muscle fiber type is associated with obesity and weight loss. Am. J. Physiol. Endocrinol. Metabol. 2002, 282, E1191–E1196. [Google Scholar] [CrossRef] [Green Version]
- Togawa, N.; Takahashi, R.; Hirai, S.; Fukushima, T.; Egashira, Y. Gene expression analysis of the liver and skeletal muscle of psyllium-treated mice. Br. J. Nutr. 2013, 109, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.E.; He, J.; Menshikova, E.V.; Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002, 51, 2944–2950. [Google Scholar] [CrossRef] [Green Version]
- Szendroedi, J.; Phielix, E.; Roden, M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2011, 8, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Rieusset, J. Contribution of mitochondria and endoplasmic reticulum dysfunction in insulin resistance: Distinct or interrelated roles? Diabetes Metab. 2015, 41, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Whytock, K.L.; Shepherd, S.O.; Wagenmakers, A.J.M.; Strauss, J.A. Hormone-sensitive lipase preferentially redistributes to lipid droplets associated with perilipin-5 in human skeletal muscle during moderate-intensity exercise. J. Physiol. 2018, 596, 2077–2090. [Google Scholar] [CrossRef] [Green Version]
- Devarshi, P.P.; McNabney, S.M.; Henagan, T.M. Skeletal Muscle Nucleo-Mitochondrial Crosstalk in Obesity and Type 2 Diabetes. Int. J. Mol. Sci. 2017, 18, 831. [Google Scholar] [CrossRef] [Green Version]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstrale, M.; Laurila, E.; et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Handschin, C.; Spiegelman, B.M. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature 2008, 454, 463–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, J.; Jia, Y.; Pan, S.; Jia, L.; Li, H.; Han, Z.; Cai, D.; Zhao, R. Butyrate alleviates high fat diet-induced obesity through activation of adiponectin-mediated pathway and stimulation of mitochondrial function in the skeletal muscle of mice. Oncotarget 2016, 7, 56071–56082. [Google Scholar] [CrossRef] [Green Version]
- Brockman, D.A.; Chen, X.; Gallaher, D.D. High-viscosity dietary fibers reduce adiposity and decrease hepatic steatosis in rats fed a high-fat diet. J. Nutr. 2014, 144, 1415–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Ann. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Finck, B.N.; Bernal-Mizrachi, C.; Han, D.H.; Coleman, T.; Sambandam, N.; LaRiviere, L.L.; Holloszy, J.O.; Semenkovich, C.F.; Kelly, D.P. A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-related diabetes. Cell Metab. 2005, 1, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Van Wessel, T.; de Haan, A.; van der Laarse, W.J.; Jaspers, R.T. The muscle fiber type-fiber size paradox: Hypertrophy or oxidative metabolism? Eur. J. Appl. Physiol. 2010, 110, 665–694. [Google Scholar] [CrossRef] [Green Version]
- Nickerson, J.G.; Alkhateeb, H.; Benton, C.R.; Lally, J.; Nickerson, J.; Han, X.X.; Wilson, M.H.; Jain, S.S.; Snook, L.A.; Glatz, J.F.; et al. Greater transport efficiencies of the membrane fatty acid transporters FAT/CD36 and FATP4 compared with FABPpm and FATP1 and differential effects on fatty acid esterification and oxidation in rat skeletal muscle. J. Biol. Chem. 2009, 284, 16522–16530. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.S.; Luiken, J.J.; Snook, L.A.; Han, X.X.; Holloway, G.P.; Glatz, J.F.; Bonen, A. Fatty acid transport and transporters in muscle are critically regulated by Akt2. FEBS Lett. 2015, 589, 2769–2775. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.; Endo, K.; Li, J.; Kito, N.; Iwai, N. Induction of peroxisomes by butyrate-producing probiotics. PLoS ONE 2015, 10, e0117851. [Google Scholar] [CrossRef] [Green Version]
- Aryal, B.; Singh, A.K.; Zhang, X.; Varela, L.; Rotllan, N.; Goedeke, L.; Chaube, B.; Camporez, J.P.; Vatner, D.F.; Horvath, T.L.; et al. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis. JCI Insight 2018, 3, e97918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, T.; Ozaki, N.; Kato, Y.; Miura, Y.; Oiso, Y. Insulin downregulates angiopoietin-like protein 4 mRNA in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2006, 347, 1138–1144. [Google Scholar] [CrossRef]
- Fitch, M.D.; Fleming, S.E. Metabolism of short-chain fatty acids by rat colonic mucosa in vivo. Am. J. Physiol. 1999, 277, G31–G40. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.; Lopez-Ojen, M.; Funcasta-Calderon, R.; Ameneiros-Rodriguez, E.; Donapetry-Garcia, C.; Vila-Altesor, M.; Rodriguez-Seijas, J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014, 17, 76–100. [Google Scholar] [CrossRef]
- Pozefsky, T.; Tancredi, R.G. Effects of intrabrachial arterial infusion of pyruvate on forearm tissue metabolism. Interrelationships between pyruvate, lactate, and alanine. J. Clin. Investig. 1972, 51, 2359–2369. [Google Scholar] [CrossRef]
- Small, L.; Brandon, A.E.; Quek, L.E.; Krycer, J.R.; James, D.E.; Turner, N.; Cooney, G.J. Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E258–E266. [Google Scholar] [CrossRef] [PubMed]
- Sugden, M.C.; Lall, H.S.; Harris, R.A.; Holness, M.J. Selective modification of the pyruvate dehydrogenase kinase isoform profile in skeletal muscle in hyperthyroidism: Implications for the regulatory impact of glucose on fatty acid oxidation. J. Endocrinol. 2000, 167, 339–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Besten, G.; Gerding, A.; van Dijk, T.H.; Ciapaite, J.; Bleeker, A.; van Eunen, K.; Havinga, R.; Groen, A.K.; Reijngoud, D.J.; Bakker, B.M. Protection against the Metabolic Syndrome by Guar Gum-Derived Short-Chain Fatty Acids Depends on Peroxisome Proliferator-Activated Receptor gamma and Glucagon-Like Peptide-1. PLoS ONE 2015, 10, e0136364. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Backhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014, 156, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Bach Knudsen, K.E.; Jorgensen, H.; Canibe, N. Quantification of the absorption of nutrients derived from carbohydrate assimilation: Model experiment with catheterised pigs fed on wheat- or oat-based rolls. Br. J. Nutr. 2000, 84, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Theil, P.K.; Jorgensen, H.; Serena, A.; Hendrickson, J.; Bach Knudsen, K.E. Products deriving from microbial fermentation are linked to insulinaemic response in pigs fed breads prepared from whole-wheat grain and wheat and rye ingredients. Br. J. Nutr. 2011, 105, 373–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mischke, M.; Plosch, T. The Gut Microbiota and their Metabolites: Potential Implications for the Host Epigenome. Adv. Exp. Med. Biol. 2016, 902, 33–44. [Google Scholar] [CrossRef]
- Martin, L.; Dumon, H.; Lecannu, G.; Champ, M. Potato and high-amylose maize starches are not equivalent producers of butyrate for the colonic mucosa. Br. J. Nutr. 2000, 84, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Amato, A.; Baldassano, S.; Mule, F. GLP2: An underestimated signal for improving glycaemic control and insulin sensitivity. J. Endocrinol. 2016, 229, R57–R66. [Google Scholar] [CrossRef] [Green Version]
- Thulesen, J.; Hartmann, B.; Nielsen, C.; Holst, J.J.; Poulsen, S.S. Diabetic intestinal growth adaptation and glucagon-like peptide 2 in the rat: Effects of dietary fibre. Gut 1999, 45, 672–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zander, M.; Madsbad, S.; Madsen, J.L.; Holst, J.J. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: A parallel-group study. Lancet 2002, 359, 824–830. [Google Scholar] [CrossRef]
- De Vadder, F.; Kovatcheva-Datchary, P.; Zitoun, C.; Duchampt, A.; Backhed, F.; Mithieux, G. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis. Cell Metab. 2016, 24, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weitkunat, K.; Schumann, S.; Nickel, D.; Hornemann, S.; Petzke, K.J.; Schulze, M.B.; Pfeiffer, A.F.; Klaus, S. Odd-chain fatty acids as a biomarker for dietary fiber intake: A novel pathway for endogenous production from propionate. Am. J. Clin. Nutr. 2017, 105, 1544–1551. [Google Scholar] [CrossRef] [Green Version]
- Krautkramer, K.A.; Fan, J.; Bäckhed, F. Gut microbial metabolites as multi-kingdom intermediates. Nat. Rev. Microbiol. 2020, 19, 77–94. [Google Scholar] [CrossRef]
Gene Symbol | Primer Sequence (Forward) | Primer Sequence (Reverse) |
---|---|---|
Acox | GACCTGAGCGGCCTACCTGA | CATCAGGAACCTGGCCGTCT |
β-Act | GCGGCATCCACGAAACTACC | CTCTGGAGGCGCGATGATCT |
Angptl4 | CTCTGGTGGTTGGTGGTTTG | GCTACTGTGGGCTGGATCA |
Cpt1 | GACGAGGACCCCTGATGGTG | CGTGGATCCCAGGAGAATCG |
Cpt-m | CTGCAGGGGGAAGAGTGGAG | TTGAACGCGATGAGGGTGAA |
Cpt2 | TACGAGTCCTGTAGCACTGC | TGGTTGTGGTACTCGGAACA |
Eef1a | ACCTGTGCTGGATTGCCACA | AACAGCAAATCGGCCCAGAG |
Fasn | CGGTTCCAAGGAGCAAGGTG | GCATTCACGATGCCGTTCAG |
Gapdh | ACGGTCCATGCCATCACTG | CCAGTGAGCTTCCCGTTGA |
Gcg | CCCAGGATTTTGTGCAGTGG | GCAATGAATTCCTTGGCAGC |
Gpr41 | CTCCGTGTACCTCTTGACGT | AGACGGTGGTGAAGAAGAGG |
Gpr43 | GAGTGATTGCTGCTCTGGTG | TGGGGATGAAGAAGAGGACG |
Glut4 | GCCCGCGAGAAAGAGTCTGA | GCCGTCTCGAAGATGCTGGT |
Hk1 | AGCTAAGAGTCCTGGCCCCC | CGCCATTAGGTGGCTTCTGC |
Hprt1 | TATGGACAGGACTGAACGGC | TGGTCATTACAGTAGCTCTTCAG |
Hsl | CGTCTCTAGCAAACATGGCA | TCACTGTCCTGTCCTTCACG |
Il-6 | TGGGTTCAATCAGGAGACCT | GTGGTGGCTTTGTCTGGATT |
Mct1 | TGGCTGTCATGTATGGTGGA | AAGCCCAAGACCTCCAATGA |
Nrf2 | ATTCCCAGGTTTCTTCGGCT | TGGAACCGTGCTAGTCTCAG |
Pepck-m | CTGGAAACCCGGTGACAAGG | GGGGGACTCCTTTGGGTCTG |
PGC-1α | AGGCAGAAGGCAATTGAAGA | TTTCAAGAGCAGCAAAAGCA |
Pparα | CAGCAATAACCCGCCTTTCG | ACTTGGCGAACTCCGTGAGC |
Pparg | TGTGAAGGATGCAAGGGTTTC | CAACAGCTTCTCCTTCTCAGC |
Rps9 | TTGAAGGGAATGCTCTGCTG | GGACAATGAAAGGACGGGATG |
Srebp-1c | AGGCAGCACCTTTGCAGACC | GCGGTAGCGTTTCTCGATGG |
Sdha | CCTCCGTGGTAGAGCTAGAG | TACCGCAGAGACCTTTCCGTA |
Slc27a4 | TGCAGTACATTGGCGAGCT | ACACTGGCCGTCAAAGTTG |
Tbp | TTTTGGAGGAGCAGCAAAGG | GTGGAAGAGCTGTGGAGTCT |
Tnfa | TGTAGCCAATGTCAAAGCCG | ATGGCAGAGAGGAGGTTGAC |
Ucp2 | TCGACGCCTACAAGACCATC | GCAGGGAAGGTCATCTGTCA |
O | O + F | p Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D1 | D14 | D56 | SEM | D1 | D14 | D56 | SEM | Diet | Time | Diet × Time | ||
Insulin (µg/L) | A | 0.05 | 0.15 | 0.14 | 0.02 | 0.09 | 0.13 | 0.14 | 0.02 | 0.68 | 0.03 | 0.54 |
HOMA-IR (AU) | A | 0.26 | 0.90 | 0.82 | 0.12 | 0.55 | 0.75 | 0.85 | 0.12 | 0.75 | 0.04 | 0.44 |
Metabolites (mmol/L) | ||||||||||||
Glucose | A | 4.93 | 5.57 | 5.26 | 0.14 | 5.22 | 5.15 | 5.34 | 0.14 | 0.93 | 0.28 | 0.16 |
HV | 5.81 | 5.93 | 5.74 | 0.38 | 5.74 | 5.71 | 6.57 | 0.33 | 0.72 | 0.22 | 0.07 | |
Lactate | A | 0.42 | 0.62 | 0.68 | 0.02 | 0.44 | 0.58 | 0.72 | 0.02 | 0.76 | <0.001 | 0.70 |
HV | 0.50 | 0.64 | 0.74 | 0.05 | 0.44 | 0.80 | 0.94 | 0.04 | 0.14 | <0.001 | 0.17 | |
Urea | A | 4.30 | 3.78 | 3.94 | 0.17 | 4.15 | 3.60 | 3.56 | 0.18 | 0.36 | 0.10 | 0.90 |
HV | 4.40 | 3.74 | 4.14 | 0.24 | 4.23 | 3.66 | 3.53 | 0.21 | 0.39 | 0.16 | 0.67 | |
Ammonia | A | 42.1 | 44.0 | 42.2 | 5.6 | 36.3 | 37.7 | 45.0 | 5.6 | 0.70 | 0.65 | 0.58 |
HV | 61.7 | 52.9 | 58.6 | 7.9 | 46.3 | 39.4 | 52.6 | 6.9 | 0.28 | 0.21 | 0.70 | |
β-hydroxybutyrate | A | 11.5 | 8.1 | 8.8 | 0.8 | 14.8 | 7.2 | 7.3 | 0.8 | 0.80 | 0.01 | 0.32 |
HV | 15.0 | 10.8 | 11.4 | 2.3 | 24.5 | 10.6 | 13.3 | 1.9 | 0.24 | 0.03 | 0.33 | |
Acetate | A | 613 | 755 | 679 | 15 | 664 | 658 | 664 | 15 | 0.37 | 0.11 | 0.08 |
HV | 692 | 886 | 786 | 32 | 819 | 931 | 880 | 28 | 0.06 | 0.04 | 0.76 | |
Propionate | A | 20.7 | 27.4 | 22.1 | 0.6 | 22.6 | 23.3 | 20.3 | 0.6 | 0.13 | 0.01 | 0.11 |
HV | 27.3 | 31.1 | 27.7 | 3.3 | 25.5 | 36.7 | 33.1 | 2.9 | 0.50 | 0.39 | 0.75 | |
Butyrate | A | 2.97 | 5.45 | 5.40 | 0.75 | 3.15 | 5.01 | 2.53 | 0.75 | 0.34 | 0.13 | 0.37 |
HV | 8.53 | 9.04 | 7.69 | 1.72 | 8.15 | 12.8 | 9.19 | 1.50 | 0.48 | 0.14 | 0.36 | |
Σ SCFA | A | 636 | 788 | 707 | 16 | 689 | 687 | 687 | 16 | 0.34 | 0.09 | 0.08 |
HV | 728 | 926 | 822 | 34 | 853 | 981 | 922 | 29 | 0.06 | 0.04 | 0.82 | |
Amino acids (mmol/L) | ||||||||||||
Leucine | A | 177 | 193 | 211 | 8 | 171 | 183 | 211 | 9 | 0.65 | 0.01 | 0.90 |
HV | 172 | 200 | 224 | 9 | 176 | 196 | 214 | 8 | 0.76 | 0.03 | 0.91 | |
Isoleucine | A | 126 | 157 | 144 | 7 | 119 | 157 | 147 | 7 | 0.90 | 0.004 | 0.88 |
HV | 126 | 162 | 148 | 8 | 121 | 165 | 149 | 7 | 0.95 | 0.01 | 0.94 | |
Valine | A | 324 | 314 | 362 | 11 | 314 | 313 | 365 | 12 | 0.85 | 0.04 | 0.94 |
HV | 308 | 314 | 386 | 9 | 317 | 317 | 378 | 8 | 0.97 | 0.04 | 0.91 | |
Lysine | A | 166 | 165 | 156 | 8 | 163 | 163 | 177 | 8 | 0.62 | 0.96 | 0.39 |
HV | 166 | 168 | 157 | 9 | 155 | 163 | 172 | 8 | 0.95 | 0.91 | 0.57 | |
Phenylalanine | A | 64.1 | 71.3 | 77.2 | 3.4 | 63.4 | 65.3 | 76.7 | 3.5 | 0.63 | 0.005 | 0.66 |
HV | 59.1 | 69.1 | 76.3 | 3.6 | 61.7 | 65.2 | 72.1 | 3.2 | 0.70 | 0.002 | 0.50 | |
Methionine | A | 22.4 | 26.8 | 25.2 | 1.9 | 22.9 | 29.4 | 25.1 | 2.0 | 0.72 | 0.03 | 0.77 |
HV | 21.3 | 26.4 | 21.9 | 1.8 | 22.1 | 30.2 | 25.0 | 1.6 | 0.31 | 0.004 | 0.70 | |
Threonine | A | 156 | 161 | 166 | 8 | 164 | 164 | 172 | 9 | 0.65 | 0.57 | 0.94 |
HV | 142 | 156 | 167 | 7 | 158 | 156 | 167 | 6 | 0.59 | 0.23 | 0.65 | |
Tryptophane | A | 51.6 | 53.9 | 45.8 | 3.1 | 49.2 | 58.3 | 49.5 | 3.2 | 0.68 | 0.17 | 0.71 |
HV | 52.5 | 59.3 | 49.0 | 4.6 | 51.4 | 56.8 | 48.4 | 4.1 | 0.83 | 0.17 | 0.98 | |
Histidine | A | 90.0 | 101.6 | 104.3 | 4.6 | 91.8 | 100.6 | 108.0 | 4.7 | 0.82 | <0.001 | 0.76 |
HV | 90.7 | 100.9 | 100.0 | 4.8 | 90.6 | 102.1 | 108.1 | 4.3 | 0.64 | <0.001 | 0.33 | |
Alanine | A | 210 | 280 a | 238 a | 12 | 206 | 325 b(t) | 296 b | 12 | 0.07 | <0.001 | 0.22 |
HV | 190 | 240 a | 192 a | 16 | 172 | 309 b | 270 b | 14 | 0.06 | 0.003 | 0.10 | |
Glutamate | A | 127 | 182 | 154 | 12 | 114 | 167 | 189 | 13 | 0.90 | <0.001 | 0.17 |
HV | 218 | 321 | 358 | 52 | 221 | 357 | 402 | 46 | 0.69 | <0.001 | 0.79 | |
Glutamine | A | 357 | 375 | 373 | 22 | 378 | 400 | 390 | 23 | 0.52 | 0.44 | 0.97 |
HV | 329 | 363 | 277 | 24 | 324 | 329 | 328 | 22 | 0.90 | 0.07 | 0.08 | |
Glycine | A | 801 | 982 | 849 | 38 | 865 | 1036 | 880 | 39 | 0.38 | 0.002 | 0.94 |
HV | 819 | 1008 | 823 | 53 | 852 | 994 | 885 | 47 | 0.71 | 0.03 | 0.82 | |
Proline | A | 308 | 338 | 297 | 8 | 295 | 347 | 325 | 8 | 0.49 | 0.13 | 0.63 |
HV | 308 | 316 | 299 | 16 | 292 | 333 | 361 | 14 | 0.36 | 0.52 | 0.37 | |
Tyrosine | A | 82.9 | 89.0 | 86.4 | 8.0 | 78.4 | 90.3 | 87.6 | 8.2 | 0.96 | 0.18 | 0.79 |
HV | 79.0 | 87.5 | 88.3 | 9.8 | 72.3 | 86.7 | 79.5 | 8.7 | 0.68 | 0.12 | 0.71 | |
Serine | A | 128 | 176 | 164 | 7 | 144 | 186 | 177 | 7 | 0.20 | <0.001 | 0.94 |
HV | 113a | 168 | 156 | 7 | 145b | 175 | 167 | 6 | 0.10 | <0.001 | 0.16 | |
Arginine | A | 107 | 126 | 126 | 4 | 111 | 126 | 140 | 4 | 0.29 | 0.003 | 0.51 |
HV | 106 | 128 | 122 | 5 | 109 | 124 | 151 | 4 | 0.17 | 0.01 | 0.12 | |
Citrulline | A | 82.8 | 85.0 a | 86.2 | 4.1 | 77.9 | 103.1 b(t) | 97.5 | 4.6 | 0.20 | 0.03 | 0.09 |
HV | 94.3 | 109.4 | 104.8 | 6.8 | 89.5 | 127.6 | 116.3 | 6.4 | 0.36 | <0.001 | 0.11 | |
Cystine | A | 75.0 | 54.8 | 56.2 | 2.0 | 72.8 | 59.5 | 64.0 | 2.1 | 0.26 | 0.002 | 0.54 |
HV | 80.5 | 51.9 | 57.5 | 2.2 | 75.7 | 61.4 | 63.5 | 2.0 | 0.27 | 0.008 | 0.51 | |
Ornithine | A | 72.4 | 95.6 | 69.4 a | 2.4 | 68.8 | 90.7 b(t) | 80.2 | 2.5 | 0.84 | <0.001 | 0.10 |
HV | 83.9 | 98.2 | 74.5 | 3.4 | 72.7 | 94.2 | 85.0 | 3.0 | 0.74 | <0.001 | 0.07 | |
Asparagine | A | 18.7 | 35.6 | 21.1 | 2.9 | 19.4 | 30.2 | 23.5 | 2.9 | 0.86 | 0.003 | 0.56 |
HV | 18.1 | 34.3 | 17.2 | 4.8 | 7.9 | 16.8 | 12.1 | 4.3 | 0.11 | 0.03 | 0.39 | |
Aspartate | A | 8.6 | 12.4 | 8.4 | 0.97 | 7.3 | 12.1 | 9.5 | 1.0 | 0.91 | 0.002 | 0.62 |
HV | 10.0 | 13.2 | 10.4 | 1.3 | 9.8 | 15.9 | 12.8 | 1.2 | 0.38 | 0.01 | 0.55 | |
Taurine | PV | 104 | 155 a | 117 | 9 | 95 | 116 | 108b | 10 | 0.15 | 0.001 | 0.10 |
HV | 109 | 136 | 108 | 8 | 106 | 118 | 106 | 7 | 0.44 | 0.002 | 0.25 | |
LBP (ng/L) | A | 3.16 | 2.94 | 3.68 | 0.43 | 2.51 | 1.71 | 2.99 | 0.43 | 0.18 | 0.25 | 0.85 |
PV | 3.07 | 3.02 a | 4.24 | 0.48 | 1.46 | 0.93 b(t) | 3.00 | 0.51 | 0.03 | 0.11 | 0.86 | |
VSH | 3.18 | 3.03 | 3.35 | 0.48 | 2.51 | 1.78 | 3.17 | 0.40 | 0.28 | 0.32 | 0.63 | |
IL6 (pg/mL) | A | 5.09 | 4.90 | 5.45 | 0.45 | 4.23 | 4.29 | 5.95 | 0.46 | 0.62 | 0.20 | 0.57 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.B.; Rémond, D.; Gual-Grau, A.; Bernalier-Donnadille, A.; Capel, F.; Michalski, M.-C.; Laugerette, F.; Cohade, B.; Hafnaoui, N.; Béchet, D.; et al. A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs. Nutrients 2021, 13, 4202. https://doi.org/10.3390/nu13124202
Mohamed AB, Rémond D, Gual-Grau A, Bernalier-Donnadille A, Capel F, Michalski M-C, Laugerette F, Cohade B, Hafnaoui N, Béchet D, et al. A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs. Nutrients. 2021; 13(12):4202. https://doi.org/10.3390/nu13124202
Chicago/Turabian StyleMohamed, Ahmed Ben, Didier Rémond, Andreu Gual-Grau, Annick Bernalier-Donnadille, Frédéric Capel, Marie-Caroline Michalski, Fabienne Laugerette, Benoit Cohade, Noureddine Hafnaoui, Daniel Béchet, and et al. 2021. "A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs" Nutrients 13, no. 12: 4202. https://doi.org/10.3390/nu13124202
APA StyleMohamed, A. B., Rémond, D., Gual-Grau, A., Bernalier-Donnadille, A., Capel, F., Michalski, M. -C., Laugerette, F., Cohade, B., Hafnaoui, N., Béchet, D., Coudy-Gandilhon, C., Gueugneau, M., Salles, J., Migné, C., Dardevet, D., David, J., Polakof, S., & Savary-Auzeloux, I. (2021). A Mix of Dietary Fibres Changes Interorgan Nutrients Exchanges and Muscle-Adipose Energy Handling in Overfed Mini-Pigs. Nutrients, 13(12), 4202. https://doi.org/10.3390/nu13124202