High Adherence to Mediterranean Diet Is Not Associated with an Improved Sodium and Potassium Intake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Urinary Sodium and Potassium
2.3. Dietary Assessment and Adherence to the Mediterranean Diet
2.4. Other Measurements
2.5. Statistical Analysis
3. Results
3.1. Characteristic of Participants
3.2. Urinary Excretion, Salt Intake and Dietary Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- He, F.J.; Tan, M.; Ma, Y.; MacGregor, G.A. Salt Reduction to Prevent Hypertension and Cardiovascular Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 632–647. [Google Scholar] [CrossRef] [PubMed]
- WHO. Cardiovascular Disease Fact Sheet. Available online: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 15 November 2021).
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Fahimi, S.; Singh, G.M.; Micha, R.; Khatibzadeh, S.; Engell, R.E.; Lim, S.; Danaei, G.; Ezzati, M.; Powles, J.; et al. Global Sodium Consumption and Death from Cardiovascular Causes. N. Engl. J. Med. 2014, 371, 624–634. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; Li, J.; Macgregor, G.A. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst. Rev. 2013, 2013, CD004937. [Google Scholar] [CrossRef]
- Huang, L.; Trieu, K.; Yoshimura, S.; Neal, B.; Woodward, M.; Campbell, N.R.C.; Li, Q.; Lackland, D.T.; Leung, A.A.; Anderson, C.A.M.; et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: Systematic review and meta-analysis of randomised trials. BMJ 2020, 368, m315. [Google Scholar] [CrossRef] [Green Version]
- Strazzullo, P.; D’Elia, L.; Kandala, N.B.; Cappuccio, F.P. Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. BMJ 2009, 339, 1296. [Google Scholar] [CrossRef] [Green Version]
- Trieu, K.; McMahon, E.; Santos, J.A.; Bauman, A.; Jolly, K.-A.; Bolam, B.; Webster, J. Review of behaviour change interventions to reduce population salt intake. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 17. [Google Scholar] [CrossRef] [Green Version]
- Brown, I.J.; Tzoulaki, I.; Candeias, V.; Elliott, P. Salt intakes around the world: Implications for public health. Int. J. Epidemiol. 2009, 38, 791–813. [Google Scholar] [CrossRef] [Green Version]
- Guideline: Sodium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012.
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinceti, M.; Filippini, T.; Crippa, A.; de Sesmaisons, A.; Wise, L.A.; Orsini, N. Meta-analysis of potassium intake and the risk of stroke. J. Am. Hear. Assoc. 2016, 5, e004210. [Google Scholar] [CrossRef] [PubMed]
- Kieneker, L.M.; Gansevoort, R.T.; De Boer, R.A.; Brouwers, F.P.; Feskens, E.J.M.; Geleijnse, J.M.; Navis, G.; Bakker, S.J.L.; Joosten, M.M.; for The PREVEND Study Group. Urinary potassium excretion and risk of cardiovascular events. Am. J. Clin. Nutr. 2016, 103, 1204–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guideline: Potassium Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2012.
- Iwahori, T.; Miura, K.; Ueshima, H. Time to consider use of the sodium-to-potassium ratio for practical sodium reduction and potassium increase. Nutrients 2017, 9, 700. [Google Scholar] [CrossRef]
- Geleijnse, J.M.; Witteman, J.C.M.; Stijnen, T.; Kloos, M.W.; Hofman, A.; Grobbee, D.E. Sodium and potassium intake and risk of cardiovascular events and all-cause mortality: The Rotterdam Study. Eur. J. Epidemiol. 2007, 22, 763–770. [Google Scholar] [CrossRef] [Green Version]
- Okayama, A.; Okuda, N.; Miura, K.; Okamura, T.; Hayakawa, T.; Akasaka, H.; Ohnishi, H.; Saitoh, S.; Arai, Y.; Kiyohara, Y.; et al. Dietary sodium-to-potassium ratio as a risk factor for stroke, cardiovascular disease and all-cause mortality in Japan: The NIPPON DATA80 cohort study. BMJ Open 2016, 6, e011632. [Google Scholar] [CrossRef]
- O’Donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; O’Leary, N.; Yin, L.; Liu, X.; Swaminathan, S.; Khatib, R.; Rosengren, A.; et al. Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: Prospective cohort study. BMJ 2019, 364, 1772. [Google Scholar] [CrossRef] [Green Version]
- Mente, A.; O’Donnell, M.J.; Rangarajan, S.; McQueen, M.J.; Poirier, P.; Wielgosz, A.; Yusuf, S. Association of Urinary Sodium and Potassium Excretion with Blood Pressure. N. Engl. J. Med. 2014, 371, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Keys, A.; Menotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H.; et al. The diet and 15-year death rate in the seven countries study. Am. J. Epidemiol. 1986, 124, 903–915. [Google Scholar] [CrossRef]
- Toledo, E.; Hu, F.B.; Estruch, R.; Buil-Cosiales, P.; Corella, D.; Salas-Salvadó, J.; Martinez-Gonzalez, M.A. Effect of the Mediterranean diet on blood pressure in the PREDIMED trial: Results from a randomized controlled trial. BMC Med. 2013, 11, 207. [Google Scholar] [CrossRef] [Green Version]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-style diet for the primary and secondary prevention of cardiovascular disease (Review). Glob. Hear. 2019, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Bentley, B. A review of methods to measure dietary sodium intake. J. Cardiovasc. Nurs. 2006, 21, 63–67. [Google Scholar] [CrossRef] [PubMed]
- McLean, R.M. Measuring population sodium intake: A review of methods. Nutrients 2014, 6, 4651–4662. [Google Scholar] [CrossRef] [PubMed]
- Tasevska, N.; Runswick, S.A.; Bingham, S.A. Urinary potassium is as reliable as urinary nitrogen for use as a recovery biomarker in dietary studies of free living individuals. J. Nutr. 2006, 136, 1334–1340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, A.J.; Mossholder, S. Sodium and potassium intake measurements: Dietary methodology problems. Am. J. Clin. Nutr. 1986, 43, 470–476. [Google Scholar] [CrossRef]
- Kanauchi, M.; Kanauchi, K. Development of a Mediterranean diet score adapted to Japan and its relation to obesity risk. Food Nutr. Res. 2016, 60, 32172. [Google Scholar] [CrossRef] [Green Version]
- La Verde, M.; Mulè, S.; Zappalà, G.; Privitera, G.; Maugeri, G.; Pecora, F.; Marranzano, M. Higher adherence to the Mediterranean diet is inversely associated with having hypertension: Is low salt intake a mediating factor? Int. J. Food Sci. Nutr. 2017, 69, 235–244. [Google Scholar] [CrossRef]
- Mirmiran, P.; Gaeini, Z.; Bahadoran, Z.; Ghasemi, A.; Norouzirad, R.; Tohidi, M.; Azizi, F. Urinary sodium-to-potassium ratio: A simple and useful indicator of diet quality in population-based studies. Eur. J. Med. Res. 2021, 26, 1–8. [Google Scholar] [CrossRef]
- Vasara, E.; Marakis, G.; Breda, J.; Skepastianos, P.; Hassapidou, M.; Kafatos, A.; Rodopaios, N.; Koulouri, A.A.; Cappuccio, F.P. Sodium and potassium intake in healthy adults in thessaloniki greater metropolitan area—The salt intake in northern greece (SING) study. Nutrients 2017, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, C.; Silva-Santos, T.; Abreu, S.; Padrão, P.; Graça, P.; Oliveira, L.; Esteves, S.; Norton, P.; Moreira, P.; Pinho, O. Innovative equipment to monitor and control salt usage when cooking at home: IMC SALT research protocol for a randomised controlled trial. BMJ Open 2020, 10, e035898. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.-W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei n.° 21/2014 Aprova a lei dA Investigação Clínica, 21/2014. 2014. Available online: https://dre.pt/pesquisa/-/search/25344024/details/maximized (accessed on 1 July 2021).
- World Health Organization; Noncommunicable Diseases and Mental Health Cluster; Surveillance Team. STEPS Instruments for NCD Risk FACTORS (Core and Expanded Version 1.4): The WHO STEPwise Approach to Surveillance of Noncommunicable Diseases (STEPS. World Health Organization); WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Sardinha, L.; Campaniço, H. Validade Simultânea do Questionário Internacional de Actividade Física Através da Medição Objectiva da Actividade Física por Actigrafia Proporcional. 2016. Available online: https://www.repository.utl.pt/bitstream/10400.5/11866/1/DISSERTA%C3%87%C3%83O%202016%20Helena%20Campani%C3%A7o.pdf (accessed on 15 November 2021).
- Balaguer Vintró, I. Prevention of cardiovascular disease. Rev. Clin. Esp. 1987, 180, 38–42. [Google Scholar] [PubMed]
- Dietary Reference Intakes for Sodium and Potassium. Dietary Reference Intakes for Sodium and Potassium; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Lopes, C.; Aro, A.; Azevedo, A.; Ramos, E.; Barros, H. {Figure is presented} Intake and Adipose Tissue Composition of Fatty Acids and Risk of Myocardial Infarction in a Male Portuguese Community Sample {A figure is presented}. J. Am. Diet. Assoc. 2007, 107, 276–286. [Google Scholar] [CrossRef]
- Ferreira, F.; Graça, M. Composition Table of Portuguese Food, 2nd ed.; Ferreira, F., Graça, M., Eds.; Composition Table of Portu_gu; National Institute of Health Dr Ricardo Jorge: Lisbon, Portugal, 1985. [Google Scholar]
- Fung, T.T.; McCullough, M.L.; Newby, P.K.; Manson, J.A.E.; Meigs, J.B.; Rifai, N.; Willett, W.C.; Hu, F.B. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. Am. J. Clin. Nutr. 2005, 82, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Kouris-Blazos, A.; Wahlqvist, M.L.; Gnardellis, C.; Lagiou, P.; Polychronopoulos, E.; Vassilakou, T.; Lipworth, L.; Trichopoulos, D. Diet and overall survival in elderly people. BMJ 1995, 311, 1457. [Google Scholar] [CrossRef] [Green Version]
- Stewart, A.; Marfell-Jones, M.; Olds, T. International Standards for Anthropometric Assesment (2011); ISAK. International Society for the Advancement of Kinanthropometry: Brasilia, Brazil, 2016. [Google Scholar]
- Chaudhary, S.; Kumar, S.; Kaur, B.; Mehta, S.K. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ). RSC Adv. 2016, 6, 90526–90536. [Google Scholar] [CrossRef]
- Fujiwara, A.; Asakura, K.; Uechi, K.; Masayasu, S.; Sasaki, S. Dietary patterns extracted from the current Japanese diet and their associations with sodium and potassium intakes estimated by repeated 24 h urine collection. Public Health Nutr. 2016, 19, 2580–2591. [Google Scholar] [CrossRef] [Green Version]
- Lopes, C.; Torres, D.; Oliveira, A.; Severo, M.; Alarcão, V.; Guiomar, S.; Mota, J.; Teixeira, P.; Ramos, E.; Rodrigues, S.; et al. AN-AF: Inquérito Alimentar Nacional e de Atividade Física—Relatório de Resultados de 2017. Universidade do Porto. 2015. Available online: https://ian-af.up.pt/projeto/objetivos (accessed on 15 November 2021).
- O’Donnell, M.; Mente, A.; Rangarajan, S.; McQueen, M.J.; Wang, X.; Liu, L.; Yan, H.; Lee, S.F.; Mony, P.; Devanath, A. Urinary Sodium and Potassium Excretion, Mortality, and Cardiovascular Events. N. Engl. J. Med. 2014, 371, 612–623. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.; Marklund, M.; Henry, M.E.; Appel, L.J.; Croft, K.D.; Neal, B.; Wu, J.H.Y. A Systematic Review of the Sources of Dietary Salt Around the World. Adv. Nutr. 2020, 11, 677–686. [Google Scholar] [CrossRef]
- Silva, M.N.; Gregório, M.J.; Santos, R.; Marques, A.; Rodrigues, B.; Godinho, C.; Mendes, C.S.S.R.; Freitas, P.G.M.A.G. Towards an in-depth understanding of physical activity and eating behaviours during COVID-19 social confinement: A combined approach from a portuguese national survey. Nutrients 2021, 13, 2685. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I. Impact of Covid-19 on the dietary habits of the Portuguese population. Eur. Food Feed Law Rev. 2020, 15, 370–372. [Google Scholar]
- Campbell, N.R.C.; He, F.J.; Tan, M.; Cappuccio, F.P.; Neal, B.; Woodward, M.; Cogswell, M.E.; McLean, R.; Arcand, J.; MacGregor, G. The International Consortium for Quality Research on Dietary Sodium/Salt (TRUE) position statement on the use of 24-hour, spot, and short duration (<24 h) timed urine collections to assess dietary sodium intake. J. Clin. Hypertens. 2019, 21, 700–709. [Google Scholar] [CrossRef] [Green Version]
- IOM (Institute of Medicine). Dietary Reference Intakes for Water, Potassium, Sodium, Chloride and Sulfate. Book Chapter. 2008. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:DIETARY+REFERENCE+INTAKES#5 (accessed on 15 October 2021).
- Birukov, A.; Rakova, N.; Lerchl, K.; Olde Engberink, R.H.; Johannes, B.; Wabel, P.; Moissl, U.; Rauh, M.; Luft, F.C.; Titze, J. Ultra-long-term human salt balance studies reveal interrelations between sodium, potassium, and chloride intake and excretion. Am. J. Clin. Nutr. 2016, 104, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Ginos, B.N.R.; Olde Engberink, R.H.G. Estimation of sodium and potassium intake: Current limitations and future perspectives. Nutrients 2020, 12, 3275. [Google Scholar] [CrossRef]
- Cutruzzolà, A.; Parise, M.; Vallelunga, R.; Lamanna, F.; Gnasso, A.; Irace, C. Effect of extra virgin olive oil and butter on endothelial function in type 1 diabetes. Nutrients 2021, 13, 2436. [Google Scholar] [CrossRef]
- Truzzi, M.L.; Puviani, M.B.; Tripodi, A.; Toni, S.; Farinetti, A.; Nasi, M.; Mattioli, A.V. Mediterranean Diet as a model of sustainable, resilient and healthy diet. Prog. Nutr. 2020, 22, 1–7. [Google Scholar]
- Polonia, J.; Martins, L.; Pinto, F.; Nazare, J. Prevalence, awareness, treatment and control of hypertension and salt intake in Portugal: Changes over a decade the PHYSA study. J. Hypertens. 2014, 32, 1211–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turck, D.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Pelaez, C.; et al. Dietary reference values for sodium. EFSA J. 2019, 17, e05778. [Google Scholar] [PubMed] [Green Version]
Adherence to Mediterranean Diet | |||||||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | ||||||||
General characteristic | Male n = 49 | Female n = 53 | p | Low-moderate n = 34 | High n = 15 | p | Low-moderate n = 41 | High n = 12 | p |
Age a,b | 49 (31–69) | 46 (24–64) | 0.06 | 49 (31–69) | 50 (31–62) | 0.915 | 45 (24–64) | 47 (34–54) | 0.458 |
Educational level c,e | 0.227 | 1.0 | 0.679 | ||||||
Non university graduates | 8.2% | 13.2% | 8.8% | 6.7% | 14.6% | 8.3% | |||
University graduates | 91.8% | 86.8% | 91.2% | 93.3% | 85.4% | 91.7% | |||
Marital status c,e | 0.227 | 1.0 | 0.301 | ||||||
Not married | 26.5% | 37.7% | 26.5% | 26.7% | 41.5% | 25% | |||
Married | 73.5% | 62.3% | 73.5% | 73.3% | 58.5% | 75% | |||
Physical activity c,e | 0.866 | 0.157 | 0.233 | ||||||
Low | 32.7% | 37.7% | 41.2% | 13.3% | 31.7% | 58.3% | |||
Moderate | 49% | 45.3% | 41.2% | 66.7% | 48.8% | 33.3% | |||
Active | 18.4% | 17% | 17.6% | 20% | 19.5% | 8.3% | |||
Smoking status c,e | 0.425 | 0.159 | 1.0 | ||||||
Current smoker | 12.2% | 7.5% | 17.6% | 0% | 7.3% | 8.3% | |||
Drinking status | <0.001 | 0.298 | 0.87 | ||||||
Current drinker | 91.8% | 62.3% | 88.2% | 100% | 56.1% | 83.3% | |||
BMI d,a | 27.2 ± 3.4 | 24.5 ± 3.7 | <0.001 b | 27.0 ± 3.6 | 27.8 ± 3.0 | 0.419 | 24.2 ± 3.5 | 25.4 ± 4.1 | 0.339 |
Systolic blood pressure (mmHg) d,b | 133.6 ± 19.7 | 120.2 ± 15.1 | <0.01 b | 135.2 ± 20.5 | 129.9 ± 17.6 | 0.393 | 119.6 ± 15.7 | 122.1 ± 13.5 | 0.618 |
Diastolic blood pressure (mmHg) d,b | 84.5 ± 16.1 | 76.5 ± 11.7 | 0.005 | 85.1 ± 17.4 | 82.9 ± 13.2 | 0.664 | 76.2 ± 12.4 | 77.4 ± 9.3 | 0.772 |
Hypertension status a,e | 0.810 | 0.339 | 1.0 | ||||||
Hypertensive | 24.5% | 11.3% | 20.6% | 33.3% | 12.2% | 8.3% |
Adherence to Mediterranean Diet | |||||||||
---|---|---|---|---|---|---|---|---|---|
Male | Female | ||||||||
Males n = 49 | Females n = 53 | p | Low-moderate n = 34 | High n = 15 | p | Low-moderate n = 41 | High n = 12 | p | |
Urinary excretion | |||||||||
Urinary Sodium excretion (mg/day) a,c,f | 3850 ± 1317 | 2630.7 ± 994 | <0.001 | 3868 ± 1390 | 3807 ± 1179 | 0.883 | 2591 ± 966 | 2768 ± 1116 | 0.592 |
Urinary Potassium excretion (mg/day) a,c,f | 2932 ± 794 | 2382 ± 614 | <0.001 | 2930 ± 849 | 2938 ± 681 | 0.973 | 2373 ± 660 | 2412 ± 443 | 0.852 |
Urinary sodium-to-potassium ratio (mmol/mmoL) a,c | 2.38 ± 1 | 1.95 ± 1 | 0.024 | 2.40 ± 1 | 2.33 ± 1 | 0.841 | 1.94 ± 1 | 1.96 ± 1 | 0.943 |
Creatinine (mg/kg/day) a,c | 22 ± 4 | 18.3 ± 3 | <0.001 | 22 ± 4 | 21 ± 2. | 0.232 | 18 ± 3 | 18 ± 3 | 0.751 |
Nutrient and dietary intake | |||||||||
Sodium intake (mg/24 h) a,c | 4230 ± 1447 | 2891 ± 1092 | <0.001 | 4251 ± 1528 | 4184 ± 1295 | 0.883 | 2847 ± 1062 | 3041 ± 1227 | 0.592 |
Potassium intake (mg/24 h) a,c | 3808 ± 1031 | 3093 ± 798 | <0.001 | 3805 ± 1102 | 3816 ± 885 | 0.973 | 3082 ± 857 | 3132 ± 576 | 0.852 |
Sodium-to-potassium ratio (mmoL/mmoL) a,c | 2.02 ± 0.93 | 1.65 ± 0.67 | 0.024 | 2.03 ± 0.94 | 2.0 ± 0.95 | 0.841 | 1.64 ± 0.70 | 1.66 ± 0.61 | 0.943 |
Salt intake (g/day) a,c | 10.8 ± 3.7 | 7.4 ± 2.78 | <0.001 | 10.8 ± 3.88 | 10.64 ± 3.29 | 0.781 | 7.2 ± 2.7 | 7.7 ± 3.1 | 0.705 |
Sodium intake >2000 mg b,d | 94% | 64% | <0.001 | 91.2% | 100% | 0.543 | 65.9% | 58.3% | 0.736 |
Potassium intake <3510 mg b,d | 41% | 70% | 0.003 | 41.2% | 40% | 1.0 | 68.3% | 75% | 0.737 |
Energy (kcal/day) a,c | 2131 ± 680.0 | 2113 ± 728.1 | 0.902 | 1942 ± 540.4 | 2559 ± 784.3 | 0.002 | 1948 ± 589.3 | 2678 ± 890.6 | 0.002 |
Vegetables (g/day) a,e | 228 ± 133 | 217 ± 201 | 1.000 | 202 ± 104 | 262 ± 164 | 0.44 | 199 ± 104 | 315 ± 303 | <0.001 |
Legumes (g/day) a,e | 37 ± 54 | 28 ± 45 | 0.428 | 26 ± 51 | 78 ± 55 | 0.028 | 26 ± 41 | 73 ± 49 | 0.034 |
Fruits (g/day) a,e | 216 ± 165 | 272 ± 203 | 0.047 | 204 ± 109 | 284 ± 226 | 0.013 | 255 ± 152 | 426 ± 287 | 0.014 |
Nuts (g/day) a,e | 5 ± 57 | 10 ± 47 | 0.771 | 4.7 ± 20 | 30 ± 91 | 0.004 | 4.7 ± 23 | 30 ± 85 | 0.003 |
Whole grain (g/day) a,e | 33 ± 43 | 38 ± 42 | 1.000 | 21 ± 36 | 55 ± 47 | 0.002 | 21 ± 40 | 50 ± 45 | 0.105 |
Fish (g/day) a,e | 74 ± 48 | 84 ± 64 | 0.837 | 64 ± 35 | 90 ± 64 | 0.068 | 81 ± 41 | 113 ± 103 | 0.026 |
Ratio MUFA/SFA a,e | 1.6 ± 0.5 | 1.7 ± 0.5 | 1.000 | 1.48 ± 0.35 | 2.12 ± 0.58 | <0.001 | 1.6 ± 0.47 | 2.13 ± 0.46 | 0.074 |
Red meat (g/day) a,e | 56 ± 29 | 51 ± 33 | 0.332 | 58 ± 28 | 54 ± 31 | 0.625 | 53 ± 29 | 31 ± 45 | 0.413 |
Alcohol (mg/day) a,e | 6.7 ± 11.8 | 2.5 ± 4.6 | 0.006 | 6.7 ± 13 | 5.8 ± 7 | 0.630 | 5.0 ± 5 | 1.6 ± 2 | 0.068 |
Crude Model | Model 1 1 | Model 2 2 | Model 3 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Sodium excretion tertile | ||||||||||||
1st Tertile | 1 | (Reference) | (Reference) | (Reference) | (Reference) | |||||||
2nd Tertile | 2.625 | 0.574–11.998 | 0.213 | 2.681 | 0.578–12.438 | 0.208 | 2.146 | 0.383–12.021 | 0.385 | 2.539 | 0.345–18.706 | 0.360 |
3th Tertile | 0.857 | 0.176–4.186 | 0.849 | 0.728 | 0.140–3.781 | 0.705 | 0.485 | 0.071–3.317 | 0.461 | 0.364 | 0.045–2.937 | 0.343 |
Potassium excretion tertile | ||||||||||||
1st Tertile | 1 | (Reference) | (Reference) | (Reference) | (Reference) | |||||||
2nd Tertile | 2.625 | 0.574–11.998 | 0.213 | 2.200 | 0.435–11.126 | 0.341 | 2.746 | 0.416–18.115 | 0.294 | 5.085 | 0.517–50.011 | 0.163 |
3th Tertile | 0.857 | 0.176–4.186 | 0.849 | 0.654 | 0.113–3.783 | 0.636 | 0.792 | 0.111–5.630 | 0.815 | 0.839 | 0.102–6.883 | 0.870 |
Sodium-to-potassium ratio excretion tertile | ||||||||||||
1st Tertile | 1 | (Reference) | (Reference) | (Reference) | (Reference) | |||||||
2nd Tertile | 2.667 | 0.608–11.703 | 0.194 | 2.744 | 0.606–12.437 | 0.190 | 3.980 | 0.673–23.526 | 0.128 | 3.068 | 0.499–18.855 | 0.226 |
3th Tertile | 0.692 | 0.128–3.752 | 0.670 | 0.672 | 0.121–3.719 | 0.649 | 0.639 | 0.085–4.783 | 0.663 | 0.503 | 0.057–4.420 | 0.536 |
Crude Model | Model 1 1 | Model 2 2 | Model 3 3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Sodium excretion tertile | ||||||||||||
1st Tertile | 1 | (Reference) | (Reference) | (Reference) | (Reference) | |||||||
2nd Tertile | 0.300 | 0.049–1.820 | 0.190 | 0.282 | 0.045–1.759 | 0.175 | 0.288 | 0.041–2.010 | 0.209 | 0.122 | 0.012–1.267 | 0.078 |
3th Tertile | 0.923 | 0.213–4.003 | 0.915 | 0.821 | 0.154–4.384 | 0.817 | 1.310 | 0.195–8.810 | 0.781 | 4.135 | 0.302–56.555 | 0.288 |
Potassium excretion tertile | ||||||||||||
1st Tertile | 1 | (Reference) | (Reference) | (Reference) | (Reference) | |||||||
2nd Tertile | 2.727 | 0.557–13.365 | 0.216 | 2.381 | 0.462–12.287 | 0.300 | 4.767 | 0.550–41.276 | 0.156 | 5.272 | 0.435–63.932 | 0.192 |
3th Tertile | 1.000 | 0.173–5.772 | 1.000 | 0.987 | 0.170–5.740 | 0.988 | 1.388 | 0.176–10.914 | 0.756 | 1.749 | 0.178–17.163 | 0.631 |
Sodium-to-potassium ratio excretion tertile | ||||||||||||
1st Tertile | 1 | (Reference) | (Reference) | (Reference) | (Reference) | |||||||
2nd Tertile | 1.795 | 0.356–9.054 | 0.479 | 1.685 | 0.314–9.044 | 0.543 | 1.396 | 0.238–8.182 | 0.711 | 1.099 | 0.155–7.791 | 0.925 |
3th Tertile | 1.333 | 0.251–7.084 | 0.736 | 0.915 | 0.132–6.344 | 0.928 | 0.945 | 0.120–7.462 | 0.957 | 1.800 | 0.178–18.173 | 0.618 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viroli, G.; Gonçalves, C.; Pinho, O.; Silva-Santos, T.; Padrão, P.; Moreira, P. High Adherence to Mediterranean Diet Is Not Associated with an Improved Sodium and Potassium Intake. Nutrients 2021, 13, 4151. https://doi.org/10.3390/nu13114151
Viroli G, Gonçalves C, Pinho O, Silva-Santos T, Padrão P, Moreira P. High Adherence to Mediterranean Diet Is Not Associated with an Improved Sodium and Potassium Intake. Nutrients. 2021; 13(11):4151. https://doi.org/10.3390/nu13114151
Chicago/Turabian StyleViroli, Giulia, Carla Gonçalves, Olívia Pinho, Tânia Silva-Santos, Patrícia Padrão, and Pedro Moreira. 2021. "High Adherence to Mediterranean Diet Is Not Associated with an Improved Sodium and Potassium Intake" Nutrients 13, no. 11: 4151. https://doi.org/10.3390/nu13114151
APA StyleViroli, G., Gonçalves, C., Pinho, O., Silva-Santos, T., Padrão, P., & Moreira, P. (2021). High Adherence to Mediterranean Diet Is Not Associated with an Improved Sodium and Potassium Intake. Nutrients, 13(11), 4151. https://doi.org/10.3390/nu13114151