Hydration Status and Fluid Replacement Strategies of High-Performance Adolescent Athletes: An Application of Machine Learning to Distinguish Hydration Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Procedure
2.3.1. Environmental Conditions
2.3.2. Fluid Balance
Hydration Status
Fluid Consumption
Fluid consumption rate (mL/h) = (Fluid consumption (mL)/Total Training duration (min)) × 60
Sweat Rate
Sweat loss (mL) = Body mass change (g) + Fluid consumption (mL) − Urine output during training (mL)
Sweat Rate (mL/h) = (Sweat loss (mL)/Total Training duration (min)) × 60
2.3.3. Subjective Measures
Training Intensity
Training Load
Thirst
2.4. Statistical Analysis
3. Results
3.1. Hydration Status and Fluid Balance Characteristics
3.2. Fluid Balance Characteristics between Euhydrated and Hypohydrated Athletes
3.3. Cluster Analysis-Fluid Balance and Fluid Consumption
4. Discussion
4.1. Hydration Status and Fluid Balance Characteristics
4.2. Fluid Balance Characteristics between Euhydrated and Hypohydrated Athletes
4.3. Cluster Analysis-Fluid Balance and Fluid Consumption
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, W.M.; Ferraro, E.M.; Huggins, R.A.; Casa, D.J. Influence of body mass loss on changes in heart rate during exercise in the heat: A systematic review. J. Strength Cond. Res. 2014, 28, 2380–2389. [Google Scholar] [CrossRef] [PubMed]
- Nuccio, R.P.; Barnes, K.A.; Carter, J.M.; Baker, L.B. Fluid balance in team sport athletes and the effect of hypohydration on cognitive, technical, and physical performance. Sports Med. 2017, 47, 1951–1982. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, R.P.; Mündel, T.; Natali, A.J.; Bara Filho, M.G.; Alfenas, R.C.; Lima, J.R.; Belfort, F.G.; Lopes, P.R.; Marins, J.C. Pre-game hydration status, sweat loss, and fluid intake in elite brazilian young male soccer players during competition. J. Sports Sci. 2012, 30, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Brown, A.M.; De Félix-Dávila, R.A. Hydration status in adolescent judo athletes before and after training in the heat. Int. J. Sports Physiol. Perform. 2012, 7, 39–46. [Google Scholar] [CrossRef]
- Seal, A.D.; Suh, H.-G.; Jansen, L.T.; Summers, L.G.; Kavouras, S.A. Chapter 11—Hydration and health. In Analysis in Nutrition Research; Pounis, G., Ed.; Academic Press: Waltham, MA, USA, 2019; pp. 299–319. [Google Scholar] [CrossRef]
- Arnaoutis, G.; Kavouras, S.A.; Angelopoulou, A.; Skoulariki, C.; Bismpikou, S.; Mourtakos, S.; Sidossis, L. Fluid balance during training in elite young athletes of different sports. J. Strength Cond. Res. 2015, 29, 3447–3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaoutis, G.; Kavouras, S.A.; Kotsis, Y.P.; Tsekouras, Y.E.; Makrillos, M.; Bardis, C.N. Ad libitum fluid intake does not prevent dehydration in suboptimally hydrated young soccer players during a training session of a summer camp. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 245–251. [Google Scholar] [CrossRef]
- Desbrow, B. Youth Athlete Development and Nutrition. Sports Med. 2021, 1–10. [Google Scholar] [CrossRef]
- Baker, L.B. Sweating rate and sweat sodium concentration in athletes: A review of methodology and intra/interindividual variability. Sports Med. 2017, 47, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Duffield, R.; McCall, A.; Coutts, A.J.; Peiffer, J.J. Hydration, sweat and thermoregulatory responses to professional football training in the heat. J. Sports Sci. 2012, 30, 957–965. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Johnson, E.C.; McKenzie, A.L.; Ellis, L.A.; Williamson, K.H. Endurance cyclist fluid intake, hydration status, thirst, and thermal sensations: Gender differences. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 161–167. [Google Scholar] [CrossRef]
- Volpe, S.L.; Poule, K.A.; Bland, E.G. Estimation of prepractice hydration status of national collegiate athletic association division i athletes. J. Athl. Train. 2009, 44, 624–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowland, T. Fluid replacement requirements for child athletes. Sports Med. 2011, 41, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Casa, D.J.; Cheuvront, S.N.; Galloway, S.D.; Shirreffs, S.M. Fluid needs for training, competition, and recovery in track-and-field athletes. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 175. [Google Scholar] [CrossRef] [Green Version]
- Bancks, M.P.; Casanova, R.; Gregg, E.W.; Bertoni, A.G. Epidemiology of diabetes phenotypes and prevalent cardiovascular risk factors and diabetes complications in the national health and nutrition examination survey 2003–2014. Diabetes Res. Clin. Pract. 2019, 158, 107915. [Google Scholar] [CrossRef]
- Casa, D.J.; Armstrong, L.E.; Hillman, S.K.; Montain, S.J.; Reiff, R.V.; Rich, B.S.; Roberts, W.O.; Stone, J.A. National athletic trainers’ association position statement: Fluid replacement for athletes. J. Athl. Train. 2000, 35, 212–224. [Google Scholar] [PubMed]
- Hamouti, N.; Del Coso, J.; Avila, A.; Mora-Rodriguez, R. Effects of athletes’ muscle mass on urinary markers of hydration status. Eur. J. Appl. Physiol. 2010, 109, 213–219. [Google Scholar] [CrossRef]
- Armstrong, L.E. Assessing hydration status: The elusive gold standard. J. Am. Coll. Nutr. 2007, 26, 575S–584S. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A new approach to monitoring exercise training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Engell, D.B.; Maller, O.; Sawka, M.N.; Francesconi, R.N.; Drolet, L.; Young, A.J. Thirst and fluid intake following graded hypohydration levels in humans. Physiol. Behav. 1987, 40, 229–236. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Hillsdale, N.J., Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Adams, J.D.; Kavouras, S.A.; Robillard, J.I.; Bardis, C.N.; Johnson, E.C.; Ganio, M.S.; McDermott, B.P.; White, M.A. Fluid balance of adolescent swimmers during training. J. Strength Cond. Res. 2016, 30, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.H.; Tan, A.; Ahmad, A.; Kwong, K.W.; Sompong, R.; Mohd Ghazali, K.A.; Liew, S.L.; Chai, W.J.; Thompson, M.W. Physiological characteristics of elite and sub-elite badminton players. J. Sports Sci. 2009, 27, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature 2019, 6, 211–259. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, D.; Kenny, G.P. Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J. Appl. Physiol. 2012, 113, 746–757. [Google Scholar] [CrossRef]
- Stachenfeld, N.S. Sex hormone effects on body fluid regulation. Exerc. Sport Sci. Rev. 2008, 36, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Nio, A.Q.; Ang, W.H.; Johnson, C.; Aziz, A.R.; Lim, C.L.; Hew-Butler, T. First reported cases of exercise-associated hyponatremia in Asia. Int. J. Sports Med. 2011, 32, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Maresh, C.M.; Gabaree-Boulant, C.L.; Armstrong, L.E.; Judelson, D.A.; Hoffman, J.R.; Castellani, J.W.; Kenefick, R.W.; Bergeron, M.F.; Casa, D.J. Effect of hydration status on thirst, drinking, and related hormonal responses during low-intensity exercise in the heat. J. Appl. Physiol. 2004, 97, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Health Promotion Board. Singapore’s First Let’s Drink Water Campaign Encourages Children and Teens to Consume More Water and Less Sugary Drinks. Available online: https://www.hpb.gov.sg/article/singapore’s-first-let’s-drink-water-campaign-encourages-children-and-teens-to-consume-more-water-and-less-sugary-drinks (accessed on 14 August 2020).
- Goulet, E.D.B.; Hoffman, M.D. Impact of Ad Libitum Versus Programmed Drinking on Endurance Performance: A Systematic Review with Meta-Analysis. Sports Med. 2019, 49, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Shirreffs, S.M. Development of hydration strategies to optimize performance for athletes in high-intensity sports and in sports with repeated intense efforts. Scand. J. Med. Sci. Sports 2010, 20, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Toh, C.M.; Cutter, J.; Chew, S.K. School based intervention has reduced obesity in Singapore. BMJ 2002, 324, 427. [Google Scholar] [CrossRef] [Green Version]
- Qian, N. Bottled water or tap water? A comparative study of drinking water choices on university campuses. Water 2018, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Windt, J.; Taylor, D.; Little, D.; Sporer, B.C. Making everyone’s job easier. How do data scientists fit as a critical member of integrated support teams? Br. J. Sports Med. 2021, 55, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Oppliger, R.A.; Magnes, S.A.; Popowski, L.A.; Gisolfi, C.V. Accuracy of urine specific gravity and osmolality as indicators of hydration status. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 236–251. [Google Scholar] [CrossRef] [PubMed]
- Judge, L.W.; Bellar, D.M.; Popp, J.K.; Craig, B.W.; Schoeff, M.A.; Hoover, D.L.; Fox, B.; Kistler, B.M.; Al-Nawaiseh, A.M. Hydration to Maximize Performance and Recovery: Knowledge, Attitudes, and Behaviors Among Collegiate Track and Field Throwers. J. Hum. Kinet 2021, 79, 111–122. [Google Scholar] [CrossRef] [PubMed]
Demographic Data 1 | USG Values | Hydration Classification 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
N | Age (Years) | Height (cm) | Mass (kg) | BMI (kg/m2) | Morning USG | Morning Urine Color | ≤1.020 3 | >1.020 3 | ≤1.025 4 | >1.025 4 | |
Badminton | 13 | 14.5 (0.9) | 169.2 (10.7) | 58.1 (10.7) | 20.2 (2.4) | 1.019 (0.007) | 4.5 (1.9) | 8 (61.5) | 5 (38.5) | 11 (84.6) | 2 (15.4) |
Bowling | 10 | 14.6 (0.5) | 168.9 (8.1) | 60.4 (10.0) | 21.1 (2.8) | 1.020 (0.005) | 4.2 (1.9) | 6 (60.0) | 4 (40.0) | 8 (80) | 2 (20) |
Fencing | 11 | 13.8 (1.2) | 168.5 (8.1) | 59.5 (13.3) | 20.8 (3.8) | 1.024 (0.005) | 3.7 (1.7) | 3 (27.3) | 8 (72.7) | 7 (63.6) | 4 (36.4) |
Football | 11 | 13.0 (0.0) | 155.1 (5.0) | 47.2 (4.6) | 19.6 (1.5) | 1.021 (0.010) | 4.2 (1.9) | 4 (36.4) | 7 (63.6) | 7 (63.6) | 4 (36.4) |
Netball | 11 | 13.5 (0.5) | 165.5 (5.7) | 56.1 (10.4) | 20.5 (3.5) | 1.018 (0.008) | 3.5 (2.4) | 7 (63.6) | 4 (36.4) | 9 (81.8) | 2 (18.2) |
Pistol | 9 | 14.1 (1.4) | 163.0 (11.3) | 56.0 (11.8) | 20.8 (2.2) | 1.013 (0.007) | 2.8 (2.2) | 7 (77.8) | 2 (22.2) | 8 (88.9) | 1 (11.1) |
Rifle | 5 | 15.2 (1.1) | 165.2 (6.6) | 56.9 (9.7) | 20.8 (2.9) | 1.018 (0.006) | 3.6 (1.1) | 3 (60.0) | 2 (40.0) | 5 (100) | 0 (0) |
Swimming | 8 | 13.5 (0.5) | 162.4 (7.9) | 52.8 (4.9) | 20.1 (1.5) | 1.015 (0.006) | 3.0 (1.7) | 7 (87.5) | 1 (12.5) | 8 (100) | 0 (0) |
Table Tennis | 6 | 14.5 (1.4) | 167.5 (7.2) | 62.2 (3.6) | 22.3 (2.3) | 1.018 (0.005) | 2.5 (0.8) | 4 (66.7) | 2 (33.3) | 6 (100) | 0 (0) |
Track & Field-LD | 13 | 14.5 (1.1) | 166.3 (7.8) | 51.5 (8.8) | 18.5 (2.4) | 1.016 (0.007) | 2.5 (1.8) | 8 (61.5) | 5 (38.5) | 11 (84.6) | 2 (15.4) |
Track & Field-SD | 8 | 14.3 (1.0) | 166.5 (7.5) | 58.0 (8.6) | 20.8 (1.6) | 1.024 (0.006) | 5.5 (1.8) | 2 (25.0) | 6 (75.0) | 4 (50) | 4 (50) |
Female | 39 | 14.1 (0.9) | 163.6 (7.7) | 53.5 (8.3) | 20.0 (2.6) | 1.018 (0.007) | 3.6 (2.0) | 23 (59.0) | 16 (41.0) | 33 (84.6) | 6 (15.4) |
Male | 66 | 14.1 (1.1) | 166.3 (9.2) | 57.3 (10.7) | 20.6 (2.7) | 1.020 (0.007) | 3.7 (2.0) | 36 (54.5) | 30 (45.5) | 51 (77.3) | 15 (22.7) |
Overall | 105 | 14.1 (1.0) | 165.3 (8.8) | 55.9 (10.0) | 20.3 (2.6) | 1.019 (0.007) | 3.7 (2.0) | 59 (56.2) | 46 (43.8) | 84 (80) | 21 (20) |
Low Intensity | High Intensity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Training | Post-Training | Pre-Training | Post-Training | ||||||||
N | ≤1.020 2 | >1.020 2 | ≤1.025 3 | >1.025 3 | Excessive Dehydration 4 | ≤1.020 2 | >1.020 2 | ≤1.025 3 | >1.025 3 | Excessive Dehydration 4 | |
Badminton | 13 | 3 (23.1) | 10 (76.9) | 8 (61.5) | 5 (38.5) | 0 (0) | 8 (61.5) | 5 (38.5) | 11 (84.6) | 2 (15.4) | 0 (0) |
Bowling | 10 | 4 (40.0) | 6 (60.0) | 6 (60) | 4 (40) | 0 (0) | 7 (70.0) | 3 (30.0) | 8 (80) | 2 (20) | 0 (0) |
Fencing | 11 | 7 (63.6) | 4 (36.4) | 9 (81.8) | 2 (18.2) | 0 (0) | 3 (27.3) | 8 (72.7) | 8 (72.7) | 3 (27.3) | 0 (0) |
Football | 11 | 5 (45.5) | 6 (54.5) | 8 (72.7) | 3 (27.3) | 1 (9.09) | 7 (63.6) | 4 (36.4) | 9 (81.8) | 2 (18.2) | 0 (0) |
Netball | 11 | 7 (63.6) | 4 (36.4) | 10 (90.9) | 1 (9.1) | 0 (0) | 8 (72.7) | 3 (27.3) | 9 (81.8) | 2 (18.2) | 0 (0) |
Pistol | 9 | 9 (100.0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) | 9 (100.0) | 0 (0) | 9 (100) | 0 (0) | 0 (0) |
Rifle | 5 | 4 (80.) | 1 (20.0) | 5 (100) | 0 (0) | 0 (0) | 4 (80.0) | 1 (20.0) | 5 (100) | 0 (0) | 0 (0) |
Swimming | 8 | 5 (62.5) | 3 (37.5) | 7 (87.5) | 1 (12.5) | 1 (12.5) | 5 (62.5) | 3 (37.5) | 7 (87.5) | 1 (12.5) | 0 (0) |
Table Tennis | 6 | 2 (33.3) | 4 (66.7) | 5 (83.3) | 1 (16.7) | 0 (0) | 4 (66.7) | 2 (33.3) | 4 (66.7) | 2 (33.3) | 0 (0) |
Track & Field-LD | 13 | 8 (61.5) | 5 (38.5) | 9 (69.2) | 4 (30.8) | 0 (0) | 10 (76.9) | 3 (23.1) | 12 (92.3) | 1 (7.7) | 0 (0) |
Track & Field-SD | 8 | 5 (62.5) | 3 (37.5) | 7 (87.5) | 1 (12.5) | 0 (0) | 4 (50.0) | 4 (50.0) | 7 (87.5) | 1 (12.5) | 0 (0) |
Female | 39 | 24 (61.5) | 15 (38.5) | 33 (84.6) | 6 (15.4) | 0 (0) | 30 (76.9) | 9 (23.1) | 35 (89.7) | 4 (10.3) | 0 (0) |
Male | 66 | 35 (53.0) | 31 (47.0) | 50 (75.8) | 16 (24.2) | 2 (3.03) | 39 (59.1) | 27 (40.9) | 54 (81.8) | 12 (18.2) | 0 (0) |
Overall | 105 | 59 (56.2) | 46 (43.8) | 83 (79.1) | 22 (20.9) | 2 (1.90) | 69 (65.7) | 36 (34.3) | 89 (84.8) | 16 (15.2) | 0 (0) |
Sweat Rate (mL/h) | Fluid Consumption Rate (mL/h) | |||||||
---|---|---|---|---|---|---|---|---|
Fixed Effects | Estimates | 95% CI 1 | p Value | SMD | Estimates | 95% CI 1 | p Value | SMD |
Intercept | 582 | 403–761 | 289 | 125–454 | ||||
Badminton a | 151 | −75–379 | 0.19 | 0.79 | 288 | 79–498 | <0.05 | 1.82 |
Bowling a | −353 | −592–−113 | <0.01 | −1.85 | −86 | −307–135 | 0.44 | −0.54 |
Fencing a | 109 | −126–344 | 0.36 | 0.57 | 234 | 17–450 | 0.04 | 1.47 |
Football a | 284 | 49–519 | <0.05 | 1.48 | 273 | 57–490 | <0.05 | 1.72 |
Netball a | −51 | −286–184 | 0.67 | −0.27 | 180 | −36–397 | 0.1 | 1.13 |
Pistol a | −509 | −755–−264 | <0.01 | −2.67 | −182 | −408–−44 | 0.11 | −1.15 |
Rifle a | −348 | −636–−60 | <0.05 | −1.82 | −79 | −345–186 | 0.56 | −0.50 |
Swimming a | −394 | −647–−141 | <0.01 | −2.06 | −93 | −326–140 | 0.43 | −0.58 |
Table tennis a | −189 | −462–84 | 0.17 | −0.99 | −63 | −315–188 | 0.62 | −0.40 |
Track & Field-LD a | −17 | −244–211 | 0.89 | −0.09 | 103 | −107–312 | 0.33 | 0.65 |
HI b | −35 | −224–155 | 0.72 | −0.18 | 18 | −140–176 | 0.82 | 0.11 |
HI*Badminton | 156 | −85–397 | <0.05 | 0.82 | 60 | −140–260 | 0.55 | 0.38 |
HI*Bowling | 192 | −62–447 | 0.14 | 1.01 | 7 | −204–219 | 0.95 | 0.05 |
HI*Fencing | −263 | −512–−13 | <0.05 | −1.37 | −164 | −371–43 | 0.12 | −1.03 |
HI*Football | 90 | −159–339 | 0.48 | 0.47 | −53 | −260–154 | 0.61 | −0.33 |
HI*Netball | 125 | −124–375 | 0.32 | 0.66 | −26 | −233–181 | 0.81 | −0.16 |
HI*Pistol | 119 | −142–380 | 0.37 | 0.62 | 48 | −169–264 | 0.66 | 0.30 |
HI*Rifle | −27 | −333–279 | 0.86 | −0.14 | −45 | −299–210 | 0.73 | −0.28 |
HI*Swimming | 48 | −220–316 | 0.72 | 0.25 | 70 | −153–293 | 0.53 | 0.44 |
HI*Table tennis | 142 | −147–432 | 0.33 | 0.75 | 159 | −82–400 | 0.19 | 1.00 |
HI*Track & Field-LD | −145 | −386–96 | 0.24 | −0.76 | −222 | −422–−22 | <0.05 | −1.4 |
Random Effects | ||||||||
Between subjects SD | 170 | 174.1 | ||||||
Within subjects SD | 191 | 158.8 | ||||||
ICC | 0.44 | 0.55 |
Low-Intensity | High-Intensity | |||||
---|---|---|---|---|---|---|
(Cluster 1) | (Cluster 2) | (Cluster 3) | (Cluster 1) | (Cluster 2) | (Cluster 3) | |
Variable | Heavy Sweaters with Sufficient Compensatory Hydration Habits | Heavy Sweaters with Insufficient Compensatory Hydration Habits | Light Sweaters with Sufficient Compensatory Hydration Habits | Heavy Sweaters with Sufficient Compensatory Hydration Habits | Heavy Sweaters with Insufficient Compensatory Hydration Habits | Light Sweaters with Sufficient Compensatory Hydration Habits |
Fluid consumption rate | 1.49 (811.87 mL/h) | −0.20 (311.66 mL/h) | −0.49 (227.22 mL/h) | 1.60 (769.85 mL/h) | −0.07 (343.68 mL/h) | −0.5 (233.22 mL/h) |
Sweat rate | 1.05 (886 mL/h) | 0.48 (678 mL/h) | −0.65 (261 mL/h) | 0.83 (770 mL/h) | 0.68 (720 mL/h) | −0.72 (267 mL/h) |
Percentage body mass loss | 0.65 (0.03%) | −1.24 (−1.05%) | 0.34 (−0.15%) | 0.70 (0.02%) | −1.07 (−1.12%) | 0.45 (−0.15%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suppiah, H.T.; Ng, E.L.; Wee, J.; Taim, B.C.; Huynh, M.; Gastin, P.B.; Chia, M.; Low, C.Y.; Lee, J.K.W. Hydration Status and Fluid Replacement Strategies of High-Performance Adolescent Athletes: An Application of Machine Learning to Distinguish Hydration Characteristics. Nutrients 2021, 13, 4073. https://doi.org/10.3390/nu13114073
Suppiah HT, Ng EL, Wee J, Taim BC, Huynh M, Gastin PB, Chia M, Low CY, Lee JKW. Hydration Status and Fluid Replacement Strategies of High-Performance Adolescent Athletes: An Application of Machine Learning to Distinguish Hydration Characteristics. Nutrients. 2021; 13(11):4073. https://doi.org/10.3390/nu13114073
Chicago/Turabian StyleSuppiah, Haresh T., Ee Ling Ng, Jericho Wee, Bernadette Cherianne Taim, Minh Huynh, Paul B. Gastin, Michael Chia, Chee Yong Low, and Jason K. W. Lee. 2021. "Hydration Status and Fluid Replacement Strategies of High-Performance Adolescent Athletes: An Application of Machine Learning to Distinguish Hydration Characteristics" Nutrients 13, no. 11: 4073. https://doi.org/10.3390/nu13114073
APA StyleSuppiah, H. T., Ng, E. L., Wee, J., Taim, B. C., Huynh, M., Gastin, P. B., Chia, M., Low, C. Y., & Lee, J. K. W. (2021). Hydration Status and Fluid Replacement Strategies of High-Performance Adolescent Athletes: An Application of Machine Learning to Distinguish Hydration Characteristics. Nutrients, 13(11), 4073. https://doi.org/10.3390/nu13114073