Impact of Integration of Severe Acute Malnutrition Treatment in Primary Health Care Provided by Community Health Workers in Rural Niger
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Location
2.2. Socioeconomic Assessment
2.3. Treatment Coverage Assessment
2.4. Treatment Effectiveness Assessment
2.5. Statistical Analysis
2.6. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Republique du Niger. Ministère de l’Economie et des Finances. Rapport Provisoire sur les Caracteristiques Demographiques et Socioeconomiques des Ménages a Partir des Donnees du RGP/h. 2001. Available online: https://www.stat-niger.org/wp-content/uploads/2020/05/caracteristiques-demo-socio-eco_-menages.pdf (accessed on 27 November 2020).
- WHOUNICEF-WHO-The World Bank: Joint Child Malnutrition Estimates–Levels and Trends. 2019. Available online: https://www.who.int/nutgrowthdb/estimates2018/en/ (accessed on 30 July 2020).
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grandtham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- World Food Programme. Rapport Sommaire du Coût de la Faim en Afrique (COHA): L’Incidence Sociale et Economique de la Malnutrition Chez L’enfant au Niger. Available online: https://reliefweb.int/report/niger/le-co-t-de-la-faim-en-afrique-l-incidence-sociale-et-conomique-de-la-malnutrition-chez (accessed on 27 November 2020).
- Institut National de la Statistique-Niger. Rapport Final de l’Evaluation Nationale de la Situation Nutritionnelle par la Méthodologie SMART, INS-Niger. 2019. Available online: https://www.stat-niger.org/wp-content/uploads/2020/06/Rapport_Enquete_Smart_2019.pdf (accessed on 27 November 2020).
- Kouassi, F.; Houphouët-Boigny, U. Link Causal Analysis Study in Mayadi Department (Maradi Region, Niger). Action against Hunger—France. 2016–2017. Available online: https://www.linknca.org/etude/departement_de_mayadi_region_de_maradi.htm (accessed on 27 November 2020).
- De Onis, M.; Borghi, E.; Arimond, M.; Webb, P.; Croft, T.; Saha, K.; De-Regil, L.M.; Thuita, F.; Heidkamp, R.; Krasevec, J.; et al. Prevalence Thresholds for Wasting, Overweight and Stunting in Children under 5 Years. Public Health Nutr. 2019, 22, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Ministère de la Santé Publique-Secrétariat Général Direction des Statistiques. Annuaire des Statistiques Sanitaires du Niger, Année 2016.Niamey. 2017. Available online: http://snis.cermes.net/wp-content/uploads/Annuaire_Statistiques_2016.pdf (accessed on 27 November 2020).
- Rapport Enquête de Couverture de la PCIMA Avec la méthode SLEAC, District de Mayahi (Maradi, Niger), Décembre 2016. Available online: https://acutemalnutrition.org/en/coverage (accessed on 10 November 2020).
- Ministère de la Santé Publique. Protocole National de Prise en Charge Intégrée de la Malnutrition Aigüe; AOUT: Niamey, Nigeria, 2016. [Google Scholar]
- World Health Organization. OMS-Niger Rapport Annuel 2014. Available online: https://www.afro.who.int/sites/default/files/2017-06/rapport-annuel-2014_oms-niger.pdf (accessed on 27 November 2020).
- Friedman, L.; Wolfheim, C. Linking Nutrition & (Integrated) Community Case Management. A Review of Operational Experiences. 2014. Available online: https://www.ennonline.net/linkingnutritionintegratedcommunitycasemanagementareviewofoperationalexperiences (accessed on 27 December 2020).
- López-Ejeda, N.; Charle-Cuellar, P.; Vargas, A.; Guerrero, A. Can Community Health Workers Manage Uncomplicated Severe Acute Malnutrition? A Review of Operational Experiences in Delivering Severe Acute Malnutrition Treatment Through Community Health Platforms. Matern. Child Nutr. 2019, 15, e12719. [Google Scholar] [CrossRef] [PubMed]
- UNICEF. Treatment of Wasting Using Simplified Approaches. A Rapid Review. 2021. Available online: https://www.unicef.org/documents/rapid-review-treatment-wasting-using-simplified-approaches (accessed on 10 January 2021).
- World Health Organization; Multicentre Growth Reference Study Group. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2007; Available online: http://www.who.int/childgrowth/standards/technical_report/en/index.html (accessed on 14 September 2020).
- USAID. Semi-Quantitative Evaluation of Access and Coverage (SQUEAC)/Simplified lot Quality Assurance Sampling Evaluation of Access and Coverage (SLEAC) Technical Reference. Food and Nutrition Technical Assistance (FANTA III). 2012. Available online: https://www.fantaproject.org/monitoring-and-evaluation/squeac-sleac (accessed on 10 January 2021).
- Lenhard, W.; Lenhard, A. Calculation of Effect Sizes. Dettelbach (Germany). Psychometrica 2016. Available online: https://www.psychometrica.de/effect_size.html (accessed on 14 September 2020). [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Publishers: Hillsdale, NJ, USA, 1988; Available online: http://utstat.toronto.edu/~brunner/oldclass/378f16/readings/CohenPower.pdf (accessed on 14 September 2020).
- Charle, P. Treatment of Severe Acute Malnutrition Delivered by Community Health Workers in Niger. Trial Registration. ISRCTN Registry, BMC Springer Nature. 2018. Available online: http://www.isrctn.com/ISRCTN31143316?q=Pilar%20charle&filters=&sort=&offset=1&totalResults=2&page=1&pageSize=10&searchType=basic-search (accessed on 10 December 2020).
- Morgan, S.; Bulten, R.; Jalipa, H. Community Case Management Approach to SAM Treatment in Angola. Field Exchange 49. March 2015, p. 3. Available online: www.ennonline.net/fex/49/angola (accessed on 17 May 2021).
- Sadler, K.; Puett, C.; Mothabbir, G.; Myatt, M. Community Case Management of Severe Acute Malnutrition in Southern Bangladesh. Save the Children, Feinstein International Center, Tufts University. 2011. Available online: https://fic.tufts.edu/assets/Community-Case-Mgt.pdf (accessed on 17 May 2021).
- Somassé, Y.E.; Bahwere, P.; Laokri, S.; Elmoussaoui, N.; Donnen, P. Sustainability and Scaling-Up Analysis of Community-Based Management of Acute Malnutrition: Lessons Learned from Burkina Faso. Food Nutr. Bull. 2013, 34, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Morán, J.L.; Alé, F.G.B.; Charle, P.; Sessions, N.; Doumbia, S.; Guerrero, S. The effectiveness of treatment for Severe Acute Malnutrition (SAM) delivered by Community Health Workers compared to a traditional facility based model. BMC Health Serv. Res. 2018, 18, 207. [Google Scholar] [CrossRef] [Green Version]
- Teshome, G.; Bosha, T.; Gebremedhin, S. Time-to-recovery from severe acute malnutrition in children 6–59 months of age enrolled in the outpatient treatment program in Shebedino, Southern Ethiopia: A prospective cohort study. BMC Pediatr. 2019, 19, 33. [Google Scholar] [CrossRef]
- Wilunda, C.; Mumba, F.G.; Putoto, G.; Maya, G.; Musa, E.; Loruso, V.; Magige Ch Leyna, G.; Manenti, F.; Dalla Riva, D.; Ntoga, A.; et al. Effectiveness of screening and treatment of children with severe acute malnutrition by community health workers in Simiyu region, Tanzania: A quasi-experimental pilot study. Sci. Rep. 2021, 27, 2342. [Google Scholar] [CrossRef]
- López-Ejeda, N.; Charle-Cuellar, P.; Alé, F.G.B.; Álvarez, J.L.; Vargas, A.; Guerrero, S. Bringing severe acute malnutrition treatment close to households through community health workers can lead to early admissions and improved discharge outcomes. PLoS ONE 2020, 15, e0227939. [Google Scholar] [CrossRef]
- Grellety, E.; Golden, M.H. Severely malnourished children with a low weight-for-height have a higher mortality than those with a low mid-upper-arm-circumference: I. Empirical data demonstrates Simpson’s paradox. Nutr. J. 2018, 17, 79. [Google Scholar] [CrossRef] [Green Version]
- Grellety, E.; Golden, M.H. Severely malnourished children with a low weight-for-height have similar mortality to those with a low mid-upper-arm-circumference: II. Systematic literature review and meta-analysis. Nutr. J. 2018, 17, 80. [Google Scholar] [CrossRef]
- Grellety, E.; Golden, M.H. Severely malnourished children with a low weight-for-height have a higher mortality than those with a low mid-upper-arm-circumference: III. Effect of case-load on malnutrition related mortality–policy implications. Nutr. J. 2018, 17, 81. [Google Scholar] [CrossRef]
- Briend, A.; Maire, B.; Fontaine, O.; Garenne, M. Mid-upper arm circumference and weight-for-height to identify high-risk malnourished under-five children. Matern. Child Nutr. 2011, 8, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Myatt, M.; Duffield, A.; Seal, A.; Pasteur, F. The effect of body shape on weight-for-height and mid-upper arm circumference based case definitions of acute malnutrition in Ethiopian children. Ann. Hum. Biol. 2009, 36, 5–20. [Google Scholar] [CrossRef]
- Post, C.L.A.; Victora, C.G. The Low Prevalence of Weight-for-Height Deficits in Brazilian Children Is Related to Body Proportions. J. Nutr. 2001, 131, 1290–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogin, B.; Varela-Silva, M.I. Leg Length, Body Proportion, and Health: A Review with a Note on Beauty. Int. J. Environ. Res. Public Health 2010, 7, 1047–1075. [Google Scholar] [CrossRef] [Green Version]
- Grellety, E.; Golden, M.H. Weight-for-height and mid-upper-arm circumference should be used independently to diagnose acute malnutrition: Policy implications. BMC Nutr. 2016, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- UNICEF; Global Nutrition Cluster; GTAM. Management of Child Wasting in the Context of COVID-19. Brief No.1. Available online: https://www.unicef.org/media/68286/file/Wasting-Programming-COVID19-Brief.pdf (accessed on 10 November 2021).
- Marshall, S.K.; Monárrez-Espino, J.; Eriksson, A. Performance of mid-upper arm circumference to diagnose acute malnutrition in a cross-sectional community-based sample of children aged 6-24 months in Niger. Nutr. Res. Pract. 2019, 13, 247–255. [Google Scholar] [CrossRef]
- The Sphere Project. Minimum Standards in Food Security and Nutrition. In: Humanitarian Charter and Minimum Standards in Humanitarian Response. Sphere Handbook. 2018. Available online: https://spherestandards.org/es/el-manual/ (accessed on 17 May 2021).
- Aguayo, V.M.; Bagdaiyan, N.; Qadir, S.S.; Bugti, A.N.; Alam, M.M.; Nishtar, N.; Galvin, M. Community management of acute malnutrition (CMAM) programme in Pakistan effectively treats children with uncomplicated severe wasting. Matern. Child Nutr. 2019, 14, e12623. [Google Scholar] [CrossRef] [Green Version]
- Burrel, A.; Kerac, M.; Nabwera, H. Monitoring and discharging children being treated for severe acute malnutrition using mid-upper arm circumference: Secondary data analysis from rural Gambia. Int. Health 2017, 9, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Page, A.L.; De Rekeneire, N.; Sayadi, S.; Aberrane, S.; Janssens, A.C.; Rieux c Djibo, A.; Manuguerra, J.C.; Ducou-le-Ponite, H.; Grais, R.F.; Baron, E.; et al. Infections in Children Admitted with Complicated Severe Acute Malnutrition in Niger. PLoS ONE 2013, 8, e68699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Control n = 223 | Intervention n = 224 | p Value | |||
---|---|---|---|---|---|
n (mean) | % (SD) | n (mean) | % (SD) | ||
Demographics | |||||
Household size | (8.02) | (3.92) | (7.66) | (3.74) | 0.321 |
Female proportion | 905 | 50.2% | 865 | 51.2% | 0.555 |
Farming as the main source of subsistence | 218 | 97.7% | 217 | 96.9% | 0.602 |
House characteristics | |||||
Cement floor | 1 | 0.1% | 1 | 0.4% | 0.526 |
Palm/leaves roof | 118 | 52.7% | 60 | 26.9% | <0.001 |
Handmade bricks of earth roof | 64 | 28.6% | 111 | 49.8% | <0.001 |
Adapted toilet (flush or slab pit) | 6 | 2.7% | 9 | 4.0% | 0.445 |
House in property | 218 | 97.8% | 215 | 96.0% | 0.273 |
Water source | |||||
Potable source in the house | 75 | 33.6% | 108 | 41.7% | 0.002 |
Potable source close | 4 | 1.8% | 5 | 2.2% | 0.763 |
Need for disinfection | 73 | 32.7% | 76 | 33.9% | 0.250 |
Health service for the sick child | |||||
Health center as the first option for the screening sick child | 139 | 62.1% | 128 | 57.4% | 0.312 |
Treatment preference | |||||
Medication of the health center | 166 | 74.4% | 144 | 64.3% | 0.021 |
Traditional self-medication (herbs) | 54 | 24.2% | 74 | 33.0% | |
Self-medication with street drugs | 6 | 2.7% | 6 | 2.7% | 1.000 |
Traditional healers | 12 | 5.4% | 29 | 12.9% | 0.006 |
Barriers to access | |||||
Fees | 82 | 36.8% | 98 | 42.8% | 0.132 |
Lack of basic infrastructure | 52 | 23.2% | 52 | 23.3% | 0.980 |
Distance | 65 | 29.1% | 30 | 13.4% | <0.001 |
Control | Intervention | p Value | Effect Size (Cohen’s d) | |
---|---|---|---|---|
MUAC Indicators | n = 746 Median (IQR) | n = 1757 Median (IQR) | ||
MUAC (mm) | 110 (105–113) | 112 (110–114) | <0.001 | 0.324 |
MUAC z-score | −3.64 (−4.08–−3.20) | −3.40 (−3.80–−3.01) | <0.001 | 0.335 |
MUAC quartiles * | % (n) | % (n) | ||
Q1 (< 110 mm) | 37.4 (279) | 19.4 (341) | <0.001 | |
Q2 (≥ 110 to <111 mm) | 20.6 (154) | 25.5 (448) | 0.009 | |
Q3 (≥ 111 to <114 mm) | 20.1 (150) | 25.0 (440) | 0.008 | |
Q4 (≥ 115 mm) | 21.8 (163) | 30.1 (528) | <0.001 | |
WHZ Indicators | n = 760 Median (IQR) | n = 1894 Median (IQR) | p Value | Effect Size (Cohen’s d) |
Weight (kg) | 6.0 (5.3–6.8) | 6.2 (5.5–7.1) | <0.001 | 0.203 |
Height (cm) | 68.0 (65.0–73.0) | 69.0 (65.0–74.0) | 0.008 | 0.101 |
WHZ | −3.47 (−4.08–−2.95) | −3.21 (−3.73–−2.56) | <0.001 | 0.640 |
WHZ quartiles * | % (n) | % (n) | ||
Q1 (< −3.83) | 32.6 (248) | 21.1 (418) | <0.001 | |
Q2 (≥ −3.83 to <−3.29) | 28.8 (219) | 23.5 (446) | 0.005 | |
Q3 (≥ −3.29 to <−2.65) | 20.7 (157) | 26.7 (505) | 0.001 | |
Q4 (≥ −2.65) | 17.9 (136) | 27.7 (525) | <0.001 |
Total SAM by WHZ | Proportion Admitted by MUAC | Proportion Admitted by MUAC with Extended Thresholds | |||
---|---|---|---|---|---|
<115 mm | <118 mm | <120 mm | <125 mm | ||
Whole sample | 100% (1513) | 81.4% (1231) | 90.4% (1368) | 92.5% (1399) | 99.5% (1506) |
Control | 100% (543) | 88.4% (480) | 94.8% (515) | 96.1 (522) | 99.6% (541) |
Intervention | 100% (970) | 77.4% (751) | 87.9% (853) | 90.4% (877) | 99.5% (965) |
Health centers | 100% (544) | 77.6% (422) | 88.8% (483) | 91.4% (497) | 99.4% (541) |
CHWs | 100% (418) | 77.0% (322) | 86.8% (363) | 89.0% (372) | 99.5% (416) |
(A) Whole Sample by Study Group | Control (n = 767) % (n) | Intervention (n = 1977) % (n) | HR [95% C.I.] ** | p Value |
Cured | 72.1% (553) | 77.2% (1527) | 1.613 [1.453–1.789] | <0.001 |
Default | 9.9% (76) | 7.7% (153) | 1.018 [0.750–1.381] | 0.909 |
Non-respondent | 5.9% (45) | 7.5% (149) | 1.827 [1.269–2.628] | 0.001 |
Medical reference | 1.8% (14) | 1.4% (27) | 0.853 [0.427–1.703] | 0.652 |
Internal transfer | 1.0% (8) | 2.4% (448) | 3.475 [1.442–8.372] | 0.006 |
Death | 2.1% (16) | 1.8% (38) | 0.729 [0.372–1.430] | 0.358 |
Other * | 7.2% (55) | 1.9% (38) | 0.501 [0.323–0.803] | 0.002 |
(B) Intervention Group by Treatment Provider | Healtj staff (n = 1181) % (n) | CHWs (n = 782) % (n) | HR [95% C.I.] ** | p Value |
Cured | 73.1% (863) | 83.7% (655) | 1.250 [1.118–1.397] | <0.001 |
Default | 8.3% (98) | 6.9% (54) | 1.036 [0.719–1.495] | 0.848 |
Non-respondent | 9.7% (115) | 4.3% (34) | 0.586 [0.379–0.905] | 0.016 |
Medical reference | 1.6% (19) | 0.9% (7) | 0.686 [0.279–1.702] | 0.416 |
Internal transfer | 2.5% (30) | 2.0% (16) | 0.852 [0.426–1.703] | 0.650 |
Death | 2.6% (31) | 0.5% (4) | 0.231 [0.068–0.785] | 0.019 |
Other * | 2.1% (25) | 1.7% (13) | 0.788 [0.389–1.595] | 0.507 |
n | Median (Days) | IQR (Days) | p Value | Effect Size (Cohen’s d) | |
---|---|---|---|---|---|
Whole sample | |||||
Control | 553 | 49.0 | 35.0–65.0 | <0.001 | 0.582 |
Intervention | 1517 | 36.0 | 28.0–49.0 | ||
Intervention group | |||||
Health staff | 860 | 42.0 | 28.0–49.0 | 0.001 | 0.170 |
CHWs | 651 | 35.0 | 28.0–49.0 | ||
By admission criteria * | |||||
1 vs. 2 0.452 | 1 vs. 2 0.090 | ||||
Edema 1 | 58 | 35.0 | 21.0–42.5 | 1 vs. 3 0.004 | 1 vs. 3 0.214 |
WHZ only 2 | 217 | 35.0 | 18.0–49.0 | 1 vs.4 <0.001 | 1 vs. 4 0.311 |
MUAC only 3 | 652 | 42.0 | 28.0–49.0 | 2 vs. 3 0.001 | 2 vs. 3 0.236 |
MUAC + WHZ 4 | 858 | 45.0 | 34.0–56.0 | 2 vs. 4 <0.001 | 2 vs. 4 0.416 |
3 vs. 4 <0.001 | 3 vs. 4 0.260 |
Whole Sample | Intervention Group | |||||||
---|---|---|---|---|---|---|---|---|
Control | Intervention | RR [95% C.I.] | p Value | Health Staff | CHWs | RR [95% C.I.] | p Value | |
% (n) | % (n) | % (n) | % (n) | |||||
On admission | ||||||||
Diarrhea | 20.6 (158) | 25.7 (518) | 1.246 [1.065–1.459] | 0.006 | 25.9 (316) | 20.5 (197) | 0.965 [0.827–1.125] | 0.648 |
Vomit | 13.7 (105) | 14.7 (296) | 1.072 [0.872–1.317] | 0.511 | 13.0 (158) | 17.3 (163) | 1.332 [1.079–1.645] | 0.008 |
Fever | 3.7 (28) | 15.2 (306) | 4.155 [2.848–6.063] | <0.001 | 15.0 (183) | 15.4 (121) | 1.023 [0.828–1.264] | 0.834 |
Cough | 1.7 (13) | 13.4 (269) | 7.872 [4.540–13.648] | <0.001 | 13.2 (161) | 13.5 (106) | 1.022 [0.814–1.284] | 0.852 |
Dehydration | 0.3 (2) | 0.9 (19) | 3.622 [0.846–15.511] | 0.083 | 1.1 (13) | 0.8 (6) | 0.714 [0.273–1.871] | 0.493 |
Malaria | 1.8 (14) | 1.4 (28) | 0.763 [0.404–1.442] | 0.405 | 1.3 (16) | 1.5 (12) | 1.161 [0.552–2.441] | 0.694 |
Skin injuries | 0.5 (11) | 0 (0) | 0.114 [0.007–0.133] | 0.132 | 0.7 (9) | 0.3 (2) | 0.343 [0.074–1.584] | 0.170 |
During treatment | ||||||||
Diarrhea | 4.3 (33) | 15.1 (305) | 3.506 [2.472–4.972] | <0.001 | 16.5 (202) | 12.8 (101) | 0.777 [0.622–0.969] | 0.025 |
ARI | 1.8 (14) | 7.9 (159) | 4.308 [2.510–7.393] | <0.001 | 5.1 (63) | 11.8 (93) | 2.293 [1.687–3.117] | <0.001 |
Malaria | 5.0 (38) | 4.7 (95) | 0.948 [0.657–1.369] | 0.777 | 3.3 (40) | 7.0 (55) | 2.136 [1.435–3.178] | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogobara Dougnon, A.; Charle-Cuéllar, P.; Toure, F.; Aziz Gado, A.; Sanoussi, A.; Lazoumar, R.H.; Alain Tchamba, G.; Vargas, A.; Lopez-Ejeda, N. Impact of Integration of Severe Acute Malnutrition Treatment in Primary Health Care Provided by Community Health Workers in Rural Niger. Nutrients 2021, 13, 4067. https://doi.org/10.3390/nu13114067
Ogobara Dougnon A, Charle-Cuéllar P, Toure F, Aziz Gado A, Sanoussi A, Lazoumar RH, Alain Tchamba G, Vargas A, Lopez-Ejeda N. Impact of Integration of Severe Acute Malnutrition Treatment in Primary Health Care Provided by Community Health Workers in Rural Niger. Nutrients. 2021; 13(11):4067. https://doi.org/10.3390/nu13114067
Chicago/Turabian StyleOgobara Dougnon, Abdias, Pilar Charle-Cuéllar, Fanta Toure, Abdoul Aziz Gado, Atté Sanoussi, Ramatoulaye Hamidou Lazoumar, Georges Alain Tchamba, Antonio Vargas, and Noemi Lopez-Ejeda. 2021. "Impact of Integration of Severe Acute Malnutrition Treatment in Primary Health Care Provided by Community Health Workers in Rural Niger" Nutrients 13, no. 11: 4067. https://doi.org/10.3390/nu13114067
APA StyleOgobara Dougnon, A., Charle-Cuéllar, P., Toure, F., Aziz Gado, A., Sanoussi, A., Lazoumar, R. H., Alain Tchamba, G., Vargas, A., & Lopez-Ejeda, N. (2021). Impact of Integration of Severe Acute Malnutrition Treatment in Primary Health Care Provided by Community Health Workers in Rural Niger. Nutrients, 13(11), 4067. https://doi.org/10.3390/nu13114067