Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Measures
2.3. Theoretical Rationale
2.4. Methodological Framework
3. Results
3.1. First Stage—Smoking Behavior and Frequent Wine/Beer Drinking
3.2. Second Stage—BMI Estimation
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
References
- Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. Obesity Management Task Force of the European Association for the Study of Obesity. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Steenhuis, I.; Leeuwis, F.; Vermeer, W. Small, medium, large or supersize: Trends in food portion sizes in The Netherlands. Public Health Nutr. 2010, 13, 852–857. [Google Scholar] [CrossRef]
- Smith, K.J.; Gall, S.L.; McNaughton, S.A.; Cleland, V.J.; Otahal, P.; Dwyer, T.; Venn, A.J. Lifestyle behaviours associated with 5-year weight gain in a prospective cohort of Australian adults aged 26–36 years at baseline. BMC Public Health 2017, 17, 54. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.D.; Benedict, C.; Brooks, S.J.; Schioth, H.B. Lifestyle determinants of the drive to eat: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 492–497. [Google Scholar] [CrossRef]
- Butler, L.; Poti, J.M.; Popkin, B.M. Trends in energy intake from alcoholic beverages by socio-demographic characteristics among US adults, 1989–2012. J. Acad. Nutr. Diet. 2016, 116, 1087–1100. [Google Scholar] [CrossRef]
- Poppitt, S.D. Beverage Consumption: Are Alcoholic and Sugary Drinks Tipping the Balance towards Overweight and Obesity? Nutrients 2015, 7, 6700–6718. [Google Scholar] [CrossRef]
- Rose, A.K.; Hardman, C.A.; Christiansen, P. The effects of a priming dose of alcohol and drinking environment on snack food intake. Appetite 2015, 95, 341–348. [Google Scholar] [CrossRef]
- Tremblay, A.; Wouters, E.; Wenker, M.; St-Pierre, S.; Bouchard, C.; Després, J.P. Alcohol and a high-fat diet: A combination favoring overfeeding. Am. J. Clin. Nutr. 1995, 62, 639–644. [Google Scholar] [CrossRef]
- Stice, E.; Figlewicz, D.P.; Gosnell, B.A.; Levine, A.S.; Pratt, W.E. The contribution of brain reward circuits to the obesity epidemic. Neurosci. Biobehav. Rev. 2013, 37, 2047–2058. [Google Scholar] [CrossRef]
- Schrieks, I.C.; Stafleu, A.; Griffioen-Roose, S.; de Graaf, C.; Witkamp, R.F.; Boerrigter-Rijneveld, R.; Hendriks, H.F. Moderate alcohol consumption stimulates food intake and food reward of savoury foods. Appetite 2015, 89, 77–83. [Google Scholar] [CrossRef]
- Rose, A.K.; Duka, T. Effects of dose and time on the ability of alcohol to prime social drinkers. Behavl. Pharmac. 2006, 17, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Traversy, G.; Chaput, J.P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Arabshahi, S.; Lahmann, P.H.; Williams, G.M.; van der Pols, J.C. Predictors of change in weight and waist circumference: 15-year longitudinal study in Australian adults. Eur. J. Clin. Nutr. 2014, 68, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.M.; Schütze, M.; Steffen, A.; Boeing, H.; Halkjaer, J.; Tjonneland, A.; Travier, N.; Agudo, A.; Slimani, N.; Rinaldi, S.; et al. The association of lifetime alcohol use with measures of abdominal and general adiposity in a large-scale European cohort. Eur. J. Clin. Nutr. 2011, 65, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Holloway, L.; Moore, G.; Pidgeon, S.; Collinson, A. Alcohol intake does not influence body weight or diet in the first six months of an undergraduate starting university. J. Hum. Nutr. Diet. 2011, 24, 286–287. [Google Scholar] [CrossRef]
- Sayon-Orea, C.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Alcohol consumption and body weight: A systematic review. Nutr. Rev. 2011, 69, 419–431. [Google Scholar] [CrossRef]
- Thomson, C.A.; Wertheim, B.C.; Hingle, M.; Wang, L.; Neuhouser, M.L.; Gong, Z.; Garcia, L.; Stefanick, M.L.; Manson, J.E. Alcohol consumption and body weight change in postmenopausal women: Results from the women’s health initiative. Int. J. Obes. 2012, 36, 1158–1564. [Google Scholar] [CrossRef]
- Shelton, N.J.; Knott, C.S. Association between alcohol calorie intake and overweight and obesity in English adults. Am. J. Public Health 2014, 104, 629–631. [Google Scholar] [CrossRef]
- Tayie, F.A.; Beck, G.L. Alcoholic beverage consumption contributes to caloric and moisture intakes and body weight status. Nutrition 2016, 32, 799–805. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martinez, P.; Medina-Remon, A.; Lamuela-Raventos, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef]
- Silva, A.P.; Jager, G.; Van Zyl, H.; Voss, H.P.; Pintado, M.; Hogg, T.; De Graaf, C. Cheers, proost, saúde: Cultural, contextual and psychological factors of wine and beer consumption in Portugal and in the Netherlands. Crit. Rev. Food Sci. Nutr. 2017, 57, 1340–1349. [Google Scholar] [CrossRef]
- Wright, C.A.; Bruhn, C.M.; Heymann, H.; Bamforth, C.W. Beer consumers’ perceptions of the health aspects of alcoholic beverages. J. Food Sci. 2008, 73, 12–17. [Google Scholar] [CrossRef]
- Bendsen, N.; Christensen, R.; Bartels, E.; Kok, F.; Sierksma, A.; Raben, A.; Astrup, A. Is beer consumption related to measures of abdominal and general obesity? A systematic review and meta-analysis. Nutr. Rev. 2011, 71, 67–87. [Google Scholar] [CrossRef]
- Herman, C.P. The social facilitation of eating. A review. Appetite 2015, 86, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.D.; Herbozo, S.; Morrell, H.E.; Schaefer, L.M.; Thompson, J.K. Adult and childhood weight influence body image and depression through weight stigmatization. J. Health Psych. 2017, 22, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- White, M.A. Smoking for weight control and its associations with eating disorder symptomatology. Compr. Psychiatry 2012, 53, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Dare, S.; Mackay, D.F.; Pell, J.P. Relationship between Smoking and Obesity: A Cross-Sectional Study of 499,504 Middle-Aged Adults in the UK General Population. PLoS ONE 2015, 10, e0123579. [Google Scholar] [CrossRef]
- Germeroth, L.J.; Levine, M.D. Postcessation weight gain concern as a barrier to smoking cessation: Assessment considerations and future directions. Addict. Behav. 2018, 76, 250–257. [Google Scholar] [CrossRef]
- Baum, D.L. The effects of cigarette costs on BMI and obesity. Health Econ. 2009, 18, 3–19. [Google Scholar] [CrossRef]
- Fang, H.; Ali, M.M.; Rizzo, J.A. Does smoking affect body weight and obesity in China? Econ. Hum. Biol. 2009, 7, 334–350. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, N.; Cheng, K.-W.; Wang, H. Reduced smoking and rising obesity. Does smoking ban in the workplace matter? Econ. Lett. 2010, 108, 249–252. [Google Scholar] [CrossRef]
- Wang, Q. Smoking and body weight: Evidence from China health and nutrition survey. BMC Public Health 2015, 15, 1238. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.; Frakes, M. Does falling smoking lead to rising obesity? J. Health Econ. 2006, 25, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Just, D.R.; Lin, B. Smoking, drinking and the distribution of adult body weight. Soc. Sci. J. 2010, 47, 372–391. [Google Scholar] [CrossRef]
- Inoue, S.; Sugiyama, T.; Takamiya, T.; Oka, K.; Owen, N.; Shimomitsu, T. Television viewing time is associated with overweight/obesity among older adults, independent of meeting physical activity and health guidelines. J. Epidem. 2012, 22, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Shuval, K.; Leonard, T.; Murdoch, J.; Caughy, M.O.; Kohl, H.W., 3rd; Skinner, C.S. Sedentary behaviors and obesity in a low-income, ethnic minority population. J. Phys. Act. Health 2013, 10, 132–136. [Google Scholar]
- Xie, Y.J.; Stewart, S.M.; Lam, T.H.; Viswanath, K.; Chan, S.S. Television Viewing Time in Hong Kong Adult Population: Associations with Body Mass Index and Obesity. PLoS ONE 2014, 9, e85440. [Google Scholar] [CrossRef]
- Boulos, R.; Kuross Vikre, E.; Peenheimer, S.; Chang, H.; Kanarek, R.B. ObesiTV: How television is influencing the obesity epidemic. Phys. Behav. 2012, 107, 146–153. [Google Scholar] [CrossRef]
- Ackil Ok, M.; Ercan, A.; Kaya, F.S. A content analysis of food advertising on Turkish television. Health Promot. Int. 2016, 31, 801–808. [Google Scholar] [CrossRef][Green Version]
- Leon-Munoz, L.M.; Garcıa-Esquinas, E.; Soler-Vila, H.; Guallar-Castillon, P.; Banegas, J.R.; Rodrıguez-Artalejo, F. Unhealthy eating behaviors and weight gain: A prospective study in young and middle-age adults. Obesity 2016, 24, 1178–1184. [Google Scholar] [CrossRef]
- Van Dyck, D.; Cardon, G.; Deforche, B.; Owen, N.; De Cocker, K.; Wijndaele, K.; De Bourdeaudhuij, I. Socio-demographic, psychosocial and home-environmental attributes associated with adults’ domestic screen time. BMC Public Health 2010, 11, 668. [Google Scholar] [CrossRef]
- Thomée, S.; Lissner, L.; Hagberg, M.; Grimby-Ekman, A. Leisure time computer use and overweight development in young adults—A prospective study. BMC Public Health 2015, 15, 839. [Google Scholar] [CrossRef]
- Vandelanotte, C.; Sugiyama, T.; Gardiner, T.; Owen, N. Associations of leisure-time internet and computer use with overweight and obesity, physical activity and sedentary behaviors: Cross-sectional study. J. Med. Int. Res. 2009, 11, e28. [Google Scholar] [CrossRef]
- Syamlal, G.; Mazurek, J.M.; Dube, S.R. Gender Differences in Smoking Among, U.S. Working Adults. Am. J. Prev. Med. 2014, 47, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Gabler, S.; Häder, S. Sampling in Theory. In GESIS Survey Guidelines; GESIS—Leibniz Institute for the Social Sciences: Mannheim, Germany, 2016. [Google Scholar] [CrossRef]
- GESIS—Leibniz Institute for the Social Sciences. German General Social Survey—ALLBUS 2014. GESIS Data Archive. 2016, Cologne. ZA5242 Data file Version 1.0.0. Available online: https://dbk.gesis.org/dbksearch/SDesc2.asp?DB=E&no=5242 (accessed on 20 October 2018).
- GESIS—Leibniz Institute for the Social Sciences. A Compendium of Standardized Survey descriptions. GESIS Data Archive for the Social Science. Released at 2018.08. Available online: https://www.gesis.org/fileadmin/upload/dienstleistung/daten/umfragedaten/allbus/dokumente/SURVEYS_rel201905.PDF (accessed on 20 October 2018).
- WHO-World Health Organization, Regional Office for Europe. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 2 October 2017).
- Britton, A.; Ben-Shlomo, Y.; Benzeval, M.; Kuh, D.; Bell, S. Life course trajectories of alcohol consumption in the United Kingdom using longitudinal data from nine cohort studies. BMC Med. 2015, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczyk, R.T.; Sebena, R.; Warich, J.; Naydenova, V.; Dudziak, U.; Orosova, O. Alcohol Drinking in University Students Matters for Their Self-Rated Health Status: A Cross-sectional Study in Three European Countries. Front. Public Health 2016, 4, 210. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Reeves, M.M.; Healy, G.N.; Owen, N.; Shaw, J.E.; Zimmet, P.; Dunstan, D.W. Joint associations of poor diet quality and prolonged television viewing time with abnormal glucose metabolism in Australian men and women. Prev. Med. 2013, 57, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Hadgraft, N.T.; Lynch, B.M.; Clark, B.K.; Healy, G.N.; Owen, N.; Dunstan, D.W. Excessive sitting at work and at home: Correlates of occupational sitting and TV viewing time in working adults. BMC Public Health 2015, 15, 899. [Google Scholar] [CrossRef] [PubMed]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Beebe, L.A.; Bush, T. Post-cessation weight concerns among women calling a state tobacco quitline. Am. J. Prev. Med. 2015, 48, 61–64. [Google Scholar] [CrossRef]
- Cawley, J.; Markowitz, S.; Tauras, J. Lighting up and slimming down: The effects of body weight and cigarette prices on adolescent smoking initiation. J. Health Econ. 2004, 23, 293–311. [Google Scholar] [CrossRef]
- Chaput, J.P.; McNeil, J.; Després, J.P.; Bouchard, C.; Tremblay, A. Short sleep duration is associated with greater alcohol consumption in adults. Appetite 2012, 59, 650–655. [Google Scholar] [CrossRef]
- Witkiewitz, K.; Desai, S.A.; Steckler, G.; Jackson, K.M.; Bowen, S.; Leigh, B.C.; Larimer, M.E. Concurrent drinking and smoking among college students: An event-level analysis. Psychol. Addict. Behav. 2012, 26, 649–654. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, J.J.; Cochran, C. Unemployment Rate, Smoking in China: Are They Related? Int. J. Environ. Res. Public Health 2016, 13, 113. [Google Scholar] [CrossRef]
- Auld, M. Smoking, drinking, and income. J. Human Res. 2006, 40, 505–518. [Google Scholar] [CrossRef]
- Chen, C.M.; Chang, C.K.; Yeh, C.Y. A quantile regression approach to re-investigate the relationship between sleep duration and body mass index in Taiwan. Int. J. Public Health 2012, 57, 485–493. [Google Scholar] [CrossRef]
- Vella, F.; Verbeek, M. Estimating and interpreting models with endogenous treatment effects. J. Bus. Econ. Stat. 1999, 17, 473–478. [Google Scholar]
- Koenker, R.; Hallock, K. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Mawditt, C.; Sacker, A.; Britton, A.; Kelly, Y.; Cable, N. The clustering of health-related behaviours in a British population sample: Testing for cohort differences. Prev. Med. 2016, 88, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Greene, W.H.; Hensher, D.A. Modeling Ordered Choices. 2009. Available online: http://pages.stern.nyu.edu/~wgreene/DiscreteChoice/Readings/OrderedChoiceSurvey.pdf (accessed on 3 August 2019).
- Enström Öst, C. Housing and children: Simultaneous decisions?—A cohort study of young adults’ housing and family formation decision. J. Popul. Econ. 2012, 25, 349–366. [Google Scholar]
- Dunn, R.A.; Tan, A.K.G.; Nayga, R.M. Obesity inequality in Malaysia: Decomposing differences by gender and ethnicity using quantile regression. Ethn. Health 2012, 17, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Maddala, G. Limited Dependent and Quantitative Variables in Econometrics; Cambridge University Press: New York, NY, USA, 1983. [Google Scholar]
- Beulens, J.W.; van Beers, R.M.; Stolk, R.P.; Schaafsma, G.; Hendriks, H.F. The effect of moderate alcohol consumption on fat distribution and adipocytokines. Obesity 2006, 14, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Romeo, J.; González-Gross, M.; Wärnberg, J.; Díaz, L.E.; Marcos, A. Does beer have an impact on weight gain? Effects of moderate beer consumption on body composition. Nutr. Hosp. 2007, 22, 223–228. [Google Scholar] [PubMed]
- Schütze, M.; Schulz, M.; Steffen, A.; Bergmann, M.M.; Kroke, A.; Lissner, L.; Boeing, H. Beer consumption and the “beer belly”: Scientific basis or common belief? Eur. J. Clin. Nutr. 2009, 63, 1143–1149. [Google Scholar] [CrossRef]
- Wehby, G.L.; Murray, J.C.; Wilcox, A.; Lie, R.T. Smoking and body weight: Evidence using genetic instruments. Econ. Hum. Biol. 2012, 10, 113–126. [Google Scholar] [CrossRef]
- Noble, N.; Paul, C.; Turon, H.; Oldmeadow, C. Which modifiable health risk behaviours are related? A systematic review of the clustering of Smoking, Nutrition, Alcohol and Physical activity (‘SNAP’) health risk factors. Prev. Med. 2015, 81, 16–41. [Google Scholar] [CrossRef]
- Pate, R.R.; Traverno Ross, S.E.; Liese, A.D.; Dowda, M. Associations among physical activity, diet quality, and weight status in U.S. adults. Med. Sci. Sports Exerc. 2015, 47, 743–750. [Google Scholar] [CrossRef]
- Matthews, C.E.; George, S.M.; Moore, S.C.; Bowles, H.R.; Blair, A.; Park, Y.; Troiano, R.P.; Hollenbeck, A.; Schatzkin, A. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am. J. Clin. Nutr. 2012, 95, 437–445. [Google Scholar] [CrossRef]
- Thorp, A.A.; Owen, N.; Neuhaus, M.; Dunstan, D.W. Sedentary Behaviors and Subsequent Health Outcomes in Adults: A Systematic Review of Longitudinal Studies, 1996–2011. Am. J. Prev. Med. 2011, 41, 207–215. [Google Scholar] [CrossRef]
- Hallgren, M.; Nguyen, T.; Owen, N.; Stubbs, B.; Vancampfort, D.; Lundin, A.; Dunstan, D.; Bellocco, R.; Lagerros, Y. Cross-sectional and prospective relationships of passive and mentally active sedentary behaviours and physical activity with depression. Br. J. Psychiatry 2020, 217, 413–419. [Google Scholar] [CrossRef]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Wurtman, J.; Wurtman, R. The Trajectory from Mood to Obesity. Curr. Obes. Rep. 2018, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Beville, J.M.; Meyer, M.R.; Usdan, S.L.; Turner, L.W.; Jackson, J.C.; Lian, B.E. Gender differences in college leisure time physical activity: Application of the theory of planned behavior and integrated behavioral model. J. Am. Coll. Health 2014, 62, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Keadle, S.K.; McKinnon, R.; Graubard, B.I.; Troiano, R.P. Prevalence and trends in physical activity among older adults in the United States: A comparison across three national surveys. Prev. Med. 2016, 89, 37–43. [Google Scholar] [CrossRef]
- Nölke, L.; Mensing, M.; Krämer, A.; Hornberg, C. Sociodemographic and health-(care-)related characteristics of online health information seekers: A cross-sectional German study. BMC Public Health 2015, 29, 31. [Google Scholar] [CrossRef]
- Melchior, M.; Chollet, A.; Fombonne, E.; Surkan, P.J.; Dray-Spira, R. Internet and video game use in relation to overweight in young adults. Am. J. Health Prom. 2014, 28, 321–324. [Google Scholar] [CrossRef]
- Yepes, M.; Viswanathan, B.; Bovet, P.; Maurer, J. Validity of silhouette showcards as a measure of body size and obesity in a population in the African region: A practical research tool for general-purpose surveys. Popul. Health Metrics 2015, 13, 35. [Google Scholar] [CrossRef][Green Version]
- Pursey, K.; Burrows, T.L.; Stanwell, P.; Collins, C.E. How Accurate is Web-Based Self-Reported Height, Weight, and Body Mass Index in Young Adults? J. Med. Int. Res. 2014, 16, e4. [Google Scholar] [CrossRef]
Mean | 26.107 |
Standard deviation | 4.714 |
Minimum | 14.840 |
Maximum | 54.080 |
Percentiles (%) | |
1 | 17.938 |
2 | 18.510 |
5 | 19.790 |
10 | 20.760 |
15 | 21.560 |
20 | 22.280 |
25 | 22.880 |
30 | 23.460 |
35 | 24.000 |
40 | 24.460 |
45 | 24.910 |
46 | 25.000 |
50 | 25.460 |
55 | 25.910 |
60 | 26.490 |
65 | 27.100 |
70 | 27.760 |
75 | 28.600 |
80 | 29.430 |
82 | 30.034 |
85 | 30.590 |
90 | 32.080 |
95 | 34.990 |
Variables | Males (N1 = 1762) | Females (N2 = 1709) | t-Test | p-Value |
---|---|---|---|---|
BMI * | 26.667 (0.101) | 25.516 (0.125) | 7.188 | 0.000 |
Chi-square | p-value | |||
Smoker | 586 (33.3%) | 412 (24.1%) | 35.717 | 0.000 |
Frequent wine/beer drinking | 349 (19.8%) | 91 (5.3%) | 164.545 | 0.000 |
Sociodemographic characteristics | ||||
Age | 3.157 | 0.206 | ||
18–29 years old | 308 (17.5%) | 275 (16.1%) | ||
30–60 years old | 938 (53.3%) | 961 (56.3%) | ||
Older than 60 years | 514 (29.2%) | 472 (27.6%) | ||
Marital status | 77.825 | 0.000 | ||
Married | 1039 (59.0%) | 959 (56.2%) | ||
Divorced/widowed | 165 (9.4%) | 331 (19.4%) | ||
Single | 556 (31.6%) | 417 (24.4%) | ||
Area of residence | 2.660 | 0.264 | ||
Big city | 564 (32.0%) | 540 (31.6%) | ||
Town | 490 (27.8%) | 516 (30.2%) | ||
Village/Rural area | 708 (40.2%) | 652 (38.2%) | ||
Education | 12.879 | 0.002 | ||
Secondary education | 973 (55.3%) | 1020 (59.8%) | ||
Post-secondary education | 386 (21.9%) | 381 (22.3%) | ||
Postgraduate studies | 400 (22.7%) | 306 (17.9%) | ||
Frequent social interactions | 142 (8.1%) | 126 (7.4%) | 0.573 | 0.449 |
Leisure time screen viewing behaviors | ||||
Daily internet usage | 1154 (65.5%) | 976(57.2%) | 25.308 | 0.000 |
Chatting/social networks daily | 412 (23.4%) | 419(24.5%) | 0.644 | 0.422 |
Playing games on computer daily | 132 (7.5%) | 119(7.0%) | 0.350 | 0.554 |
High TV viewing time | 709 (40.3%) | 717(42.1%) | 1.090 | 0.297 |
Variables | Males | Females | ||
---|---|---|---|---|
Smoking Behavior | Frequent Wine/Beer Drinking | Smoking Behavior | Frequent Wine/Beer Drinking | |
Constant | −0.174 | −1.557 *** | −0.545 *** | −2.126 *** |
(0.132) | (0.171) | (0.137) | (0.278) | |
Socio-demographic characteristics1 | ||||
30–60 years old | 0.244 ** | 0.506 *** | 0.123 | 0.340 |
(0.110) | (0.152) | (0.114) | (0.260) | |
Over 60 years old | −0.700 *** | 0.932*** | −0.818 *** | 0.960 *** |
(0.146) | (0.175) | (0.155) | (0.280) | |
Married | −0.141 | 0.126 | −0.284 *** | 0.061 |
(0.089) | (0.103) | (0.096) | (0.171) | |
Divorced/widowed | 0.211 | 0.038 | 0.020 | −0.036 |
(0.133) | (0.145) | (0.123) | (0.200) | |
Big city | 0.036 | −0.044 | 0.052 | 0.132 |
(0.084) | (0.093) | (0.091) | (0.134) | |
Village/Rural area | −0.173 ** | 0.042 | −0.028 | −0.015 |
(0.081) | (0.087) | (0.086) | (0.133) | |
Post-secondary education | −0.350 *** | - | −0.330 *** | - |
(0.085) | (0.091) | |||
Postgraduate studies | −0.488 *** | - | −0.478 *** | - |
(0.093) | (0.106) | |||
Socializing | 0.392 *** | 0.404 *** | 0.311 ** | −0.315 |
(0.118) | (0.132) | (0.125) | (0.273) | |
Leisure time screen viewing behaviors | ||||
Daily internet usage | −0.146 * | −0.057 | 0.015 | 0.030 |
(0.086) | (0.085) | (0.090) | (0.126) | |
Chatting/social networks daily | 0.085 | −0.148 | 0.041 | −0.360 * |
(0.092) | (0.116) | (0.096) | (0.190) | |
Playing games on computer daily | 0.271 ** | −0.180 | 0.520 *** | 0.236 |
(0.122) | (0.156) | (0.129) | (0.211) | |
High TV viewing time | 0.229 *** | 0.157 ** | 0.331 *** | −0.157 |
(0.072) | (0.076) | (0.077) | (0.118) | |
ρ | 0.053 | 0.212 *** | ||
(0.049) | (0.074) | |||
Log-Likelihood | −1806.799 | −1156.809 |
Variables | BMI | |
---|---|---|
Males | Females | |
Constant | 25.234 *** | 23.027 *** |
(0.412) | (0.487) | |
Socio-demographic characteristics1 | ||
30–60 years old | 1.478 *** | 1.964 *** |
(0.343) | (0.412) | |
Over 60 years old | 1.557 *** | 2.282 *** |
(0.434) | (0.525) | |
Married | 0.665 ** | 0.646 * |
(0.278) | (0.348) | |
Divorced/widowed | 0.434 | 0.834 * |
(0.410) | (0.434) | |
Big city | −0.535 ** | −0.850 *** |
(0.256) | (0.308) | |
Village/Rural area | 0.043 | 0.230 |
(0.244) | (0.294) | |
Leisure time screen viewing behaviors | ||
Daily internet usage | −0.195 | −0.515 * |
(0.247) | (0.301) | |
Chatting/social networks daily | −0.187 | 0.209 |
(0.288) | (0.344) | |
Playing games on computer daily | 1.085 *** | 1.781 *** |
(0.386) | (0.490) | |
High TV viewing time | 0.486 ** | 1.619 *** |
(0.215) | (0.265) | |
Smoking/drinking behaviors | ||
Smoker | −0.513 ** | −0.295 |
(0.219) | (0.294) | |
Frequent wine/beer consumption | −0.102 | −1.375 ** |
(0.255) | (0.546) | |
R-squared | 0.060 | 0.104 |
Variables | 25th Quantile | 50th Quantile | 75th Quantile | 90th Quantile |
---|---|---|---|---|
Constant | 20.876 *** | 23.140 *** | 23.045 *** | 26.263 *** |
(0.698) | (0.693) | (1.082) | (1.798) | |
Socio-demographic characteristics1 | ||||
30–60 years old | 1.670 *** | 1.875 *** | 1.074 | 1.194 |
(0.381) | (0.572) | (0.729) | (2.273) | |
Over 60 years old | 3.586 *** | 3.554 ** | 2.955 | 4.101 |
(1.031) | (1.323) | (1.838) | (2.662) | |
Married | 1.650 *** | 1.002 | 1.251 ** | 0.454 |
(0.391) | (0.420) | (0.588) | (0.880) | |
Divorced/widowed | 0.792 ** | 0.247 | 0.112 | −1.173 |
(0.343) | (0.588) | (0.792) | (1.113) | |
Big city | −0.480 * | −0.232 | −0.211 | −0.596 |
(0.270) | (0.286) | (0.395) | (0.807) | |
Village/Rural area | 0.459 ** | 0.218 | 0.784 * | 0.184 |
(0.253) | (0.278) | (0.429) | (0.661) | |
Leisure time screen viewing behaviors | ||||
Daily internet usage | 0.090 | 0.043 | 0.238 | 1.024 |
(0.285) | (0.251) | (0.445) | (0.712) | |
Chatting/social networks daily | −0.366 | −0.592 * | −0.586 | −0.565 |
(0.300) | (0.347) | (0.538) | (0.864) | |
Playing games on computer daily | −0.003 | 0.886 | 0.512 | 1.855 |
(0.467) | (0.603) | (0.761) | (1.193) | |
High TV viewing time | 0.186 | 0.046 | −0.432 | 0.683 |
(0.225) | (0.335) | (0.462) | (0.626) | |
Smoking/drinking behaviors | ||||
Smoking 2 | 3.724 *** | 3.098 ** | 8.282 *** | 8.378 *** |
(1.380) | (1.365) | (2.299) | (3.136) | |
Frequent wine/beer consumption 2 | −6.112 * | −4.021 | 3.598 | 1.343 |
(3.467) | (5.306) | (6.287) | (8.484) | |
R-squared | 0.059 | 0.043 3 | 0.042 3 | 0.034 3 |
Variables | 25th Quantile | 50th Quantile | 75th Quantile | 90th Quantile |
---|---|---|---|---|
Constant | 19.536 *** | 21.263 *** | 22.031 *** | 27.027 *** |
(0.706) | (0.945) | (1.363) | (2.155) | |
Socio-demographic characteristics 1 | ||||
30–60 years old | 1.188 *** | 1.573 *** | 2.354 *** | 3.563 *** |
(0.364) | (0.483) | (0.695) | (1.049) | |
Over 60 years old | 3.384 ** | 2.851 * | 3.577 * | 5.211 |
(1.367) | (1.712) | (1.990) | (3.530) | |
Married | 1.328 *** | 0.939 ** | 1.250 ** | 1.265 |
(0.408) | (0.407) | (0.612) | (0.887) | |
Divorced/widowed | 1.380 *** | 0.765 | 1.339 ** | 0.800 |
(0.493) | (0.522) | (0.598) | (1.060) | |
Big city | −0.386 | −0.586 | −0.540 | −1.879 * |
(0.310) | (0.375) | (0.493) | (1.009) | |
Village/Rural area | 0.601 ** | 0.555 | 0.521 | −0.117 |
(0.249) | (0.349) | (0.473) | (0.880) | |
Leisure time screen viewing behaviors | ||||
Daily internet usage | −0.603 ** | −0.738 * | −0.431 | −0.385 |
(0.290) | (0.380) | (0.536) | (0.792) | |
Chatting/social networks daily | −0.032 | 0.495 | 0.243 | −0.671 |
(0.361) | (0.508) | (0.581) | (1.110) | |
Playing games on computer daily | 0.636 | 1.427 ** | 0.953 | 2.267 |
(0.772) | (0.655) | (1.304) | (2.157) | |
High TV viewing time | 0.271 | 1.110** | 1.240 * | 1.737 |
(0.331) | (0.502) | (0.637) | (1.155) | |
Smoking/drinking behaviors | ||||
Smoking 2 | 3.595 ** | 3.119 | 7.324 ** | 5.319 |
(1.786) | (2.073) | (3.570) | (5.612) | |
Frequent wine/beer consumption 2 | −11.961 | 0.184 | 7.988 | −12.468 |
(12.769) | (14.470) | (17.535) | (30.126) | |
R-squared | 0.062 | 0.067 3 | 0.068 3 | 0.066 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raptou, E.; Papastefanou, G. Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany. Nutrients 2021, 13, 3553. https://doi.org/10.3390/nu13103553
Raptou E, Papastefanou G. Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany. Nutrients. 2021; 13(10):3553. https://doi.org/10.3390/nu13103553
Chicago/Turabian StyleRaptou, Elena, and Georgios Papastefanou. 2021. "Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany" Nutrients 13, no. 10: 3553. https://doi.org/10.3390/nu13103553
APA StyleRaptou, E., & Papastefanou, G. (2021). Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany. Nutrients, 13(10), 3553. https://doi.org/10.3390/nu13103553