Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Selection
2.2. Measures
2.3. Theoretical Rationale
2.4. Methodological Framework
3. Results
3.1. First Stage—Smoking Behavior and Frequent Wine/Beer Drinking
3.2. Second Stage—BMI Estimation
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
References
- Kelly, T.; Yang, W.; Chen, C.S.; Reynolds, K.; He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. 2008, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. Obesity Management Task Force of the European Association for the Study of Obesity. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Steenhuis, I.; Leeuwis, F.; Vermeer, W. Small, medium, large or supersize: Trends in food portion sizes in The Netherlands. Public Health Nutr. 2010, 13, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.J.; Gall, S.L.; McNaughton, S.A.; Cleland, V.J.; Otahal, P.; Dwyer, T.; Venn, A.J. Lifestyle behaviours associated with 5-year weight gain in a prospective cohort of Australian adults aged 26–36 years at baseline. BMC Public Health 2017, 17, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, C.D.; Benedict, C.; Brooks, S.J.; Schioth, H.B. Lifestyle determinants of the drive to eat: A meta-analysis. Am. J. Clin. Nutr. 2012, 96, 492–497. [Google Scholar] [CrossRef]
- Butler, L.; Poti, J.M.; Popkin, B.M. Trends in energy intake from alcoholic beverages by socio-demographic characteristics among US adults, 1989–2012. J. Acad. Nutr. Diet. 2016, 116, 1087–1100. [Google Scholar] [CrossRef] [Green Version]
- Poppitt, S.D. Beverage Consumption: Are Alcoholic and Sugary Drinks Tipping the Balance towards Overweight and Obesity? Nutrients 2015, 7, 6700–6718. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.K.; Hardman, C.A.; Christiansen, P. The effects of a priming dose of alcohol and drinking environment on snack food intake. Appetite 2015, 95, 341–348. [Google Scholar] [CrossRef]
- Tremblay, A.; Wouters, E.; Wenker, M.; St-Pierre, S.; Bouchard, C.; Després, J.P. Alcohol and a high-fat diet: A combination favoring overfeeding. Am. J. Clin. Nutr. 1995, 62, 639–644. [Google Scholar] [CrossRef]
- Stice, E.; Figlewicz, D.P.; Gosnell, B.A.; Levine, A.S.; Pratt, W.E. The contribution of brain reward circuits to the obesity epidemic. Neurosci. Biobehav. Rev. 2013, 37, 2047–2058. [Google Scholar] [CrossRef] [Green Version]
- Schrieks, I.C.; Stafleu, A.; Griffioen-Roose, S.; de Graaf, C.; Witkamp, R.F.; Boerrigter-Rijneveld, R.; Hendriks, H.F. Moderate alcohol consumption stimulates food intake and food reward of savoury foods. Appetite 2015, 89, 77–83. [Google Scholar] [CrossRef]
- Rose, A.K.; Duka, T. Effects of dose and time on the ability of alcohol to prime social drinkers. Behavl. Pharmac. 2006, 17, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Traversy, G.; Chaput, J.P. Alcohol Consumption and Obesity: An Update. Curr. Obes. Rep. 2015, 4, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabshahi, S.; Lahmann, P.H.; Williams, G.M.; van der Pols, J.C. Predictors of change in weight and waist circumference: 15-year longitudinal study in Australian adults. Eur. J. Clin. Nutr. 2014, 68, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, M.M.; Schütze, M.; Steffen, A.; Boeing, H.; Halkjaer, J.; Tjonneland, A.; Travier, N.; Agudo, A.; Slimani, N.; Rinaldi, S.; et al. The association of lifetime alcohol use with measures of abdominal and general adiposity in a large-scale European cohort. Eur. J. Clin. Nutr. 2011, 65, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Holloway, L.; Moore, G.; Pidgeon, S.; Collinson, A. Alcohol intake does not influence body weight or diet in the first six months of an undergraduate starting university. J. Hum. Nutr. Diet. 2011, 24, 286–287. [Google Scholar] [CrossRef]
- Sayon-Orea, C.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Alcohol consumption and body weight: A systematic review. Nutr. Rev. 2011, 69, 419–431. [Google Scholar] [CrossRef]
- Thomson, C.A.; Wertheim, B.C.; Hingle, M.; Wang, L.; Neuhouser, M.L.; Gong, Z.; Garcia, L.; Stefanick, M.L.; Manson, J.E. Alcohol consumption and body weight change in postmenopausal women: Results from the women’s health initiative. Int. J. Obes. 2012, 36, 1158–1564. [Google Scholar] [CrossRef] [Green Version]
- Shelton, N.J.; Knott, C.S. Association between alcohol calorie intake and overweight and obesity in English adults. Am. J. Public Health 2014, 104, 629–631. [Google Scholar] [CrossRef]
- Tayie, F.A.; Beck, G.L. Alcoholic beverage consumption contributes to caloric and moisture intakes and body weight status. Nutrition 2016, 32, 799–805. [Google Scholar] [CrossRef]
- Arranz, S.; Chiva-Blanch, G.; Valderas-Martinez, P.; Medina-Remon, A.; Lamuela-Raventos, R.M.; Estruch, R. Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 2012, 4, 759–781. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.P.; Jager, G.; Van Zyl, H.; Voss, H.P.; Pintado, M.; Hogg, T.; De Graaf, C. Cheers, proost, saúde: Cultural, contextual and psychological factors of wine and beer consumption in Portugal and in the Netherlands. Crit. Rev. Food Sci. Nutr. 2017, 57, 1340–1349. [Google Scholar] [CrossRef]
- Wright, C.A.; Bruhn, C.M.; Heymann, H.; Bamforth, C.W. Beer consumers’ perceptions of the health aspects of alcoholic beverages. J. Food Sci. 2008, 73, 12–17. [Google Scholar] [CrossRef]
- Bendsen, N.; Christensen, R.; Bartels, E.; Kok, F.; Sierksma, A.; Raben, A.; Astrup, A. Is beer consumption related to measures of abdominal and general obesity? A systematic review and meta-analysis. Nutr. Rev. 2011, 71, 67–87. [Google Scholar] [CrossRef]
- Herman, C.P. The social facilitation of eating. A review. Appetite 2015, 86, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Stevens, S.D.; Herbozo, S.; Morrell, H.E.; Schaefer, L.M.; Thompson, J.K. Adult and childhood weight influence body image and depression through weight stigmatization. J. Health Psych. 2017, 22, 1084–1093. [Google Scholar] [CrossRef] [PubMed]
- White, M.A. Smoking for weight control and its associations with eating disorder symptomatology. Compr. Psychiatry 2012, 53, 403–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dare, S.; Mackay, D.F.; Pell, J.P. Relationship between Smoking and Obesity: A Cross-Sectional Study of 499,504 Middle-Aged Adults in the UK General Population. PLoS ONE 2015, 10, e0123579. [Google Scholar] [CrossRef] [Green Version]
- Germeroth, L.J.; Levine, M.D. Postcessation weight gain concern as a barrier to smoking cessation: Assessment considerations and future directions. Addict. Behav. 2018, 76, 250–257. [Google Scholar] [CrossRef]
- Baum, D.L. The effects of cigarette costs on BMI and obesity. Health Econ. 2009, 18, 3–19. [Google Scholar] [CrossRef]
- Fang, H.; Ali, M.M.; Rizzo, J.A. Does smoking affect body weight and obesity in China? Econ. Hum. Biol. 2009, 7, 334–350. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, N.; Cheng, K.-W.; Wang, H. Reduced smoking and rising obesity. Does smoking ban in the workplace matter? Econ. Lett. 2010, 108, 249–252. [Google Scholar] [CrossRef]
- Wang, Q. Smoking and body weight: Evidence from China health and nutrition survey. BMC Public Health 2015, 15, 1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, J.; Frakes, M. Does falling smoking lead to rising obesity? J. Health Econ. 2006, 25, 183–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.; Just, D.R.; Lin, B. Smoking, drinking and the distribution of adult body weight. Soc. Sci. J. 2010, 47, 372–391. [Google Scholar] [CrossRef]
- Inoue, S.; Sugiyama, T.; Takamiya, T.; Oka, K.; Owen, N.; Shimomitsu, T. Television viewing time is associated with overweight/obesity among older adults, independent of meeting physical activity and health guidelines. J. Epidem. 2012, 22, 50–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuval, K.; Leonard, T.; Murdoch, J.; Caughy, M.O.; Kohl, H.W., 3rd; Skinner, C.S. Sedentary behaviors and obesity in a low-income, ethnic minority population. J. Phys. Act. Health 2013, 10, 132–136. [Google Scholar]
- Xie, Y.J.; Stewart, S.M.; Lam, T.H.; Viswanath, K.; Chan, S.S. Television Viewing Time in Hong Kong Adult Population: Associations with Body Mass Index and Obesity. PLoS ONE 2014, 9, e85440. [Google Scholar] [CrossRef] [Green Version]
- Boulos, R.; Kuross Vikre, E.; Peenheimer, S.; Chang, H.; Kanarek, R.B. ObesiTV: How television is influencing the obesity epidemic. Phys. Behav. 2012, 107, 146–153. [Google Scholar] [CrossRef]
- Ackil Ok, M.; Ercan, A.; Kaya, F.S. A content analysis of food advertising on Turkish television. Health Promot. Int. 2016, 31, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Leon-Munoz, L.M.; Garcıa-Esquinas, E.; Soler-Vila, H.; Guallar-Castillon, P.; Banegas, J.R.; Rodrıguez-Artalejo, F. Unhealthy eating behaviors and weight gain: A prospective study in young and middle-age adults. Obesity 2016, 24, 1178–1184. [Google Scholar] [CrossRef] [Green Version]
- Van Dyck, D.; Cardon, G.; Deforche, B.; Owen, N.; De Cocker, K.; Wijndaele, K.; De Bourdeaudhuij, I. Socio-demographic, psychosocial and home-environmental attributes associated with adults’ domestic screen time. BMC Public Health 2010, 11, 668. [Google Scholar] [CrossRef] [Green Version]
- Thomée, S.; Lissner, L.; Hagberg, M.; Grimby-Ekman, A. Leisure time computer use and overweight development in young adults—A prospective study. BMC Public Health 2015, 15, 839. [Google Scholar] [CrossRef] [Green Version]
- Vandelanotte, C.; Sugiyama, T.; Gardiner, T.; Owen, N. Associations of leisure-time internet and computer use with overweight and obesity, physical activity and sedentary behaviors: Cross-sectional study. J. Med. Int. Res. 2009, 11, e28. [Google Scholar] [CrossRef]
- Syamlal, G.; Mazurek, J.M.; Dube, S.R. Gender Differences in Smoking Among, U.S. Working Adults. Am. J. Prev. Med. 2014, 47, 467–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabler, S.; Häder, S. Sampling in Theory. In GESIS Survey Guidelines; GESIS—Leibniz Institute for the Social Sciences: Mannheim, Germany, 2016. [Google Scholar] [CrossRef]
- GESIS—Leibniz Institute for the Social Sciences. German General Social Survey—ALLBUS 2014. GESIS Data Archive. 2016, Cologne. ZA5242 Data file Version 1.0.0. Available online: https://dbk.gesis.org/dbksearch/SDesc2.asp?DB=E&no=5242 (accessed on 20 October 2018).
- GESIS—Leibniz Institute for the Social Sciences. A Compendium of Standardized Survey descriptions. GESIS Data Archive for the Social Science. Released at 2018.08. Available online: https://www.gesis.org/fileadmin/upload/dienstleistung/daten/umfragedaten/allbus/dokumente/SURVEYS_rel201905.PDF (accessed on 20 October 2018).
- WHO-World Health Organization, Regional Office for Europe. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 2 October 2017).
- Britton, A.; Ben-Shlomo, Y.; Benzeval, M.; Kuh, D.; Bell, S. Life course trajectories of alcohol consumption in the United Kingdom using longitudinal data from nine cohort studies. BMC Med. 2015, 6, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikolajczyk, R.T.; Sebena, R.; Warich, J.; Naydenova, V.; Dudziak, U.; Orosova, O. Alcohol Drinking in University Students Matters for Their Self-Rated Health Status: A Cross-sectional Study in Three European Countries. Front. Public Health 2016, 4, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, M.M.; Healy, G.N.; Owen, N.; Shaw, J.E.; Zimmet, P.; Dunstan, D.W. Joint associations of poor diet quality and prolonged television viewing time with abnormal glucose metabolism in Australian men and women. Prev. Med. 2013, 57, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadgraft, N.T.; Lynch, B.M.; Clark, B.K.; Healy, G.N.; Owen, N.; Dunstan, D.W. Excessive sitting at work and at home: Correlates of occupational sitting and TV viewing time in working adults. BMC Public Health 2015, 15, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Beebe, L.A.; Bush, T. Post-cessation weight concerns among women calling a state tobacco quitline. Am. J. Prev. Med. 2015, 48, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Cawley, J.; Markowitz, S.; Tauras, J. Lighting up and slimming down: The effects of body weight and cigarette prices on adolescent smoking initiation. J. Health Econ. 2004, 23, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Chaput, J.P.; McNeil, J.; Després, J.P.; Bouchard, C.; Tremblay, A. Short sleep duration is associated with greater alcohol consumption in adults. Appetite 2012, 59, 650–655. [Google Scholar] [CrossRef]
- Witkiewitz, K.; Desai, S.A.; Steckler, G.; Jackson, K.M.; Bowen, S.; Leigh, B.C.; Larimer, M.E. Concurrent drinking and smoking among college students: An event-level analysis. Psychol. Addict. Behav. 2012, 26, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Shen, J.J.; Cochran, C. Unemployment Rate, Smoking in China: Are They Related? Int. J. Environ. Res. Public Health 2016, 13, 113. [Google Scholar] [CrossRef] [Green Version]
- Auld, M. Smoking, drinking, and income. J. Human Res. 2006, 40, 505–518. [Google Scholar] [CrossRef]
- Chen, C.M.; Chang, C.K.; Yeh, C.Y. A quantile regression approach to re-investigate the relationship between sleep duration and body mass index in Taiwan. Int. J. Public Health 2012, 57, 485–493. [Google Scholar] [CrossRef]
- Vella, F.; Verbeek, M. Estimating and interpreting models with endogenous treatment effects. J. Bus. Econ. Stat. 1999, 17, 473–478. [Google Scholar]
- Koenker, R.; Hallock, K. Quantile regression. J. Econ. Perspect. 2001, 15, 143–156. [Google Scholar] [CrossRef]
- Mawditt, C.; Sacker, A.; Britton, A.; Kelly, Y.; Cable, N. The clustering of health-related behaviours in a British population sample: Testing for cohort differences. Prev. Med. 2016, 88, 95–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greene, W.H.; Hensher, D.A. Modeling Ordered Choices. 2009. Available online: http://pages.stern.nyu.edu/~wgreene/DiscreteChoice/Readings/OrderedChoiceSurvey.pdf (accessed on 3 August 2019).
- Enström Öst, C. Housing and children: Simultaneous decisions?—A cohort study of young adults’ housing and family formation decision. J. Popul. Econ. 2012, 25, 349–366. [Google Scholar]
- Dunn, R.A.; Tan, A.K.G.; Nayga, R.M. Obesity inequality in Malaysia: Decomposing differences by gender and ethnicity using quantile regression. Ethn. Health 2012, 17, 493–511. [Google Scholar] [CrossRef] [PubMed]
- Maddala, G. Limited Dependent and Quantitative Variables in Econometrics; Cambridge University Press: New York, NY, USA, 1983. [Google Scholar]
- Beulens, J.W.; van Beers, R.M.; Stolk, R.P.; Schaafsma, G.; Hendriks, H.F. The effect of moderate alcohol consumption on fat distribution and adipocytokines. Obesity 2006, 14, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Romeo, J.; González-Gross, M.; Wärnberg, J.; Díaz, L.E.; Marcos, A. Does beer have an impact on weight gain? Effects of moderate beer consumption on body composition. Nutr. Hosp. 2007, 22, 223–228. [Google Scholar] [PubMed]
- Schütze, M.; Schulz, M.; Steffen, A.; Bergmann, M.M.; Kroke, A.; Lissner, L.; Boeing, H. Beer consumption and the “beer belly”: Scientific basis or common belief? Eur. J. Clin. Nutr. 2009, 63, 1143–1149. [Google Scholar] [CrossRef] [Green Version]
- Wehby, G.L.; Murray, J.C.; Wilcox, A.; Lie, R.T. Smoking and body weight: Evidence using genetic instruments. Econ. Hum. Biol. 2012, 10, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Noble, N.; Paul, C.; Turon, H.; Oldmeadow, C. Which modifiable health risk behaviours are related? A systematic review of the clustering of Smoking, Nutrition, Alcohol and Physical activity (‘SNAP’) health risk factors. Prev. Med. 2015, 81, 16–41. [Google Scholar] [CrossRef]
- Pate, R.R.; Traverno Ross, S.E.; Liese, A.D.; Dowda, M. Associations among physical activity, diet quality, and weight status in U.S. adults. Med. Sci. Sports Exerc. 2015, 47, 743–750. [Google Scholar] [CrossRef] [Green Version]
- Matthews, C.E.; George, S.M.; Moore, S.C.; Bowles, H.R.; Blair, A.; Park, Y.; Troiano, R.P.; Hollenbeck, A.; Schatzkin, A. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am. J. Clin. Nutr. 2012, 95, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Thorp, A.A.; Owen, N.; Neuhaus, M.; Dunstan, D.W. Sedentary Behaviors and Subsequent Health Outcomes in Adults: A Systematic Review of Longitudinal Studies, 1996–2011. Am. J. Prev. Med. 2011, 41, 207–215. [Google Scholar] [CrossRef]
- Hallgren, M.; Nguyen, T.; Owen, N.; Stubbs, B.; Vancampfort, D.; Lundin, A.; Dunstan, D.; Bellocco, R.; Lagerros, Y. Cross-sectional and prospective relationships of passive and mentally active sedentary behaviours and physical activity with depression. Br. J. Psychiatry 2020, 217, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Moon, J.H.; Kim, H.J.; Kong, M.H.; Oh, Y.H. Sedentary Lifestyle: Overview of Updated Evidence of Potential Health Risks. Korean J. Fam. Med. 2020, 41, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Wurtman, J.; Wurtman, R. The Trajectory from Mood to Obesity. Curr. Obes. Rep. 2018, 7, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beville, J.M.; Meyer, M.R.; Usdan, S.L.; Turner, L.W.; Jackson, J.C.; Lian, B.E. Gender differences in college leisure time physical activity: Application of the theory of planned behavior and integrated behavioral model. J. Am. Coll. Health 2014, 62, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Keadle, S.K.; McKinnon, R.; Graubard, B.I.; Troiano, R.P. Prevalence and trends in physical activity among older adults in the United States: A comparison across three national surveys. Prev. Med. 2016, 89, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Nölke, L.; Mensing, M.; Krämer, A.; Hornberg, C. Sociodemographic and health-(care-)related characteristics of online health information seekers: A cross-sectional German study. BMC Public Health 2015, 29, 31. [Google Scholar] [CrossRef] [Green Version]
- Melchior, M.; Chollet, A.; Fombonne, E.; Surkan, P.J.; Dray-Spira, R. Internet and video game use in relation to overweight in young adults. Am. J. Health Prom. 2014, 28, 321–324. [Google Scholar] [CrossRef]
- Yepes, M.; Viswanathan, B.; Bovet, P.; Maurer, J. Validity of silhouette showcards as a measure of body size and obesity in a population in the African region: A practical research tool for general-purpose surveys. Popul. Health Metrics 2015, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Pursey, K.; Burrows, T.L.; Stanwell, P.; Collins, C.E. How Accurate is Web-Based Self-Reported Height, Weight, and Body Mass Index in Young Adults? J. Med. Int. Res. 2014, 16, e4. [Google Scholar] [CrossRef]
Mean | 26.107 |
Standard deviation | 4.714 |
Minimum | 14.840 |
Maximum | 54.080 |
Percentiles (%) | |
1 | 17.938 |
2 | 18.510 |
5 | 19.790 |
10 | 20.760 |
15 | 21.560 |
20 | 22.280 |
25 | 22.880 |
30 | 23.460 |
35 | 24.000 |
40 | 24.460 |
45 | 24.910 |
46 | 25.000 |
50 | 25.460 |
55 | 25.910 |
60 | 26.490 |
65 | 27.100 |
70 | 27.760 |
75 | 28.600 |
80 | 29.430 |
82 | 30.034 |
85 | 30.590 |
90 | 32.080 |
95 | 34.990 |
Variables | Males (N1 = 1762) | Females (N2 = 1709) | t-Test | p-Value |
---|---|---|---|---|
BMI * | 26.667 (0.101) | 25.516 (0.125) | 7.188 | 0.000 |
Chi-square | p-value | |||
Smoker | 586 (33.3%) | 412 (24.1%) | 35.717 | 0.000 |
Frequent wine/beer drinking | 349 (19.8%) | 91 (5.3%) | 164.545 | 0.000 |
Sociodemographic characteristics | ||||
Age | 3.157 | 0.206 | ||
18–29 years old | 308 (17.5%) | 275 (16.1%) | ||
30–60 years old | 938 (53.3%) | 961 (56.3%) | ||
Older than 60 years | 514 (29.2%) | 472 (27.6%) | ||
Marital status | 77.825 | 0.000 | ||
Married | 1039 (59.0%) | 959 (56.2%) | ||
Divorced/widowed | 165 (9.4%) | 331 (19.4%) | ||
Single | 556 (31.6%) | 417 (24.4%) | ||
Area of residence | 2.660 | 0.264 | ||
Big city | 564 (32.0%) | 540 (31.6%) | ||
Town | 490 (27.8%) | 516 (30.2%) | ||
Village/Rural area | 708 (40.2%) | 652 (38.2%) | ||
Education | 12.879 | 0.002 | ||
Secondary education | 973 (55.3%) | 1020 (59.8%) | ||
Post-secondary education | 386 (21.9%) | 381 (22.3%) | ||
Postgraduate studies | 400 (22.7%) | 306 (17.9%) | ||
Frequent social interactions | 142 (8.1%) | 126 (7.4%) | 0.573 | 0.449 |
Leisure time screen viewing behaviors | ||||
Daily internet usage | 1154 (65.5%) | 976(57.2%) | 25.308 | 0.000 |
Chatting/social networks daily | 412 (23.4%) | 419(24.5%) | 0.644 | 0.422 |
Playing games on computer daily | 132 (7.5%) | 119(7.0%) | 0.350 | 0.554 |
High TV viewing time | 709 (40.3%) | 717(42.1%) | 1.090 | 0.297 |
Variables | Males | Females | ||
---|---|---|---|---|
Smoking Behavior | Frequent Wine/Beer Drinking | Smoking Behavior | Frequent Wine/Beer Drinking | |
Constant | −0.174 | −1.557 *** | −0.545 *** | −2.126 *** |
(0.132) | (0.171) | (0.137) | (0.278) | |
Socio-demographic characteristics1 | ||||
30–60 years old | 0.244 ** | 0.506 *** | 0.123 | 0.340 |
(0.110) | (0.152) | (0.114) | (0.260) | |
Over 60 years old | −0.700 *** | 0.932*** | −0.818 *** | 0.960 *** |
(0.146) | (0.175) | (0.155) | (0.280) | |
Married | −0.141 | 0.126 | −0.284 *** | 0.061 |
(0.089) | (0.103) | (0.096) | (0.171) | |
Divorced/widowed | 0.211 | 0.038 | 0.020 | −0.036 |
(0.133) | (0.145) | (0.123) | (0.200) | |
Big city | 0.036 | −0.044 | 0.052 | 0.132 |
(0.084) | (0.093) | (0.091) | (0.134) | |
Village/Rural area | −0.173 ** | 0.042 | −0.028 | −0.015 |
(0.081) | (0.087) | (0.086) | (0.133) | |
Post-secondary education | −0.350 *** | - | −0.330 *** | - |
(0.085) | (0.091) | |||
Postgraduate studies | −0.488 *** | - | −0.478 *** | - |
(0.093) | (0.106) | |||
Socializing | 0.392 *** | 0.404 *** | 0.311 ** | −0.315 |
(0.118) | (0.132) | (0.125) | (0.273) | |
Leisure time screen viewing behaviors | ||||
Daily internet usage | −0.146 * | −0.057 | 0.015 | 0.030 |
(0.086) | (0.085) | (0.090) | (0.126) | |
Chatting/social networks daily | 0.085 | −0.148 | 0.041 | −0.360 * |
(0.092) | (0.116) | (0.096) | (0.190) | |
Playing games on computer daily | 0.271 ** | −0.180 | 0.520 *** | 0.236 |
(0.122) | (0.156) | (0.129) | (0.211) | |
High TV viewing time | 0.229 *** | 0.157 ** | 0.331 *** | −0.157 |
(0.072) | (0.076) | (0.077) | (0.118) | |
ρ | 0.053 | 0.212 *** | ||
(0.049) | (0.074) | |||
Log-Likelihood | −1806.799 | −1156.809 |
Variables | BMI | |
---|---|---|
Males | Females | |
Constant | 25.234 *** | 23.027 *** |
(0.412) | (0.487) | |
Socio-demographic characteristics1 | ||
30–60 years old | 1.478 *** | 1.964 *** |
(0.343) | (0.412) | |
Over 60 years old | 1.557 *** | 2.282 *** |
(0.434) | (0.525) | |
Married | 0.665 ** | 0.646 * |
(0.278) | (0.348) | |
Divorced/widowed | 0.434 | 0.834 * |
(0.410) | (0.434) | |
Big city | −0.535 ** | −0.850 *** |
(0.256) | (0.308) | |
Village/Rural area | 0.043 | 0.230 |
(0.244) | (0.294) | |
Leisure time screen viewing behaviors | ||
Daily internet usage | −0.195 | −0.515 * |
(0.247) | (0.301) | |
Chatting/social networks daily | −0.187 | 0.209 |
(0.288) | (0.344) | |
Playing games on computer daily | 1.085 *** | 1.781 *** |
(0.386) | (0.490) | |
High TV viewing time | 0.486 ** | 1.619 *** |
(0.215) | (0.265) | |
Smoking/drinking behaviors | ||
Smoker | −0.513 ** | −0.295 |
(0.219) | (0.294) | |
Frequent wine/beer consumption | −0.102 | −1.375 ** |
(0.255) | (0.546) | |
R-squared | 0.060 | 0.104 |
Variables | 25th Quantile | 50th Quantile | 75th Quantile | 90th Quantile |
---|---|---|---|---|
Constant | 20.876 *** | 23.140 *** | 23.045 *** | 26.263 *** |
(0.698) | (0.693) | (1.082) | (1.798) | |
Socio-demographic characteristics1 | ||||
30–60 years old | 1.670 *** | 1.875 *** | 1.074 | 1.194 |
(0.381) | (0.572) | (0.729) | (2.273) | |
Over 60 years old | 3.586 *** | 3.554 ** | 2.955 | 4.101 |
(1.031) | (1.323) | (1.838) | (2.662) | |
Married | 1.650 *** | 1.002 | 1.251 ** | 0.454 |
(0.391) | (0.420) | (0.588) | (0.880) | |
Divorced/widowed | 0.792 ** | 0.247 | 0.112 | −1.173 |
(0.343) | (0.588) | (0.792) | (1.113) | |
Big city | −0.480 * | −0.232 | −0.211 | −0.596 |
(0.270) | (0.286) | (0.395) | (0.807) | |
Village/Rural area | 0.459 ** | 0.218 | 0.784 * | 0.184 |
(0.253) | (0.278) | (0.429) | (0.661) | |
Leisure time screen viewing behaviors | ||||
Daily internet usage | 0.090 | 0.043 | 0.238 | 1.024 |
(0.285) | (0.251) | (0.445) | (0.712) | |
Chatting/social networks daily | −0.366 | −0.592 * | −0.586 | −0.565 |
(0.300) | (0.347) | (0.538) | (0.864) | |
Playing games on computer daily | −0.003 | 0.886 | 0.512 | 1.855 |
(0.467) | (0.603) | (0.761) | (1.193) | |
High TV viewing time | 0.186 | 0.046 | −0.432 | 0.683 |
(0.225) | (0.335) | (0.462) | (0.626) | |
Smoking/drinking behaviors | ||||
Smoking 2 | 3.724 *** | 3.098 ** | 8.282 *** | 8.378 *** |
(1.380) | (1.365) | (2.299) | (3.136) | |
Frequent wine/beer consumption 2 | −6.112 * | −4.021 | 3.598 | 1.343 |
(3.467) | (5.306) | (6.287) | (8.484) | |
R-squared | 0.059 | 0.043 3 | 0.042 3 | 0.034 3 |
Variables | 25th Quantile | 50th Quantile | 75th Quantile | 90th Quantile |
---|---|---|---|---|
Constant | 19.536 *** | 21.263 *** | 22.031 *** | 27.027 *** |
(0.706) | (0.945) | (1.363) | (2.155) | |
Socio-demographic characteristics 1 | ||||
30–60 years old | 1.188 *** | 1.573 *** | 2.354 *** | 3.563 *** |
(0.364) | (0.483) | (0.695) | (1.049) | |
Over 60 years old | 3.384 ** | 2.851 * | 3.577 * | 5.211 |
(1.367) | (1.712) | (1.990) | (3.530) | |
Married | 1.328 *** | 0.939 ** | 1.250 ** | 1.265 |
(0.408) | (0.407) | (0.612) | (0.887) | |
Divorced/widowed | 1.380 *** | 0.765 | 1.339 ** | 0.800 |
(0.493) | (0.522) | (0.598) | (1.060) | |
Big city | −0.386 | −0.586 | −0.540 | −1.879 * |
(0.310) | (0.375) | (0.493) | (1.009) | |
Village/Rural area | 0.601 ** | 0.555 | 0.521 | −0.117 |
(0.249) | (0.349) | (0.473) | (0.880) | |
Leisure time screen viewing behaviors | ||||
Daily internet usage | −0.603 ** | −0.738 * | −0.431 | −0.385 |
(0.290) | (0.380) | (0.536) | (0.792) | |
Chatting/social networks daily | −0.032 | 0.495 | 0.243 | −0.671 |
(0.361) | (0.508) | (0.581) | (1.110) | |
Playing games on computer daily | 0.636 | 1.427 ** | 0.953 | 2.267 |
(0.772) | (0.655) | (1.304) | (2.157) | |
High TV viewing time | 0.271 | 1.110** | 1.240 * | 1.737 |
(0.331) | (0.502) | (0.637) | (1.155) | |
Smoking/drinking behaviors | ||||
Smoking 2 | 3.595 ** | 3.119 | 7.324 ** | 5.319 |
(1.786) | (2.073) | (3.570) | (5.612) | |
Frequent wine/beer consumption 2 | −11.961 | 0.184 | 7.988 | −12.468 |
(12.769) | (14.470) | (17.535) | (30.126) | |
R-squared | 0.062 | 0.067 3 | 0.068 3 | 0.066 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raptou, E.; Papastefanou, G. Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany. Nutrients 2021, 13, 3553. https://doi.org/10.3390/nu13103553
Raptou E, Papastefanou G. Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany. Nutrients. 2021; 13(10):3553. https://doi.org/10.3390/nu13103553
Chicago/Turabian StyleRaptou, Elena, and Georgios Papastefanou. 2021. "Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany" Nutrients 13, no. 10: 3553. https://doi.org/10.3390/nu13103553
APA StyleRaptou, E., & Papastefanou, G. (2021). Analyzing the Influence of Wine and Beer Drinking, Smoking, and Leisure Time Screen Viewing Activity on Body Weight: A Cross-Sectional Study in Germany. Nutrients, 13(10), 3553. https://doi.org/10.3390/nu13103553