Dietary Profile and Nutritional Status of the Roma Population Living in Segregated Colonies in Northeast Hungary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sampling
2.1.1. Hungarian Roma Sample
2.1.2. Hungarian General Reference Sample
2.1.3. Socio-Demographic Data
2.1.4. Dietary and Anthropometric Data Collection and Quality Appraisal
2.2. Data Analysis
2.3. Research Ethics
3. Results
3.1. Sociodemographic and Anthropometric Characteristics of Participants
3.2. Dietary Intake Patterns
4. Discussion
Strengths, Limitations and Considerations for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Estimates and Official Numbers of Roma in Europe. Available online: https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=0900001680088ea9 (accessed on 29 June 2020).
- Brüggemann, C.; Friedman, E. The Decade of Roma Inclusion: Origins, Actors, and Legacies. Eur. Educ. 2017, 49, 1–9. [Google Scholar] [CrossRef]
- Sándor, J.; Kósa, Z.; Boruzs, K.; Boros, J.; Tokaji, I.; McKee, M.; Ádány, R. The decade of Roma Inclusion: Did it make a difference to health and use of health care services? Int. J. Public Health 2017, 62, 803–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, A. The approach to Avernus. In The Gypsies; Campbell, J., Davey, J., Eds.; Blackwell Oxford: Oxford, UK, 1992; pp. 248–256. [Google Scholar]
- Gresham, D.; Morar, B.; Underhill, P.A.; Passarino, G.; Lin, A.A.; Wise, C.; Angelicheva, D.; Calafell, F.; Oefner, P.J.; Shen, P.; et al. Origins and Divergence of the Roma (Gypsies). Am. J. Hum. Genet 2001, 69, 1314–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iovita, R.P.; Schurr, T.G. Reconstructing the origins and migrations of diasporic populations: The case of the European Gypsies. Am. Anthropol. 2004, 106, 267–281. [Google Scholar] [CrossRef]
- Colombini, M.; Rechel, B.; Mayhew, S.H. Access of Roma to sexual and reproductive health services: Qualitative findings from Albania, Bulgaria and Macedonia. Glob. Public Health 2012, 7, 522–534. [Google Scholar] [CrossRef]
- Cook, B.; Wayne, G.F.; Valentine, A.; Lessios, A.; Yeh, E. Revisiting the evidence on health and health care disparities among the Roma: A systematic review 2003–2012. Int. J. Public Health 2013, 58, 885–911. [Google Scholar] [CrossRef]
- Kósa, Z.; Széles, G.; Kardos, L.; Kósa, K.; Németh, R.; Országh, S.; Fésüs, G.; McKee, M.; Ádány, R.; Vokó, Z. A Comparative Health Survey of the Inhabitants of Roma Settlements in Hungary. Am. J. Public Health 2007, 97, 853–859. [Google Scholar] [CrossRef]
- Kühlbrandt, C.; Footman, K.; Rechel, B.; McKee, M. An examination of Roma health insurance status in Central and Eastern Europe. Eur. J. Public Health 2014, 24, 707–712. [Google Scholar] [CrossRef] [Green Version]
- McFadden, A.; Siebelt, L.; Gavine, A.; Atkin, K.; Bell, K.; Innes, N.; Jones, H.; Jackson, C.; Haggi, H.; MacGillivray, S. Gypsy, Roma and Traveller access to and engagement with health services: A systematic review. Eur. J. Public Health 2018, 28, 74–81. [Google Scholar] [CrossRef]
- De Graaf, P.; Pavlič, D.R.; Zelko, E.; Vintges, M.; Willems, S.; Hanssens, L. Primary care for the Roma in Europe: Position paper of the European forum for primary care. Zdr. Varst. 2016, 55, 218–224. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Report on the Health Status of the Roma Population in the EU and the Monitoring of Data Collection in the Area of Roma Health in the Member States. Available online: https://ec.europa.eu/health/sites/health/files/social_determinants/docs/2014_roma_health_report_es_en.pdf (accessed on 29 June 2020).
- EUAFR. The Situation of Roma in 11 EU Member States: Survey Results at a Glance. Available online: https://fra.europa.eu/sites/default/files/fra_uploads/2099-FRA-2012-Roma-at-a-glance_EN.pdf (accessed on 26 June 2020).
- Nunes, M.; Kučerová, K.; Lukáč, O.; Kvapil, M.; Brož, J. Prevalence of diabetes mellitus among Roma populations—A systematic review. Int. J. Environ. Res. Public Health 2018, 15, 2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simko, V.; Ginter, E. Short Life Expectancy and Metabolic Syndrome in Romanies (Gypsies) in Slovakia. Cent. Eur. J. Public Health 2010, 18, 16–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobranici, M.; Buzea, A.; Popescu, R. The cardiovascular risk factors of the Roma (Gypsies) people in Central-Eastern Europe: A review of the published literature. J. Med. Life 2012, 5, 382. [Google Scholar] [PubMed]
- Kósa, Z.; Moravcsik-Kornyicki, Á.; Diószegi, J.; Roberts, B.; Szabó, Z.; Sándor, J.; Ádány, R. Prevalence of metabolic syndrome among Roma: A comparative health examination survey in Hungary. Eur. J. Public Health 2014, 25, 299–304. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Non-Discrimination and Equal Opportunities: A Renewed Commitment—Community Instruments and Policies for Roma Inclusion. Available online: https://ec.europa.eu/social/BlobServlet?docId=546&langId=en (accessed on 29 June 2020).
- Parekh, N.; Rose, T. Health Inequalities of the Roma in Europe: A Literature Review. Cent. Eur. J. Public Health 2011, 19, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Valachovicova, M.; Krajcovicova-Kudlackova, M.; Ginter, E.; Paukova, V. Antioxidant vitamins levels--nutrition and smoking. Bratisl. Med. J. 2003, 104, 411–414. [Google Scholar]
- Davidová, E. Zp Usob Života a Kultura: Zmeny ve Hmotné Kulture Rom u—Bydlení, Strava, Černobílý Život; Černá, M., Ed.; Gallery: Praha, Czech Republic, 2000; pp. 80–89. [Google Scholar]
- Stávková, J.; Brázdová, D.Z. Konzumace ovoce a zeleniny a jiné stravovací zvyklosti Romské populace. Hygiena 2014, 59, 179–183. [Google Scholar] [CrossRef] [Green Version]
- Olišarová, V.; Tóthová, V.; Bártlová, S.; Dolák, F.; Kajanová, A.; Nováková, D.; Prokešová, R.; Šedová, L. Cultural Features Influencing Eating, Overweight, and Obesity in the Roma People of South Bohemia. Nutrients 2018, 10, 838. [Google Scholar] [CrossRef] [Green Version]
- Hijova, E.; Madarasova Geckova, A.; Babinska, I. Do Eating Habits of the Population Living in Roma Settlements Differ from Those of the Majority Population in Slovakia? Cent. Eur. J. Public Health 2014, 22, S65–S68. [Google Scholar] [CrossRef] [PubMed]
- Fundación Secretariado Gitano. Health and the Roma Community: Analysis of the Situation in Europe. Available online: https://www.gitanos.org/upload/07/81/memoria_gral_fin.pdf (accessed on 29 June 2020).
- Ostrihoňová, T.; Bérešová, J. Occurrence of metabolic syndrome and its risk factors amongst a selected group of Roma inhabitants. Hygiena 2010, 55, 7–14. [Google Scholar]
- Hoxha, A.; Dervishi, G.; Bici, E.; Naum, A.; Seferi, J.; Risilia, K.; Tresa, E. Assessment of nutritional status and dietary patterns of the adult Roma community in Albania. Alban. Med. J. 2013, 3, 32–38. [Google Scholar]
- Ciaian, P.; Cupák, A.; Pokrivčák, J.; Rizov, M. Food consumption and diet quality choices of Roma in Romania: A counterfactual analysis. Food Sec. 2018, 10, 437–456. [Google Scholar] [CrossRef] [Green Version]
- Bartosovic, I.; Hegyi, L.; Krcméry, V.; Hanobik, F.; Vasilj, V.; Rothova, P. Poverty & poor eating habits are two of the essential factors that affect the health condition of marginalized Roma population. CSW 2014, 15. [Google Scholar] [CrossRef]
- Sedova, L.; Tothova, V.; Novakova, D.; Olisarova, V.; Bartlova, S.; Dolak, F.; Kajanova, A.; Prokesova, R.; Adamkova, V. Qualification of Food Intake by the Roma Population in the Region of South Bohemia. Int. J. Environ. Res. Public Health 2018, 15, 386. [Google Scholar] [CrossRef] [Green Version]
- Dirección General de Salud Pública Calidad e Innovación. Segunda Encuesta Nacional de Salud a Población Gitana 2014. Available online: https://www.mscbs.gob.es/en/profesionales/saludPublica/prevPromocion/promocion/desigualdadSalud/docs/ENS2014PG.pdf (accessed on 29 June 2020).
- Lakatos, S.; Angyal, M.; Solymosy, J.; Bonifácz, S.; Kármán, J.; Csépe, P.; ForraiI, J.; Lökkös, A. Egyenlőség, Egészség és Roma/Cigány Közösség. Available online: http://ec.europa.eu/health/ph_projects/2004/action3/docs/2004_3_01_manuals_hu.pdf (accessed on 26 June 2020).
- Balázs, P.; Rákóczi, I.; Fogarasi-Grenczer, A.; Foley, K.L. Birth-weight differences of Roma and non-Roma neonates–public health implications from a population-based study in Hungary. Cent. Eur. J. Public Health 2014, 22, 24–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez, M.V.; González, M.M.; San Fabián, J.L. La Situación de la Infancia Gitana en Asturias. Consejería de Bienestar Social y Vivienda; Gobierno del Principado de Asturias, Ed.; Instituto Asturiano de Atención Social a la Infancia, Familias y Adolescencia para el Observatorio de la Infancia y la Adolescencia del Principado de Asturias: Oviedo, Spain, 2011; p. 398. [Google Scholar]
- Pérez, F.J.; Arias-Gundín, O. La alimentación en un centro educativo donde las minorías son mayoría. Int. J. Behav. Dev. 2009, 2, 181–189. [Google Scholar]
- Velcheva, H.B.M. Research on the eating habits of pregnant Romani women and mothers of newborns in Bulgaria in 2015: Hristina Velcheva. Eur. J. Public Health 2016, 26, ckw174.015. [Google Scholar] [CrossRef] [Green Version]
- Observatorio de Salud Pública de Cantabria. Estudio Sobre Determinantes de la Salud de la Población Gitana Cántabra. Gobierno De Cantabria Consejería De Sanidad Y Servicios Sociales, Dirección General De Salud Pública. Available online: https://www.ospc.es/ficheros/esp/ProyectosFicheros/9F9A2FBE-7DAC-6F48-1AC6-45C6340346CB.pdf/ (accessed on 29 June 2020).
- Szabóné, K.J. A magyarországi cigány/roma népesség kultúrantropológiai és orvosantropológiai megközelítésben. Romológiai füzetek 2. In Étrend, Táplálkozás; Szabóné, K.J., Ed.; Debreceni Református Hittudományi Egyetem: Debrecen, Hungary, 2018; Volume 2, pp. 31–34. [Google Scholar]
- Pázstor, I.Z.; Penzes, J.; Tatrai, P.; Paloczi, Á. The number and spatial distribution of the Roma population in Hungary–in the light of different approaches. Folia Geogr. 2016, 58, 5–21. [Google Scholar]
- Pénzes, J.; Tátrai, P.; Pásztor, I.Z. Changes in the Spatial Distribution of the Roma Population in Hungary During the Last Decades. In Területi Statisztik; Hungarian Central Statistical Office: Budapest, Hungary, 2018; Volume 58, pp. 3–26. [Google Scholar]
- Sarkadi Nagy, E.; Bakacs, M.; Illés, É.; Zentai, A.; Lugasi, A.; Martos, É. Hungarian Diet and Nutritional Status Survey–the OTAP2009 study. II. Energy and macronutrient intake of the Hungarian population. Orv. Hetil. 2012, 153, 1057–1067. [Google Scholar] [CrossRef]
- Schreiberné, E.M.; Nagy-Lőrincz, Z.; Nagy, B.; Bakacs, M.; Kis, O.; Sarkadi, E.N.; Martos, É. Hungarian Diet and Nutritional Status Survey-The OTAP2014 study. V. Vitamin intake of the Hungarian population. Orv. Hetil. 2017, 158, 1302–1313. [Google Scholar] [CrossRef] [Green Version]
- Ádány, R.; Pikó, P.; Fiatal, S.; Kósa, Z.; Sándor, J.; Bíró, É.; Kósa, K.; Paragh, G.; Bácsné Bába, É.; Veres-Balajti, I. Prevalence of Insulin Resistance in the Hungarian General and Roma Populations as Defined by Using Data Generated in a Complex Health (Interview and Examination) Survey. Int. J. Environ. Res. Public Health 2020, 17, 4833. [Google Scholar] [CrossRef]
- Kósa, K.; Daragó, L.; Ádány, R. Environmental survey of segregated habitats of Roma in Hungary: A way to be empowering and reliable in minority research. Eur. J. Public Health 2011, 21, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Széles, G.; Vokó, Z.; Jenei, T.; Kardos, L.; Pocsai, Z.; Bajtay, A.; Papp, E.; Pásti, G.; Kósa, Z.; Molnár, I.; et al. A preliminary evaluation of a health monitoring programme in Hungary. Eur. J. Public Health 2005, 15, 26–32. [Google Scholar] [CrossRef]
- Llanaj, E.; Ádány, R.; Lachat, C.; D’Haese, M. Examining food intake and eating out of home patterns among university students. PLoS ONE 2018, 13, e0197874. [Google Scholar] [CrossRef] [Green Version]
- WHO Europe. Body Mass Index for Adults over 20 Years Old. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 7 July 2020).
- International Diabetes Federation. Website of the International Diabetes Federation. Available online: http://www.idf.org/metabolic_syndrome (accessed on 21 March 2019).
- Hsieh, S.D.; Yoshinaga, H. Waist/Height Ratio as A Simple and Useful Predictor of Coronary Heart Disease Risk Factors in Women. Intern. Med. 1995, 34, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, M.M.; Thumé, E.; De Oliveira, E.R.A.; Tomasi, E. Performance of the waist-to-height ratio in identifying obesity and predicting non-communicable diseases in the elderly population: A systematic literature review. Arch. Gerontol. Geriat. 2016, 65, 174–182. [Google Scholar] [CrossRef]
- Fu, S.; Luo, L.; Ye, P.; Liu, Y.; Zhu, B.; Bai, Y.; Bai, J. The abilities of new anthropometric indices in identifying cardiometabolic abnormalities, and influence of residence area and lifestyle on these anthropometric indices in a Chinese community-dwelling population. Clin. Interv. Aging 2014, 9, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Z.; Qi, X.; Dahl, A.K.; Xu, W. Waist-to-height ratio is the best indicator for undiagnosed Type 2 diabetes. Diabetic Med. 2013, 30, e201–e207. [Google Scholar] [CrossRef]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A systematic review of waist-to-height ratio as a screening tool for the prediction of cardiovascular disease and diabetes: 05 could be a suitable global boundary value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage—A cross-sectional study in American adult individuals. Sci. Rep. 2018, 8, 10980. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ambrosi, J.; Silva, C.; Galofré, J.C.; Escalada, J.; Santos, S.; Millán, D.; Vila, N.; Ibañez, P.; Gil, M.J.; Valentí, V.; et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 2012, 36, 286–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deurenberg, P.; Yap, M.; van Staveren, W.A. Body mass index and percent body fat: A meta analysis among different ethnic groups. Int. J. Obes. 1998, 22, 1164–1171. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, D.; Heymsfield, S.B.; Heo, M.; Jebb, S.A.; Murgatroyd, P.R.; Sakamoto, Y. Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. Am. J. Clin. Nutr. 2000, 72, 694–701. [Google Scholar] [CrossRef]
- Cui, Z.; Truesdale, K.P.; Cai, J.; Stevens, J. Evaluation of Anthropometric Equations to Assess Body Fat in Adults: NHANES 1999–2004. Med. Sci. Sports Exerc. 2014, 46. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Mittendorfer, B.; Klein, S. Metabolically healthy obesity: Facts and fantasies. J. Clin. Investig. 2019, 129, 3978–3989. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; Wilson, P.W.F.; Fox, C.S.; Vasan, R.S.; Nathan, D.M.; Sullivan, L.M.; D’Agostino, R.B. Body Mass Index, Metabolic Syndrome, and Risk of Type 2 Diabetes or Cardiovascular Disease. J. Clin. Endocrinol. Metab. 2006, 91, 2906–2912. [Google Scholar] [CrossRef]
- Lynch, L.A.; O’Connell, J.M.; Kwasnik, A.K.; Cawood, T.J.; O’Farrelly, C.; O’Shea, D.B. Are Natural Killer Cells Protecting the Metabolically Healthy Obese Patient? Obesity 2009, 17, 601–605. [Google Scholar] [CrossRef]
- Karelis, A.D.; Brochu, M.; Rabasa-Lhoret, R. Can we identify metabolically healthy but obese individuals (MHO)? Diabetes Metab. 2004, 30, 569–572. [Google Scholar] [CrossRef]
- Wildman, R.P.; Muntner, P.; Reynolds, K.; McGinn, A.P.; Rajpathak, S.; Wylie-Rosett, J.; Sowers, M.R. The Obese Without Cardiometabolic Risk Factor Clustering and the Normal Weight With Cardiometabolic Risk Factor Clustering: Prevalence and Correlates of 2 Phenotypes Among the US Population (NHANES 1999–2004). Arch. Intern. Med. 2008, 168, 1617–1624. [Google Scholar] [CrossRef] [Green Version]
- Box, G.; Cox, D. An Analysis of Transformations. J. Royal Stat. Soc. 1964, 26, 211–243. [Google Scholar] [CrossRef]
- Wallace, B.C.; Dahabreh, I.J.; Trikalinos, T.A.; Lau, J.; Trow, P.; Schmid, C.H. Closing the gap between methodologists and end-users: R as a computational back-end. J. Stat. Softw. 2012, 49, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nishida, C.; Uauy, R.; Kumanyika, S.; Shetty, P. The joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases: Process, product and policy implications. Public Health Nutr. 2004, 7, 245–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmadfa, I.; Kornsteiner, M. Fats and Fatty Acid Requirements for Adults. Ann. Nutr. Metab. 2009, 55, 56–75. [Google Scholar] [CrossRef] [PubMed]
- WHO/FAO. Vitamin and Mineral Requirements in Human Nutrition. Available online: https://apps.who.int/iris/bitstream/handle/10665/42716/9241546123.pdf (accessed on 29 June 2020).
- World Health Organization. Guideline: Sodium Intake for Adults and Children. Available online: https://www.who.int/nutrition/publications/guidelines/sodium_intake_printversion.pdf (accessed on 29 June 2020).
- World Health Organization. Guideline: Potassium Intake for Adults and Children. Available online: https://apps.who.int/iris/bitstream/handle/10665/77986/9789241504829_eng.pdf?sequence=1 (accessed on 29 June 2020).
- Mellen, P.B.; Gao, S.K.; Vitolins, M.Z.; Goff, D.C., Jr. Deteriorating Dietary Habits Among Adults With Hypertension: DASH Dietary Accordance, NHANES 1988–1994 and 1999–2004. JAMA Intern. Med. 2008, 168, 308–314. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- EFSA. Dietary Reference Values for nutrients Summary report. EFSA Support. Publ. 2017, 14, e15121E. [Google Scholar] [CrossRef] [Green Version]
- Lachat, C.; Hawwash, D.; Ocké, M.C.; Berg, C.; Forsum, E.; Hörnell, A.; Larsson, C.l.; Sonestedt, E.; Wirfält, E.; Åkesson, A.; et al. Strengthening the Reporting of Observational Studies in Epidemiology—Nutritional epidemiology (STROBE-nut): An extension of the STROBE statement. Nutr. Bull. 2016, 41, 240–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanauchi, M.; Kanauchi, K. The World Health Organization’s Healthy Diet Indicator and its associated factors: A cross-sectional study in central Kinki, Japan. Prev. Med. Rep. 2018, 12, 198–202. [Google Scholar] [CrossRef]
- Kim, H.; Caulfield Laura, E.; Garcia-Larsen, V.; Steffen Lyn, M.; Coresh, J.; Rebholz Casey, M. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am. Heart Assoc. 2019, 8, e012865. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical Usefulness of a New Equation for Estimating Body Fat. Diabetes Care 2012, 35, 383. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Gary, T.L.; Caballero, B.H.; Lawrence, R.S.; Cheskin, L.J.; Wang, Y. Ethnic differences in dairy and related nutrient consumption among US adults and their association with obesity, central obesity, and the metabolic syndrome. Am. J. Clin. Nutr. 2008, 87, 1914–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubowitz, T.; Heron, M.; Bird, C.E.; Lurie, N.; Finch, B.K.; Basurto-Dávila, R.; Hale, L.; Escarce, J.J. Neighborhood socioeconomic status and fruit and vegetable intake among whites, blacks, and Mexican Americans in the United States. Am. J. Clin. Nutr. 2008, 87, 1883–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kant, A.K.; Graubard, B.I.; Kumanyika, S.K. Trends in black-white differentials in dietary intakes of U.S. adults, 1971–2002. Am. J. Prev. Med. 2007, 32, 264–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satia, J.A. Diet-related disparities: Understanding the problem and accelerating solutions. J. Am. Diet. Assoc. 2009, 109, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization and the Food and Agriculture Organization of the United Nations. Country profile for Hungary: Nutrition, Physical Activity and Obesity Hungary. Available online: http://www.euro.who.int/__data/assets/pdf_file/0014/243302/Hungary-WHO-Country-Profile.pdf?ua=1 (accessed on 29 June 2020).
- Kranyak, M. Hungary. In Food, Cuisine, and Cultural Competency for Culinary, Hospitality, and Nutrition Professionals; Edelstein, S., Ed.; Jones & Bartlett Publishers: Sadbury, MA, USA, 2011. [Google Scholar]
- Wu, J.H.Y.; Micha, R.; Mozaffarian, D. Dietary fats and cardiometabolic disease: Mechanisms and effects on risk factors and outcomes. Nat. Rev. Cardiol. 2019, 16, 581–601. [Google Scholar] [CrossRef] [PubMed]
- Sarkadi Nagy, E.; Bakacs, M.; Illés, É.; Nagy, B.; Varga, A.; Kis, O.; Schreiberné Molnár, E.; Martos, É. Hungarian Diet and Nutritional Status Survey–OTÁP2014. II. Energy and macronutrient intake of the Hungarian population. Orv. Hetil. 2017, 158, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, N.; Chiu, S.; Williams, P.T.; King, S.M.; Krauss, R.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 24–33. [Google Scholar] [CrossRef]
- Chen, Z.; Franco, O.H.; Lamballais, S.; Ikram, M.A.; Schoufour, J.D.; Muka, T.; Voortman, T. Associations of specific dietary protein with longitudinal insulin resistance, prediabetes and type 2 diabetes: The Rotterdam Study. Clin. Nutr. 2020, 39, 242–249. [Google Scholar] [CrossRef]
- Martos, É. The Hungarian policies to reduce population sugar intake: Éva Martos. Eur. J. Public Health 2015, 25. [Google Scholar] [CrossRef]
- European Commission. Health Equity Pilot Project (HEPP)-The Impact of Taxes on ‘Junk Food’ in Hungary-Case Study; The Government of Hungary: The National Tax and Customs Administration, Ed.; European Commission: Brussels, Belgium, 2017; p. 14. [Google Scholar]
- Elliott, P.; Brown, I. Sodium intakes around the world. In Background Document Prepared for the Forum and Technical Meeting on Reducing Salt Intake in Populations (Paris, France; 5–7 October 2006); World Health Organization: Geneva, Switzerland, 2007; p. 84. [Google Scholar]
- WCRF. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective. Available online: www.dietandcancerreport.org (accessed on 29 June 2020).
- Hungarian Demographic Research Institute. Demographic portrait 2018 (in Hungarian). In Report on the Situation of the Hungarian Population; Monostori, J., Őri, P., Spéder, Z., Majoros, G., Eds.; KSH Népess Égtudományi Kutatóintézet: Budapest, Hungary, 2018; ISSN 2061 3741. [Google Scholar]
- WCRF. Colorectal Cancer Statistics. Available online: https://www.wcrf.org/dietandcancer/cancer-trends/colorectal-cancer-statistics (accessed on 11 July 2020).
- IHME. Colon and Rectum Cancer for Both Sexes, All Ages, 2017-Deaths per 100,000. Available online: http://ihmeuw.org/56ge (accessed on 11 July 2020).
- Aune, D.; Chan, D.S.M.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef] [Green Version]
- Diószegi, J.; Pikó, P.; Kósa, Z.; Sándor, J.; Llanaj, E.; Ádány, R. Taste and Food Preferences of the Hungarian Roma Population. Front. Public Health 2020, 8, 359. [Google Scholar] [CrossRef]
- Rush, E.C.; Yan, M.R. Evolution not Revolution: Nutrition and Obesity. Nutrients 2017, 9, 519. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D. Dietary and policy priorities to reduce the global crises of obesity and diabetes. Nat. Food 2020, 1, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Northwell, C.-R.C. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- EpiCentro. Report Sulle Caratteristiche dei Pazienti Deceduti Positivia COVID-19 in Itali aIl Presente Report è Basato sui Dati Aggiornati al 17 Marzo 2020. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Report-COVID-2019_17_marzo-v2.pdf (accessed on 5 July 2020).
- Ryan, D.H.; Ravussin, E.; Heymsfield, S. COVID 19 and the Patient with Obesity–The Editors Speak Out. Obesity 2020, 28, 847. [Google Scholar] [CrossRef] [Green Version]
- 2020 Global Nutrition Report: Action on Equity to End Malnutrition; Development Initiatives: Bristol, UK, 2020.
- Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020, 87, 53–54. [Google Scholar] [CrossRef]
- Kluge, H.H.P.; Wickramasinghe, K.; Rippin, H.L.; Mendes, R.; Peters, D.H.; Kontsevaya, A.; Breda, J. Prevention and control of non-communicable diseases in the COVID-19 response. Lancet 2020, 395, 1678–1680. [Google Scholar] [CrossRef]
- Macejova, Z.; Kristian, P.; Janicko, M.; Halanova, M.; Drazilova, S.; Antolova, D.; Marekova, M.; Pella, D.; Madarasova-Geckova, A.; Jarcuska, P. The Roma Population Living in Segregated Settlements in Eastern Slovakia Has a Higher Prevalence of Metabolic Syndrome, Kidney Disease, Viral Hepatitis B and E, and Some Parasitic Diseases Compared to the Majority Population. Int. J. Environ. Res. Public Health 2020, 17, 3112. [Google Scholar] [CrossRef] [PubMed]
- Ungváry, G.; Szakmáry, É.; Hegedűs, I.; Mor-Vai, V.; Rudnai, R. Public health situation of the Roma and non-Rma unemployed in a small area of Hungary densely populated by Roma people. Cent. Eur. J. Occup. Environ. Med. 2018, 24, 57–73. [Google Scholar]
- Fésüs, G.; Östlin, P.; McKee, M.; Ádány, R. Policies to improve the health and well-being of Roma people: The European experience. Health Policy 2012, 105, 25–32. [Google Scholar] [CrossRef]
- Monsivais, P.; Drewnowski, A. Lower-Energy-Density Diets Are Associated with Higher Monetary Costs per Kilocalorie and Are Consumed by Women of Higher Socioeconomic Status. J. Am. Diet. Assoc. 2009, 109, 814–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livingstone, K.M.; Olstad, D.L.; Leech, R.M.; Ball, K.; Meertens, B.; Potter, J.; Cleanthous, X.; Reynolds, R.; McNaughton, S.A. Socioeconomic inequities in diet quality and nutrient intakes among Australian adults: Findings from a nationally representative cross-sectional study. Nutrients 2017, 9, 1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konttinen, H.; Sarlio-Lähteenkorva, S.; Silventoinen, K.; Männistö, S.; Haukkala, A. Socio-economic disparities in the consumption of vegetables, fruit and energy-dense foods: The role of motive priorities. Public Health Nutr. 2013, 16, 873–882. [Google Scholar] [CrossRef] [Green Version]
Variable | Hungarian General (n = 359) | Hungarian Roma (n = 344) | pa |
---|---|---|---|
Age group (years) | 44.2 ± 12.2 * | 42.9 ± 12.1 | >0.05 |
20–34 | 93 (25.9%) † | 103 (29.9%) | |
35–44 | 92 (25.6%) | 85 (24.7%) | |
45–54 | 100 (27.9%) | 93 (27.1%) | |
55–64 | 74 (20.6%) | 63 (18.3%) | |
Sex (females) | 188 (52.4%) | 248 (72.1%) | <0.01 |
Educational level | |||
Elementary | 76 (21.2%) | 292 (84.9%) | <0.01 |
Secondary | 118 (32.9%) | 17 (4.9%) | |
Vocational training | 112 (31.2%) | 35 (10.2%) | |
University degree | 53 (14.7%) | 0 (0.0%) | |
Perceived financial status | |||
Very good | 18 (5.2%) | 5 (1.5%) | <0.01 |
Good | 97 (27.6%) | 46 (13.5%) | |
Fair | 190 (54.1%) | 186 (54.7%) | |
Challenging | 40 (11.4%) | 85 (25.0%) | |
Very challenging | 6 (1.7%) | 18 (5.3%) | |
Economic activity | |||
Full-time employment | 267 (74.4%) | 233 (67.7%) | <0.01 |
Part-time employment | 29 (8.1%) | 23 (6.7%) | |
Student | 8 (2.2%) | 0 (0.0%) | |
Retired | 22 (6.1%) | 22 (6.4%) | |
Ill-health retirement | 18 (5.0%) | 10 (2.9%) | |
Unemployed | 15 (4.2%) | 56 (16.3%) |
Variable | Hungarian General (n = 359) | Hungarian Roma (n = 344) | pa |
---|---|---|---|
Height (cm)-mean (95% CI) † | 169.1 (168.1–170.1) | 161.4 (160.4–162.4) | <0.01 |
Males | 175.6 (174.4–176.8) | <0.01 | <0.01 |
Females | 163.1 (162.1–164.1) | <0.01 | <0.01 |
Weight (kg)-mean (95% CI) | 78.0 (76.3–79.8) | 72.2 (70.2–74.2) | <0.01 |
Males | 85.0 (82.6–87.3) | 81.5 (77.8–85.3) | >0.05 |
Females | 71.8 (69.5–74.0) | 68.6 (66.4–70.9) | >0.05 |
BMI (kg/m2)-mean (95% CI) | 27.3 (26.7–27.8) | 27.7 (26.9–28.4) | >0.05 |
Males | 27.5 (26.8–28.2) | 28.0 (26.7–29.3) | >0.05 |
Females | 27.0 (26.1–27.9) | 27.5 (26.7–28.4) | >0.05 |
Underweight | 10 (2.8%) | 22 (6.4%) | <0.01 |
Normal weight | 116 (32.3%) | 109 (31.7%) | |
Overweight | 129 (35.9%) | 84 (24.4%) | |
Obese (total) | 104 (29.0%) | 129 (37.5%) | |
Obese class I | 73 (20.3%) | 83 (24.1%) | >0.05 |
Obese class II | 22 (6.1%) | 31 (9.0%) | |
Obese class III | 9 (2.5%) | 15 (4.4%) | |
Metabolically healthy obesity-% (95% CI) * | |||
Meigs et al. criteria [61] | 33.7 (28.8–38.9) | 25.6 (21.1–30.5) | >0.05 |
Lynch et al. criteria [62] | 15.6 (12.0–19.8) | 14.8 (11.2–19.0) | >0.05 |
Karelis et al. criteria [63] | 18.9 (15.0–23.4) | 18.6 (14.6–23.1) | >0.05 |
Wildman et al. criteria [64] | 21.2 (17.1–25.8) | 16.9 (13.1–21.2) | >0.05 |
Waist circumference (cm) mean (95% CI) | 95.9 (94.4–97.5) | 95.1 (93.3–96.9) | >0.05 |
WHtR | ♂0.56; ♀0.58 | ♂0.58; ♀0.60 | <0.05 |
Abdominal/central obesity IDFEURO 1–n (%) | ♂66 (38.6%); | ♂42 (43.8%); | <0.05 |
♀122 (64.9%) | ♀161 (64.9%) | >0.05 | |
Estimated percentage of body fat-% (95% CI) | |||
Gomez-Ambrozi et al. [78] | 32.7 (31.7–33.6) | 35.1 (34.1–36.2) | <0.01 |
Deurenberg et al. [57] | 30.7 (29.7–31.7) | 33.2 (32.1–34.3) | <0.01 |
Woolcott et al. [55] | 22.2 (21.4–23.1) | 25.6 (24.6–26.6) | <0.01 |
Gallagher et al. [58] | 29.6 (28.7–30.5) | 31.9 (30.9–32.9) | <0.01 |
Hungarian General (n = 359) | Hungarian Roma (n = 344) | p * | |||
---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | ||
Both sexes | 2188.3 | 2111.2–2265.3 | 2114.1 | 2042.3–2185.8 | 0.166 |
Males | 2270.9 | 2148.9–2392.8 | 2212.5 | 2064.2–2360.8 | 0.559 |
Females | 2113.1 | 2016.5–2209.7 | 2076.0 | 1994.5–2157.5 | 0.561 |
Macronutrients | Recommendation [Ref.] | Hungarian General (n = 359) | Hungarian Roma (n = 344) | β (95% CI) † |
---|---|---|---|---|
Carbohydrates (%E) | 55–75%E [67] | 46.2 (45.3;47.1) | 48.2 (47.2;49.2) | 2.8 (0.9;4.8) * |
Sugar (g) | ≤ 31 g [73] | 96.27 (89.03;103.5) | 101.5 (94.1;108.8) | 3.7 (1.8;5.6) * |
Sugar (%E) | ≤10%E (≤5%E) [67] | 17.0 (16.0;18.0) | 18.8(17.7;19.8) | 0.03 (0.01;0.05) * |
Fiber (g) | ≥24 g [67]; ≥42.9 g [73] | 20.3 (19.3;21.3) | 20.4 (19.1;21.6) | −2.35 (−4.7;0.01) |
Fiber (g/1000 kcal) | 14.8 g/1000 kcal [72] | 9.7 (9.2;10.1) | 9.9 (9.4;10.4) | −0.75 (−1.7;0.2) |
Proteins (%E) | 10–15%E [67] | 15.5 (15.2;15.9) | 15.1 (14.7;15.4) | −0.59 (−1.3;0.1) |
Animal-based proteins (% tot. proteins) | - | 59.3 (57.5;61.0) | 60.6 (58.9;62.4) | −1.07 (−2.63;0.49) |
Plant-based protein (% tot. proteins) | - | 40.7 (39.0;42.5) | 39.4 (37.6;41.1) | 0.98 (−0.58;2.54) |
Animal/plant protein ratio | 1.8 (1.7;1.9) | 1.6 (1.5;1.72) | 0.19 (0.04;0.34) * | |
Amino acids (g) | - | 76.8 (73.9;79.7) | 71.1 (68.5;73.7) | −2.02 (−3.6;−0.4) * |
Essential amino acids (g) | - | 28.7 (27.6;29.8) | 26.4 (25.4;27.4) | −0.8 (−1.5;−0.2) * |
Fats | 15–30%E [67] | 37.1 (36.3;38.0) | 36.1 (35.2;37.0) | −1.6 (−3.4;0.2) |
Animal-based fats (% of total fats) | - | 59.3 (57.5;61.0) | 60.6 (58.9;62.4) | 1.69 (−1.77;5.15) |
Plant-based fats (% of total fats) | - | 40.7 (39.0;42.5) | 39.4 (37.6;41.1) | −3.34 (−6.80;0.12) |
SFA (%E) | ≤10%E [67] | 10.7 (10.3;11.1) | 10.7 (10.3;11.0) | −0.2 (−0.9;0.6) |
MUFA (%E) | - | 11.9 (11.5;12.3) | 11.4 (11.0;11.8) | −0.5 (−1.4;0.3) |
PUFA (%E) | 6–10%E [67] | 9.0 (8.7;9.3) | 8.2 (7.9;8.5) | −1.0 (−1.6;−0.4) * |
UFA (%E) | - | 20.9 (20.3;21.4) | 19.6 (19.1;20.2) | −1.5 (−2.6;−0.4) * |
Cholesterol (mg/1000 kcal) | 71.4 mg/1000 kcal [72] | 172.9 (164.7;181.0) | 159.5 (152.2;166.8) | −18.8 (−34.4;−3.2) * |
Cholesterol (mg) | <300 mg [67]; ≤ 125.2 [73] | 369.2 (350.7;387.7) | 339.7 (320.3;359.2) | −41.27 (−80.18;−2.36) * |
ω-3 fatty acids (%E) | 1–2% [67] | 0.31 (0.29;0.32) | 0.27 (0.26;0.28) | −0.06 (−0.11;−0.01) * |
ω-6 fatty acids (%E) | 5–8% [67] | 8.7 (8.4;9.0) | 8.0 (7.7;8.3) | −0.99 (−1.60;−0.38) * |
α-linolenic acid (%E) | 0.5–2%E [68] | 0.27 (0.26;0.28) | 0.25 (0.24;0.26) | −0.03 (−0.05;0.002) * |
Micronutrients | Recommendation [Ref.] | Hungarian General (n = 359) | Hungarian Roma (n = 344) | β (95% CI) † |
---|---|---|---|---|
Minerals and Trace Elements | ||||
Magnesium (mg/1000 kcal) | ≥238 mg/1000 kcal [72] | 188.7 (164.7;212.6) | 180.0 (172.6;187.3) | −32.2 (−73.1;8.7) |
Calcium (mg/1000 kcal) | ≥590 mg/1000 kcal [72] | 246.9 (232.5;261.4) | 245.9 (233.3;258.4) | 1.0 (−27.7;29.7) |
Sodium (mg/1000 kcal) | ≤1143 mg/1000 kcal [72] | 2605.1 (2508.7;2701.5) | 2434.9 (2348.7;2521.2) | −282.8 (−480.7;−84.9) * |
Sodium (mg) | ≤2000 mg [70] | 5644.0 (5351.9;5936.0) | 5094.4 (4866.0;5322.8) | −765.0 (−1304.5;−225.5) * |
Potassium (mg/1000 kcal) | ≥2238 mg/1000kcal [72] | 1371.8 (1297.4;1446.1) | 1426.8 (1345.8;1507.7) | −105.9 (−267.6;55.8) |
Potassium (mg) | ≥3510 mg [71] | 2981.8 (2752.2;3211.4) | 2971.6 (2778.2;3165.1) | −432.3 (−870.4;5.9) |
Iron (mg/1000 kcal) | - | 5.2 (5.0;5.5) | 5.2 (4.9;5.5) | −0.6 (−1.2;−0.1) * |
Iron (mg) | 1.05 mg [69] | 11.2 (10.6;11.8) | 11.1 (10.2;11.9) | −1.6 (−3.1;−0.1) * |
Vitamins | ||||
Vitamin A (μg/1000 kcal) | - | 140.9 (124.9;156.8) | 166.4 (129.1;203.8) | −19.0 (−81.6;43.6) |
Vitamin A (μg RE) | 500 μg RE [69] | 294.89 (260.9;328.9) | 393.1 (279.6;506.69) | −78.86 (−245.64;87.92) |
Beta-carotene (mg/1000 kcal) | - | 1.2 (1.1;1.3) | 1.36 (1.19;1.53) | −0.13 (−0.44;0.17) |
Vitamin B1 (μg/1000 kcal) | - | 465.4 (448.8;482.1) | 457.1 (439.2;474.9) | −32.9 (−68.4;2.5) |
Vitamin B1 (μg) | ≥1100 μg [69] | 1023.1 (973.3;1073.0) | 960.5 (912.3;1008.8) | −109.9 (−207.9;−11.9) * |
Vitamin B2 (μg/1000 kcal) | - | 567.7 (512.4;622.9) | 539.1 (514.0;564.1) | −68.51 (−164.6;27.6) |
Vitamin B2 (μg) | ≥1100 μg [69] | 1290.3 (1041.7;1538.9) | 1135.4 (1068.1;1202.7) | −355.36 (−728.62;17.89) |
Vitamin B6 (μg/1000 kcal) | - | 813.2 (785.2;841.2) | 771.8 (741.7;802.0) | −103.8 (−162.4;−45.3) * |
Vitamin B6 (μg) | ≥1300 μg [69] | 1761.7 (1689.0;1834.4) | 1591.8 (1518.4;1665.1) | −270.7 (−415.9;−125.6) * |
Vitamin B12 (μg/1000 kcal) | - | 1.6 (0.7;2.5) | 1.3 (0.9;1.8) | −2.3 (−3.9;−0.6) * |
Vitamin B12 (μg) | ≥2.4 μg [69] | 3.7 (1.4;6.1) | 3.0 (1.8;4.1) | −5.58 (−9.30;−1.87) * |
Vitamin B3 (mg NE/1000 kcal) | ≥6.6 mg NE/1000 kcal [74] | 9.7 (8.1;11.3) | 8.4 (8.0;8.8) | −3.7 (−6.4;−1.0) * |
Vitamin B3 (mg NE) | ≥14 mg NE [69] | 22.9 (15.7;30.2) | 17.7 (16.6;18.7) | −12.8 (−23.3;−2.3) * |
Vitamin C (mg/1000 kcal) | - | 37.3 (33.9;40.7) | 40.08 (35.56;44.6) | −8.7 (−16.7;−0.6) * |
Vitamin C (mg) | ≥45 mg [69] | 78.8 (71.7;86.0) | 79.4 (71.3;87.5) | −18.98 (−34.26;−3.7) * |
Vitamin D (mg/1000 kcal) | - | 0.8 (0.7;0.9) | 0.8 (0.6;0.9) | −0.1 (−0.3;0.2) |
Vitamin D (μg) | ≥10 μg [69] | 1.7 (1.5;1.9) | 1.7 (1.4;2.0) | −0.23 (−0.72;0.27) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Llanaj, E.; Vincze, F.; Kósa, Z.; Sándor, J.; Diószegi, J.; Ádány, R. Dietary Profile and Nutritional Status of the Roma Population Living in Segregated Colonies in Northeast Hungary. Nutrients 2020, 12, 2836. https://doi.org/10.3390/nu12092836
Llanaj E, Vincze F, Kósa Z, Sándor J, Diószegi J, Ádány R. Dietary Profile and Nutritional Status of the Roma Population Living in Segregated Colonies in Northeast Hungary. Nutrients. 2020; 12(9):2836. https://doi.org/10.3390/nu12092836
Chicago/Turabian StyleLlanaj, Erand, Ferenc Vincze, Zsigmond Kósa, János Sándor, Judit Diószegi, and Róza Ádány. 2020. "Dietary Profile and Nutritional Status of the Roma Population Living in Segregated Colonies in Northeast Hungary" Nutrients 12, no. 9: 2836. https://doi.org/10.3390/nu12092836
APA StyleLlanaj, E., Vincze, F., Kósa, Z., Sándor, J., Diószegi, J., & Ádány, R. (2020). Dietary Profile and Nutritional Status of the Roma Population Living in Segregated Colonies in Northeast Hungary. Nutrients, 12(9), 2836. https://doi.org/10.3390/nu12092836