Association between Infant and Young Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23 Months) in Northern Ghana
Abstract
:1. Introduction
2. Methods
2.1. Study Setting
2.2. Study Design and Population of Interest
2.3. Sample Size
2.4. Data Collection
2.5. Dependent Variables of the Study
2.6. Independent Variables of the Study
2.7. Proximal Factors
2.8. Intermediate Factors
2.9. Distal Determinants
2.10. Food Intake Assessment (Infant and Young Child Feeding (IYCF) Indicators)
2.11. Body Mass Index (BMI)
2.12. Bilateral Pitting Oedema
2.13. Household Wealth Index (HWI)
2.14. Data Entry and Analysis
2.15. Ethical Clearance and Community Entry Protocols
3. Results
3.1. Characteristics of the Study Participants
3.2. Nutritional Status of the Children by Age
3.3. Bivariate Association between World Health Organisation (WHO) IYCF Indicators and Stunting
3.4. Bivariate Association between WHO IYCF Indicators and Wasting
3.5. Multivariable Association between IYCF Indicators and Stunting (LAZ)
3.6. Multivariable Association between IYCF Indicators and Wasting (WLZ)
4. Discussion
4.1. Prevalence of IYCF Indicators among Children (6–23 Months) in Northern Ghana
4.2. Nutritional Status of Children (6–23 Months) in the Northern Region of Ghana
4.3. Association between IYCF Indicators and Undernutrition (Stunting and Wasting)
4.4. Strengths and Limitations of the Study
4.5. Recommended Public Health Interventions to Address Child Stunting and Wasting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Development Initiatives. 2018 Global Nutrition Report Shining a Light to Spur Action on Nutrition, Bristol; Global Nutrition Report; Development Initiatives: Bristol, UK, 2018. [Google Scholar]
- United Nations Children’s Fund (UNICEF); World Health Organization; International Bank for Reconstruction and Development/The World Bank. Levels and Trends in Child Malnutrition: Key Findings of the 2019 Edition of the Joint Child Malnutrition Estimates; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Kinyoki, D.K.; Osgood-Zimmerman, A.E.; Pickering, B.V.; Local Burden of Disease Child Growth Failure Collaborators. Mapping child growth failure across low-and middle-income countries. Nature 2020, 577, 231–234. [Google Scholar]
- Bhutta, Z.; Das, J.K.; Rizvi, A.; Gaffey, M.F.; Walker, N.; Horton, S.; Webb, P.; Lartey, A.; Black, R.E. Evidence-based interventions for improvement of maternal and child nutrition: What can be done and at what cost? Lancet 2013, 382, 452–477. [Google Scholar] [CrossRef]
- Ghana Statistical Service (GSS); Ghana Health Service (GHS); ICF International. Ghana Demographic and Health Survey 2014; GSS, GHS, and ICF International: Rockville, MD, USA, 2015; pp. 153–158. [Google Scholar]
- De Onis, M.; Borghi, E.; Arimond, M.; Webb, P.; Croft, T.; Saha, K.; De-Regil, L.M.; Thuita, F.; Heidkamp, R.; Krasevec, J.; et al. Prevalence thresholds for wasting, overweight and stunting in children under 5 years. Public Health Nutr. 2018, 22, 175–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.; Christian, P.; De Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Fanzo, J. The Nutritional Challenge in Sub-Saharan Africa; Via dei Tre Denari 472/a, 00057, Maccarese (Fiumicino); Bioversity International: Rome, Italy, 2012. [Google Scholar]
- WHO; UNICEF; IFPRI; UCDavis; FANTA; AED; USAID. Indicators for Assessing Infants and Young Child Feeding Practices: Part 1—Definitions; World Health Organization: Washington, DC, USA, 2008. [Google Scholar]
- WHO; UNICEF; IFPRI; UCDavis; FANTA; AED; USAID. Indicators for Assessing Infants and Young Child Feeding Practices. Part 2: Measurement; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Brouwer-Brolsma, E.M.; Brennan, L.; Drevon, C.A.; Van Kranen, H.; Manach, C.; Dragsted, L.O.; Roche, H.; Andres-Lacueva, C.; Bakker, S.J.L.; Bouwman, J.; et al. Combining traditional dietary assessment methods with novel metabolomics techniques: Present efforts by the Food Biomarker Alliance. Proc. Nutr. Soc. 2017, 76, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Dietary Assessment: A Resource Guide to Method Selection and Application in Low Resource Settings; FAO: Rome, Italy, 2018. [Google Scholar]
- Saaka, M.; Larbi, A.; Mutaru, S.; Hoeschle-Zeledon, I. Magnitude and factors associated with appropriate complementary feeding among children 6–23 months in Northern Ghana. BMC Nutr. 2016, 2, 243. [Google Scholar] [CrossRef] [Green Version]
- Saaka, M.; Wemakor, A.; Abizari, A.-R.; Aryee, P.A. How well do WHO complementary feeding indicators relate to nutritional status of children aged 6-23 months in rural Northern Ghana? BMC Public Health 2015, 15, 1157. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Saaka, M.; Adams, A.-G.; Kamwininaang, S.K.; Abizari, A.-R. The effect of maternal and child factors on stunting, wasting and underweight among preschool children in Northern Ghana. BMC Nutr. 2017, 3, 1992. [Google Scholar] [CrossRef] [Green Version]
- Onis, M. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2007, 95, 76–85. [Google Scholar]
- De Onis, M.; Onyango, A.W.; Broeck, J.V.D.; Chumlea, W.C.; Martorell, R. Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr. Bull. 2004, 25 (Suppl. 1), S27–S36. [Google Scholar] [CrossRef]
- WHO. WHO AnthroPlus for Personal Computers Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Müller, O.; Krawinkel, M. Malnutrition and health in developing countries. Can. Med Assoc. J. 2005, 173, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruel, M.T.; Alderman, H. Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? Lancet 2013, 382, 536–551. [Google Scholar] [CrossRef] [Green Version]
- Kassa, T.; Meshesha, B.; Haji, Y.; Ebrahim, J. Appropriate complementary feeding practices and associated factors among mothers of children age 6–23 months in Southern Ethiopia, 2015. BMC Pediatr. 2016, 16, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO IaW. The State of Food Insecurity in the World 2013: The Multiple Dimensions of Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Doku, D.; Koivusilta, L.; Rimpelä, A. Indicators for measuring material affluence of adolescents in health inequality research in developing countries. Child Indic. Res. 2009, 3, 243–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filmer, D.; Pritchett, L.H. Estimating wealth effects without expenditure data-or tears: An application to educational enrollments in states of India. Demography 2001, 38, 115. [Google Scholar] [PubMed] [Green Version]
- Reinbott, A.; Kuchenbecker, J.; Herrmann, J.; Jordan, I.; Muehlhoff, E.; Kevanna, O.; Krawinkel, M. A child feeding index is superior to WHO IYCF indicators in explaining length-for-age Z-scores of young children in rural Cambodia. Paediatr. Int. Child Health 2014, 35, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Ughade, S. Statistical modeling in epidemiologic research: Some basic concepts. Clin. Epidemiol. Glob. Health 2013, 1, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Boil. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. Model building strategy for logistic regression: Purposeful selection. Ann. Transl. Med. 2016, 4, 111. [Google Scholar] [CrossRef] [Green Version]
- Tabachnick, G.B.; Fidell, S.L. Using Multivariate Statistics, 5th ed.; Allyn & Bacon: Boston, MA, USA, 2007. [Google Scholar]
- Ghana Statistical Service. Multiple Indicator Cluster Survey; (MICS 2017-2018), Survey Findings Report; Ghana Statistical Service: Accra, Ghana, 2018. [Google Scholar]
- Ghana Statistical Service. Ghana Multiple Indicator Cluster Survey (MICS) with an Enhanced Malaria Module and Biomarker 2011; Final Report (FR262); Ghana Statistical Service: Accra, Ghana, 2011. [Google Scholar]
- Lassi, Z.S.; Das, J.K.; Zahid, G.; Imdad, A.; Bhutta, Z. Impact of education and provision of complementary feeding on growth and morbidity in children less than 2 years of age in developing countries: A systematic review. BMC Public Health 2013, 13 (Suppl. 3), S13. [Google Scholar] [CrossRef] [Green Version]
- Marriott, B.P.; White, A.; Hadden, L.; Davies, J.C.; Wallingford, J.C. World Health Organization (WHO) infant and young child feeding indicators: Associations with growth measures in 14 low-income countries. Matern. Child Nutr. 2011, 8, 354–370. [Google Scholar] [CrossRef] [PubMed]
- Bork, K.; Cames, C.; Barigou, S.; Cournil, A.; Diallo, A. A summary index of feeding practices is positively associated with height-for-age, but only marginally with linear growth, in rural Senegalese infants and toddlers. J. Nutr. 2012, 142, 1116–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, A.D.; Ickes, S.B.; Smith, L.E.; Mbuya, M.N.N.; Chasekwa, B.; Heidkamp, R.A.; Menon, P.; Zongrone, A.A.; Stoltzfus, R.J. World Health Organization infant and young child feeding indicators and their associations with child anthropometry: A synthesis of recent findings. Matern. Child Nutr. 2014, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vossenaar, M.; Knight, F.; Tumilowicz, A.; Hotz, C.; Chege, P.; Ferguson, E.L. Context-specific complementary feeding recommendations developed using Optifood could improve the diets of breast-fed infants and young children from diverse livelihood groups in northern Kenya. Public Health Nutr. 2016, 20, 971–983. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.P.; Iannotti, L.; Dewey, K.G.; Michaelsen, K.F.; Onyango, A.W. Contextualising complementary feeding in a broader framework for stunting prevention. Matern. Child Nutr. 2013, 9 (Suppl. 2), 27–45. [Google Scholar] [CrossRef]
- Beal, T.; Tumilowicz, A.; Sutrisna, A.; Izwardy, D.; Neufeld, L.M. A review of child stunting determinants in Indonesia. Matern. Child Nutr. 2018, 14, e12617. [Google Scholar] [CrossRef]
- Lohia, N.; Udipi, S. Infant and child feeding index reflects feeding practices, nutritional status of urban slum children. BMC Pediatr. 2014, 14, 290. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, S.R.; Govil, S.; Lala, M.K.; Yagnik, H.B. Infant and Young Child Feeding Index and its association with nutritional status: A cross-sectional study of urban slums of Ahmedabad. J. Fam. Community Med. 2018, 25, 88–94. [Google Scholar] [CrossRef]
- Tessema, M.; Belachew, T.; Ersino, G. Feeding patterns and stunting during early childhood in rural communities of Sidama, South Ethiopia. Pan Afr. Med J. 2013, 14, 75. [Google Scholar]
- Semba, R.D.; Shardell, M.; Ashour, F.A.S.; Moaddel, R.; Trehan, I.; Maleta, K.; Ordiz, M.I.; Kraemer, K.; Khadeer, M.A.; Ferrucci, L.; et al. Child stunting is associated with low circulating essential amino acids. EBioMedicine 2016, 6, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Riley, R.T.; Wu, F. Dietary fumonisin and growth impairment in children and animals: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1448–1464. [Google Scholar] [CrossRef] [Green Version]
- Saaka, M.; Mutaru, S. Factors contributing to positive deviance in the growth of children in rural northern Ghana. Int. J. Child Health Nutr. 2014, 3, 114–123. [Google Scholar] [CrossRef]
- Mya, K.S.; Kyaw, A.T.; Tun, T. Feeding practices and nutritional status of children age 6–23 months in Myanmar: A secondary analysis of the 2015–2016 Demographic and Health Survey. PLoS ONE 2019, 14, e0209044. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.H.; Larijani, B.; Esmaillzadeh, A. Concurrent anemia and stunting in young children: Prevalence, dietary and non-dietary associated factors. Nutr. J. 2019, 18, 10. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, H.; Gera, T.; Nestel, P. Effect of iron supplementation on physical growth in children: Systematic review of randomised controlled trials. Public Health Nutr. 2006, 9, 904–920. [Google Scholar] [CrossRef]
- Kubuga, C.K.; Hong, H.G.; Song, W.O. Hibiscus sabdariffa meal improves iron status of childbearing age women and prevents stunting in their toddlers in northern Ghana. Nutrients 2019, 11, 198. [Google Scholar] [CrossRef] [Green Version]
- Tariq, J.; Sajjad, A.; Zakar, R.; Zakar, M.Z.; Fischer, F. Factors associated with undernutrition in children under the age of two years: Secondary data analysis based on the Pakistan Demographic and Health Survey 2012–2013. Nutrients 2018, 10, 676. [Google Scholar] [CrossRef] [Green Version]
- Aguayo, V.M.; Nair, R.; Badgaiyan, N.; Krishna, V. Determinants of stunting and poor linear growth in children under 2 years of age in India: An in-depth analysis of Maharashtra’s comprehensive nutrition survey. Matern. Child Nutr. 2016, 12 (Suppl. 1), 121–140. [Google Scholar] [CrossRef]
- Glover-Amengor, M.; Agbemafle, I.; Hagan, L.L.; Mboom, F.P.; Gamor, G.; Larbi, A.; Hoeschle-Zeledon, I. Nutritional status of children 0–59 months in selected intervention communities in northern Ghana from the Africa RISING project in 2012. Arch. Public Health 2016, 74, 12. [Google Scholar] [CrossRef] [Green Version]
- Sahn, D.; Stifel, D. Parental preferences for nutrition of boys and girls: Evidence from Africa. J. Dev. Stud. 2002, 39, 21–45. [Google Scholar] [CrossRef]
- Wells, J.C. Natural selection and sex differences in morbidity and mortality in early life. J. Theor. Boil. 2000, 202, 65–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sienso, G.; Lyford, C. Assessing the factors affecting malnutrition in northern Ghana. J. Nutr. Disord. Ther. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Zhao, W.; Yu, K.; Tan, S.; Zheng, Y.; Zhao, A.; Wang, P.; Zhang, Y. Dietary diversity scores: An indicator of micronutrient inadequacy instead of obesity for Chinese children. BMC Public Health 2017, 17, 440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, G.; Pedro, M.R.; Seghieri, C.; Nantel, G.; Brouwer, I. Dietary diversity score is a useful indicator of micronutrient intake in non-breast-feeding Filipino children. J. Nutr. 2007, 137, 472–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallard, S.R.; Houghton, L.A.; Filteau, S.; Chisenga, M.; Siame, J.; Kasonka, L.; Mullen, A.; Gibson, R.S. Micronutrient adequacy and dietary diversity exert positive and distinct effects on linear growth in urban Zambian infants. J. Nutr. 2016, 146, 2093–2101. [Google Scholar] [CrossRef] [Green Version]
- Brian, T.; Amoroso, L. Improving Diets and Nutrition: Food-based Approaches; CABI: Wallingford, UK, 2014. [Google Scholar]
- Weerasooriya, D.K.; Bean, S.; Nugusu, Y.; Ioerger, B.P.; Tesso, T. The effect of genotype and traditional food processing methods on in-vitro protein digestibility and micronutrient profile of sorghum cooked products. PLoS ONE 2018, 13, e0203005. [Google Scholar] [CrossRef] [Green Version]
- Hotz, C.; Gibson, R.S. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J. Nutr. 2007, 137, 1097–1100. [Google Scholar] [CrossRef]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2009, 31, 71–82. [Google Scholar] [CrossRef]
- Shirima, C.P.; Kimanya, M.E.; Kinabo, J.L.; Routledge, M.N.; Srey, C.; Wild, C.P.; Gong, Y.Y. Dietary exposure to aflatoxin and fumonisin among Tanzanian children as determined using biomarkers of exposure. Mol. Nutr. Food Res. 2013, 57, 1874–1881. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Groopman, J.D.; Pestka, J.J. Public health impacts of foodborne mycotoxins. Annu. Rev. Food Sci. Technol. 2014, 5, 351–372. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.Y.; Watson, S.; Routledge, M.N. Aflatoxin exposure and associated human health effects, a review of epidemiological studies. Food Saf. 2016, 4, 14–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Frequency | % |
---|---|---|
Age * | ||
15–24 years | 136 | 23.4 |
25–34 years | 321 | 55.2 |
35–49 years | 124 | 21.3 |
Marital Status | ||
Unmarried | 16 | 2.8 |
Married | 565 | 97.2 |
Maternal Height | ||
160 cm and above | 282 | 48.5 |
Below 160 cm | 299 | 51.5 |
Occupation | ||
Trader/Vendor/Manual Labourer | 166 | 28.6 |
Farmer | 323 | 55.6 |
Vocational/Skilled Service Worker | 48 | 8.3 |
Unemployed | 44 | 7.6 |
Number of Postnatal Care (PNC) Visits | ||
Fewer than 4 times | 106 | 8.2 |
At least 4 times | 475 | 81.8 |
Number of Antenatal Care (ANC) Visits | ||
Fewer than 4 times | 34 | 5.9 |
At least 4 times | 547 | 94.1 |
Currently Breastfeeding | ||
Yes | 560 | 96.4 |
No | 21 | 3.6 |
Characteristics | Frequency | % |
---|---|---|
Age * | ||
6–11 months | 242 | 41.7 |
12–17 months | 185 | 31.8 |
18–23 months | 154 | 26.5 |
Gender | ||
Male | 301 | 51.8 |
Female | 280 | 48.2 |
Immunisation Status | ||
Up to date | 373 | 64.2 |
Not up to date | 208 | 35.8 |
Place of Birth | ||
Family Home/Residence | 225 | 38.7 |
Community-Based Health Planning and Services (CHPS) Compound/Traditional Maternity Home | 45 | 7.7 |
Clinic/Health Centre | 153 | 26.3 |
Hospital | 158 | 27.2 |
Usage of Insecticide-Treated Net (ITN) | ||
Yes | 518 | 89.2 |
No | 63 | 10.8 |
Recent Illness/Morbidity (within the two weeks immediately prior to the survey) | ||
Yes | 215 | 37.0 |
No | 366 | 63.0 |
Child’s Birth Weight (n = 274) | ||
Less than 2.5 kg | 246 | 89.8 |
More than 2.5 kg | 28 | 10.2 |
Frequency of Feeding Child with Cereal-based-only Porridge | ||
Always | 137 | 23.6 |
Very often | 129 | 22.2 |
Occasionally | 187 | 32.2 |
No | 128 | 22.0 |
Nutritional Status | Child Age | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
6–8 Months | 9–11 Months | 12–23 Months | |||||||
n | % | n | % | n | % | N | % | ||
Stunting (LAZ) | No | 120 | 30.9 | 82 | 21.1 | 186 | 48.0 | 388 | 66.8 |
Yes | 21 | 10.9 | 19 | 9.8 | 153 | 79.3 | 193 | 33.2 | |
Wasting (WLZ) | No | 126 | 25.3 | 88 | 17.6 | 285 | 57.1 | 499 | 85.9 |
Yes | 15 | 18.3 | 13 | 15.9 | 54 | 65.9 | 82 | 14.1 * | |
Underweight (WAZ) | No | 116 | 27.4 | 80 | 18.9 | 228 | 53.8 | 424 | 73.0 |
Yes | 25 | 15.9 | 21 | 13.4 | 111 | 70.7 | 157 | 27.0 * | |
Overweight (WLZ) | No | 135 | 23.9 | 101 | 17.8 | 330 | 58.3 | 566 | 97.4 |
Yes | 6 | 40.0 | 0 | 0.0 | 9 | 60.0 | 15 | 2.6 * |
IYFC Indicators | Child Age | Total (IYCF) | |||||||
---|---|---|---|---|---|---|---|---|---|
6–11 Months | 12–17 Months | 18–23 Months | |||||||
n | % | n | % | N | % | N | % | ||
TICF: Timely Introduction to Complementary Feeding | No | 75 | 38.5 | 64 | 32.8 | 56 | 28.7 | 195 | 33.6 |
Yes | 167 | 43.3 | 121 | 31.3 | 98 | 25.4 | 386 | 66.4 * | |
MMF: Minimum Meal Frequency | No | 94 | 52.8 | 48 | 27.0 | 36 | 20.2 | 178 | 30.6 |
Yes | 148 | 36.7 | 137 | 34.0 | 118 | 29.3 | 403 | 69.4 * | |
MDD: Minimum Dietary Diversity | No | 177 | 61.7 | 61 | 21.3 | 49 | 17.1 | 287 | 49.4 |
Yes | 65 | 22.1 | 124 | 42.2 | 105 | 35.7 | 294 | 50.6 * | |
MAD: Minimum Acceptable Diet | No | 193 | 54.4 | 84 | 23.7 | 78 | 22.0 | 355 | 61.1 |
Yes | 49 | 21.7 | 101 | 44.7 | 76 | 33.6 | 226 | 38.9 * | |
ACF: Appropriate Complementary Feeding | No | 200 | 48.0 | 110 | 26.4 | 107 | 25.7 | 417 | 71.8 |
Yes | 42 | 25.6 | 75 | 45.7 | 47 | 28.7 | 164 | 28.2 * | |
Intake of Iron-rich Foods | No | 155 | 72.4 | 31 | 14.5 | 28 | 13.1 | 214 | 36.8 |
Yes | 87 | 23.7 | 154 | 42.0 | 126 | 34.3 | 367 | 63.2 * | |
Intake of Vitamin A-rich Foods | No | 145 | 59.4 | 59 | 24.2 | 40 | 16.4 | 244 | 42.0 |
Low | 93 | 28.6 | 126 | 38.8 | 106 | 32.6 | 325 | 55.9 * | |
High | 4 | 33.3 | 0 | 0.0 | 8 | 66.7 | 12 | 2.1 * |
IYCF Indicators | Nutritional Status (n) % | Total (N) % | Test Statistic | |||
---|---|---|---|---|---|---|
Normal | Stunted | |||||
TICF | No | (128) 65.6 | (67) 34.4 | (195) 100.0 | χ2 = 0.172 | p = 0.678 |
Yes | (260) 67.4 | (126) 32.6 | (386) 100.0 | |||
MMF | No | (124) 69.7 | (54) 30.3 | (178) 100.0 | χ2 = 0.960 | p = 0.327 |
Yes | (264) 65.5 | (139) 34.5 | (403) 100.0 | |||
MDD | ˂4 foods | (212) 73.9 | (75) 26.1 | (287) 100.0 | χ2 = 12.838 | p < 0.001 * |
≥4 foods | (176) 59.9 | (118) 40.1 | (294) 100.0 | |||
MAD | No | (251) 70.7 | (104) 29.3 | (355) 100.0 | χ2 = 6.331 | p = 0.012 * |
Yes | (137) 60.6 | (89) 39.4 | (226) 100.0 | |||
ACF | No | (287) 68.8 | (130) 31.2 | (417) 100.0 | χ2 = 2.781 | p = 0.095 ** |
Yes | (101) 61.6 | (63) 38.4 | (164) 100.0 | |||
Iron | No | (153) 71.5 | (61) 28.5 | (214) 100.0 | χ2 = 3.394 | p = 0.065 ** |
Yes | (235) 64.0 | (132) 36.0 | (367) 100.0 | |||
Vitamin A | No intake | (183) 75.0 | (61) 25.0 | (244) 100.0 | χ2 = 14.868 | p = 0.001 * |
Low intake | (200) 61.5 | (125) 38.5 | (325) 100.0 | |||
High intake | (5) 41.7 | (7) 58.3 | (12) 100.0 |
95% CI | |||||||
---|---|---|---|---|---|---|---|
IYCF Indicators | B | SE | Wald | Sig. | AOR | Lower | Upper |
Intake of Iron-rich foods (Yes) | −0.735 | 0.328 | 5.028 | 0.025 * | 0.479 | 0.252 | 0.912 |
Child’s Age (6–11 Months) | 53.576 | <0.001 * | |||||
Child’s Age (12–17 Months) | 1.481 | 0.285 | 27.078 | <0.001 * | 4.399 | 2.518 | 7.686 |
Child’s Age (18–23 Months) | 2.158 | 0.296 | 53.169 | <0.001 * | 8.656 | 4.846 | 15.462 |
Mother’s Height (Below 160cm) | 0.535 | 0.203 | 6.926 | 0.008 * | 1.708 | 1.146 | 2.545 |
Constant | −2.507 | 0.766 | 10.701 | <0.001 | 0.082 |
IYCF Indicators | 95% CI | ||||||
---|---|---|---|---|---|---|---|
B | SE | Wald | Sig. | AOR | Lower | Upper | |
Child’s Gender (Female) | −0.858 | 0.274 | 9.800 | 0.002 * | 0.424 | 0.248 | 0.725 |
Child’s Age (6–11 Months) | 11.234 | 0.004 * | |||||
Child’s Age (12–17 Months) | 0.681 | 0.324 | 4.425 | 0.035 | 1.977 | 1.048 | 3.730 |
Child’s Age (18–23 Months) | −0.473 | 0.401 | 1.391 | 0.238 | 0.623 | 0.284 | 1.367 |
Power Source for Light (No Electricity) | −1.041 | 0.391 | 7.070 | 0.008 * | 0.353 | 0.164 | 0.761 |
Constant | 0.591 | 0.946 | 0.390 | 0.532 | 1.805 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anin, S.K.; Saaka, M.; Fischer, F.; Kraemer, A. Association between Infant and Young Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23 Months) in Northern Ghana. Nutrients 2020, 12, 2565. https://doi.org/10.3390/nu12092565
Anin SK, Saaka M, Fischer F, Kraemer A. Association between Infant and Young Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23 Months) in Northern Ghana. Nutrients. 2020; 12(9):2565. https://doi.org/10.3390/nu12092565
Chicago/Turabian StyleAnin, Stephen Kofi, Mahama Saaka, Florian Fischer, and Alexander Kraemer. 2020. "Association between Infant and Young Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23 Months) in Northern Ghana" Nutrients 12, no. 9: 2565. https://doi.org/10.3390/nu12092565
APA StyleAnin, S. K., Saaka, M., Fischer, F., & Kraemer, A. (2020). Association between Infant and Young Child Feeding (IYCF) Indicators and the Nutritional Status of Children (6–23 Months) in Northern Ghana. Nutrients, 12(9), 2565. https://doi.org/10.3390/nu12092565