Relationships between Total, Free and Bioavailable Vitamin D and Vitamin D Binding Protein in Early Pregnancy with Neonatal Outcomes: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethics
2.3. Data Collection
2.4. Biochemical Analyses
2.5. Calculation of Free and Bioavailable 25(OH)D
2.6. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Univariable Associations between Vitamin D Metabolites and Demographic Variables
3.3. Univariable Associations between Vitamin D Metabolites and Neonatal Outcomes
3.4. Multivariable Analyses of Vitamin D Metabolites and Neonatal Outcomes
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De-Regil, L.M.; Palacios, C.; Ansary, A.; Kulier, R.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. (Online) 2012, 2. [Google Scholar] [CrossRef] [Green Version]
- Karras, S.N.; Wagner, C.L.; Castracane, V.D. Understanding vitamin D metabolism in pregnancy: From physiology to pathophysiology and clinical outcomes. Metab. Clin. Exp. 2018, 86, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.Q.; Hewison, M. Vitamin D, the placenta and pregnancy. Arch. Biochem. Biophys. 2012, 523, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Tamblyn, J.A.; Hewison, M.; Wagner, C.L.; Bulmer, J.N.; Kilby, M.D. Immunological role of vitamin D at the maternal-fetal interface. J. Endocrinol. 2015, 224, R107–R121. [Google Scholar] [CrossRef] [Green Version]
- Karras, S.N.; Shah, I.; Petroczi, A.; Goulis, D.G.; Bili, H.; Papadopoulou, F.; Harizopoulou, V.; Tarlatzis, B.C.; Naughton, D.P. An observational study reveals that neonatal vitamin D is primarily determined by maternal contributions: Implications of a new assay on the roles of vitamin D forms. Nutr. J. 2013, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Markestad, T.; Elzouki, A.; Legnain, M.; Ulstein, M.; Aksnes, L. Serum concentrations of vitamin D metabolites in maternal and umbilical cord blood of libyan and norwegian women. Hum. Nutr. Clin. Nutr. 1984, 38, 55–62. [Google Scholar]
- Eyles, D.; Brown, J.; Mackay-Sim, A.; McGrath, J.; Feron, F. Vitamin D3 and brain development. Neuroscience 2003, 118, 641–653. [Google Scholar] [CrossRef]
- Hollis, B.W.; Wagner, C.L. Vitamin D supplementation during pregnancy: Improvements in birth outcomes and complications through direct genomic alteration. Mol. Cell. Endocrinol. 2017, 453, 113–130. [Google Scholar] [CrossRef]
- Bikle, D.D.; Malmstroem, S.; Schwartz, J. Current controversies: Are free vitamin metabolite levels a more accurate assessment of vitamin D status than total levels? Endocrinol. Metab. Clin. N. Am. 2017, 46, 901–918. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and extraskeletal actions of vitamin D: Current evidence and outstanding questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [Green Version]
- Tsuprykov, O.; Buse, C.; Skoblo, R.; Hocher, B. Comparison of free and total 25-hydroxyvitamin D in normal human pregnancy. J. Steroid Biochem. Mol. Biol. 2019, 190, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Tsuprykov, O.; Chen, X.; Hocher, C.F.; Skoblo, R.; Lianghong, Y.; Hocher, B. Why should we measure free 25(OH) vitamin D? J. Steroid Biochem. Mol. Biol. 2018, 180, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Gee, E.; Halloran, B.; Haddad, J.G. Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J. Clin. Investig. 1984, 74, 1966–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.J.; Ji, M.; Song, J.; Moon, H.W.; Hur, M.; Yun, Y.M. Clinical utility of measurement of vitamin D-binding protein and calculation of bioavailable vitamin D in assessment of vitamin D status. Ann. Lab. Med. 2017, 37, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.B.; Lai, J.; Lizaola, B.; Kane, L.; Markova, S.; Weyland, P.; Terrault, N.A.; Stotland, N.; Bikle, D. A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J. Clin. Endocrinol. Metab. 2014, 99, 1631–1637. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Schwartz, J. Vitamin D binding protein, total and free vitamin D levels in different physiological and pathophysiological conditions. Front. Endocrinol. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, J.B.; Gallagher, J.C.; Jorde, R.; Berg, V.; Walsh, J.; Eastell, R.; Evans, A.L.; Bowles, S.; Naylor, K.E.; Jones, K.S.; et al. Determination of free 25(OH)D concentrations and their relationships to total 25(OH)D in multiple clinical populations. J. Clin. Endocrinol. Metab. 2018, 103, 3278–3288. [Google Scholar] [CrossRef] [Green Version]
- Karras, S.N.; Koufakis, T.; Fakhoury, H.; Kotsa, K. Deconvoluting the biological roles of vitamin D-binding protein during pregnancy: A both clinical and theoretical challenge. Front. Endocrinol. 2018, 9, 259. [Google Scholar] [CrossRef]
- Chun, R.F.; Peercy, B.E.; Orwoll, E.S.; Nielson, C.M.; Adams, J.S.; Hewison, M. Vitamin D and DBP: The free hormone hypothesis revisited. J. Steroid Biochem. Mol. Biol. 2014, 144, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, J.B.; Lai, J.; Lizaola, B.; Kane, L.; Weyland, P.; Terrault, N.A.; Stotland, N.; Bikle, D. Variability in free 25(OH) vitamin D levels in clinical populations. J. Steroid Biochem. Mol. Biol. 2014, 144, 156–158. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, R.; Van Assche, F.A.; Van Baelen, H.; Heyns, W.; De Moor, P. Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3: Significance of the free 1,25-dihydroxyvitamin D3 concentration. J. Clin. Investig. 1981, 67, 589–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, C.M.; Pressman, E.K.; Queenan, R.A.; Cooper, E.; O’Brien, K.O. Longitudinal changes in serum vitamin D binding protein and free 25-hydroxyvitamin D in a multiracial cohort of pregnant adolescents. J. Steroid Biochem. Mol. Biol. 2019, 186, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D: Newer concepts of its metabolism and function at the basic and clinical level. J. Endocr. Soc. 2020, 4, bvz038. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.-K.; Shin, S.; Kim, M.Y.; Joung, H.; Chung, J. Effects of maternal genetic polymorphisms in vitamin D-binding protein and serum 25-hydroxyvitamin D concentration on infant birth weight. Nutrition (Burbank Los Angel. Cty. Calif.) 2017, 35, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.J.; Hansen, R.L.; Hartiala, J.; Allayee, H.; Sconberg, J.L.; Schmidt, L.C.; Volk, H.E.; Tassone, F. Selected vitamin D metabolic gene variants and risk for autism spectrum disorder in the charge study. Early Hum. Dev. 2015, 91, 483–489. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, I.M.; Joner, G.; Jenum, P.A.; Eskild, A.; Brunborg, C.; Torjesen, P.A.; Stene, L.C. Vitamin D-binding protein and 25-hydroxyvitamin D during pregnancy in mothers whose children later developed type 1 diabetes. Diabetes/Metab. Res. Rev. 2016, 32, 883–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, C.L.; Lombard, C.B.; Strauss, B.J.; Teede, H.J. Optimizing healthy gestational weight gain in women at high risk of gestational diabetes: A randomized controlled trial. Obesity 2013, 21, 904–909. [Google Scholar] [CrossRef]
- Teede, H.J.; Harrison, C.L.; Teh, W.T.; Paul, E.; Allan, C.A. Gestational diabetes: Development of an early risk prediction tool to facilitate opportunities for prevention. Aust. N. Z. J. Obstet. Gynaecol. 2011, 51, 499–504. [Google Scholar] [CrossRef] [PubMed]
- De Guingand, D.L.; Ellery, S.J.; Davies-Tuck, M.L.; Dickinson, H. Creatine and pregnancy outcomes, a prospective cohort study in low-risk pregnant women: Study protocol. Br. Med. J. 2019, 9, e026756. [Google Scholar] [CrossRef] [Green Version]
- Walker, S.; Nassar, N.; Fung, A. Screening in early pregnancy for adverse perinatal outcomes. R. Aust. N. Z. Coll. Obstet. Gynaecol. 2016, C-Obs 61, 2–17. [Google Scholar]
- Dobbins, T.A.; Sullivan, E.A.; Roberts, C.L.; Simpson, J.M. Australian national birthweight percentiles by sex and gestational age, 1998–2007. Med. J. Aust. 2012, 197, 291–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwirner, N.W. ELISA. In Imunología e Imunoquímica. 5th ed Buenos Aires: Editorial Médica Panamericana; Margni, R.A., Ed.; Editorial Médica Panamericana: Buenos Aires, Argentina, 1996; pp. 798–820. [Google Scholar]
- Bikle, D.; Bouillon, R.; Thadhani, R.; Schoenmakers, I. Vitamin D metabolites in captivity? Should we measure free or total 25(OH)D to assess vitamin D status? J. Steroid Biochem. Mol. Biol. 2017, 173, 105–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, H.; Zheng, M.; Wu, Y.; Zeng, T.; Fu, J.; Zeng, D. Maternal vitamin D deficiency increases the risk of adverse neonatal outcomes in the chinese population: A prospective cohort study. Public Libr. Sci. 2018, 13, e0195700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalessi, N.; Kalani, M.; Araghi, M.; Farahani, Z. The relationship between maternal vitamin D deficiency and low birth weight neonates. J. Fam. Reprod. Health 2015, 9, 113–117. [Google Scholar]
- Chen, Y.; Zhu, B.; Wu, X.; Li, S.; Tao, F. Association between maternal vitamin D deficiency and small for gestational age: Evidence from a meta-analysis of prospective cohort studies. Br. Med. J. 2017, 7, e016404. [Google Scholar] [CrossRef] [Green Version]
- Francis, E.C.; Hinkle, S.N.; Song, Y.; Rawal, S.; Donnelly, S.R.; Zhu, Y.; Chen, L.; Zhang, C. Longitudinal maternal vitamin D status during pregnancy is associated with neonatal anthropometric measures. Nutrients 2018, 10, 1631. [Google Scholar] [CrossRef] [Green Version]
- Prentice, A. Vitamin D deficiency: A global perspective. Nutr. Rev. 2008, 66, S153–S164. [Google Scholar] [CrossRef]
- Farrant, H.J.; Krishnaveni, G.V.; Hill, J.C.; Boucher, B.J.; Fisher, D.J.; Noonan, K.; Osmond, C.; Veena, S.R.; Fall, C.H. Vitamin D insufficiency is common in Indian mothers but is not associated with gestational diabetes or variation in newborn size. Eur. J. Clin. Nutr. 2009, 63, 646–652. [Google Scholar] [CrossRef] [Green Version]
- Morley, R.; Carlin, J.B.; Pasco, J.A.; Wark, J.D. Maternal 25-hydroxyvitamin D and parathyroid hormone concentrations and offspring birth size. J. Clin. Endocrinol. Metab. 2006, 91, 906–912. [Google Scholar] [CrossRef] [Green Version]
- De-Regil, L.M.; Palacios, C.; Lombardo, L.K.; Peña-Rosas, J.P. Vitamin D supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2016, Cd008873. [Google Scholar] [CrossRef] [Green Version]
- Pérez-López, F.R.; Pasupuleti, V.; Mezones-Holguin, E.; Benites-Zapata, V.A.; Thota, P.; Deshpande, A.; Hernandez, A.V. Effect of vitamin D supplementation during pregnancy on maternal and neonatal outcomes: A systematic review and meta-analysis of randomized controlled trials. Fertil. Steril. 2015, 103, 1278–1288.e4. [Google Scholar]
- Hossain, N.; Kanani, F.H.; Ramzan, S.; Kausar, R.; Ayaz, S.; Khanani, R.; Pal, L. Obstetric and neonatal outcomes of maternal vitamin D supplementation: Results of an open-label, randomized controlled trial of antenatal vitamin D supplementation in Pakistani women. J. Clin. Endocrinol. Metab. 2014, 99, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Roth, D.E.; Morris, S.K.; Zlotkin, S.; Gernand, A.D.; Ahmed, T.; Shanta, S.S.; Papp, E.; Korsiak, J.; Shi, J.; Islam, M.M.; et al. Vitamin D supplementation in pregnancy and lactation and infant growth. N. Engl. J. Med. 2018, 379, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Knabl, J.; Vattai, A.; Ye, Y.; Jueckstock, J.; Hutter, S.; Kainer, F.; Mahner, S.; Jeschke, U. Role of placental VDR expression and function in common late pregnancy disorders. Int. J. Mol. Sci. 2017, 18, 2340. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Gu, Y.; Zhao, S.; Sun, J.; Groome, L.J.; Wang, Y. Expressions of vitamin D metabolic components VDBP, CYP2R1, CYP27B1, CYP24A1, and VDR in placentas from normal and preeclamptic pregnancies. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E928–E935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boucher, B.J.; Mannan, N.; Noonan, K.; Hales, C.N.; Evans, S.J. Glucose intolerance and impairment of insulin secretion in relation to vitamin D deficiency in East London Asians. Diabetologia 1995, 38, 1239–1245. [Google Scholar] [CrossRef]
- Clark, S.A.; Stumpf, W.E.; Sar, M. Effect of 1,25 dihydroxyvitamin D3 on insulin secretion. Diabetes 1981, 30, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L. The insulin-like growth factors and feto-placental growth. Placenta 2003, 24, 803–812. [Google Scholar] [CrossRef]
- Luo, Q.; Jiang, Y.; Jin, M.; Xu, J.; Huang, H.-F. Proteomic analysis on the alteration of protein expression in the early-stage placental villous tissue of electromagnetic fields associated with cell phone exposure. Reprod. Sci. (Thousand Oaks Calif.) 2013, 20, 1055–1061. [Google Scholar] [CrossRef]
- Kolialexi, A.; Tsangaris, G.T.; Sifakis, S.; Gourgiotis, D.; Katsafadou, A.; Lykoudi, A.; Marmarinos, A.; Mavreli, D.; Pergialiotis, V.; Fexi, D.; et al. Plasma biomarkers for the identification of women at risk for early-onset preeclampsia. Expert Rev. Proteom. 2017, 14, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Wookey, A.F.; Chollangi, T.; Yong, H.E.J.; Kalionis, B.; Brennecke, S.P.; Murthi, P.; Georgiou, H.M. Placental vitamin D-binding protein expression in human idiopathic fetal growth restriction. J. Pregnancy 2017, 2017, 5120267. [Google Scholar] [CrossRef] [PubMed]
- Mehrpisheh, S.; Memarian, A.; Mahyar, A.; Valiahdi, N.S. Correlation between serum vitamin D level and neonatal indirect hyperbilirubinemia. BioMed Cent. Pediatr. 2018, 18, 178. [Google Scholar] [CrossRef] [PubMed]
- Aletayeb, S.M.; Dehdashtiyan, M.; Aminzadeh, M.; Malekyan, A.; Jafrasteh, S. Comparison between maternal and neonatal serum vitamin D levels in term jaundiced and nonjaundiced cases. J. Chin. Med. Assoc. 2016, 79, 614–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maisels, M.J. Neonatal jaundice. Pediatr. Rev. 2006, 27, 443–454. [Google Scholar] [CrossRef]
- Pereira, L.; Reddy, A.P.; Jacob, T.; Thomas, A.; Schneider, K.A.; Dasari, S.; Lapidus, J.A.; Lu, X.; Rodland, M.; Roberts, C.T., Jr.; et al. Identification of novel protein biomarkers of preterm birth in human cervical-vaginal fluid. J. Proteome Res. 2007, 6, 1269–1276. [Google Scholar] [CrossRef]
- Liong, S.; Di Quinzio, M.K.W.; Fleming, G.; Permezel, M.; Rice, G.E.; Georgiou, H.M. New biomarkers for the prediction of spontaneous preterm labour in symptomatic pregnant women: A comparison with fetal fibronectin. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 370–379. [Google Scholar] [CrossRef]
- Liong, S.; Di Quinzio, M.K.W.; Heng, Y.J.; Fleming, G.; Permezel, M.; Rice, G.E.; Georgiou, H.M. Proteomic analysis of human cervicovaginal fluid collected before preterm premature rupture of the fetal membranes. Reproduction (Camb. Engl.) 2013, 145, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Best, C.M.; Pressman, E.K.; Queenan, R.A.; Cooper, E.; Vermeylen, F.; O’Brien, K.O. Gestational age and maternal serum 25-hydroxyvitamin d concentration interact to affect the 24,25-dihydroxyvitamin D concentration in pregnant adolescents. J. Nutr. 2018, 148, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Nielson, C.M.; Jones, K.S.; Chun, R.F.; Jacobs, J.M.; Wang, Y.; Hewison, M.; Adams, J.S.; Swanson, C.M.; Lee, C.G.; Vanderschueren, D.; et al. Free 25-hydroxyvitamin D: Impact of vitamin D binding protein assays on racial-genotypic associations. J. Clin. Endocrinol. Metab. 2016, 101, 2226–2234. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics. Cultural diversity in Australia: 2016 Census data summary. 2017. Available online: https://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/2071.0~2016~Main%20Features~Cultural%20Diversity%20Data%20Summary~30 (accessed on 12 May 2020).
- Christensen, M.H.E.; Scragg, R.K. Consistent ethnic specific differences in diabetes risk and vitamin D status in the national health and nutrition examination surveys. J. Steroid Biochem. Mol. Biol. 2016, 164, 4–10. [Google Scholar] [CrossRef] [PubMed]
Variable | n | Mean ± SD or n (%) |
---|---|---|
Maternal age (years) | 301 | 31.4 ± 4.2 |
Parity | 289 | |
Primiparous | 133 (46.0) | |
2 | 106 (36.7) | |
3 | 39 (13.5) | |
4 | 11 (3.8) | |
Ethnicity | 303 | |
Caucasian | 174 (57.4) | |
South East and North East Asian | 37 (12.2) | |
Southern and Central Asian | 69 (22.8) | |
Other 1 | 23 (7.6) | |
Past history of GDM | 304 | 13 (4.3) |
Smoker | 304 | 3 (1) |
BMI (kg/m2) | 293 | 26.8 ± 5.9 |
Gestational weight gain (kg, at 28 weeks) | 255 | 7.4 ± 3.6 |
Vitamin D metabolites | ||
Total 25(OH)D (nmol/L) | 297 | 54.8 ± 20.2 |
Free 25(OH)D (pg/mL) | 291 | 5.6 ± 4.7 |
Bioavailable 25(OH)D (nmol/L) | 291 | 4.4 ± 3.1 |
VDBP (µg/mL) | 298 | 364.7 ± 126.1 |
Albumin (g/L) | 302 | 36.9 ± 4.1 |
Variable | Mean ± SD or n (%) |
---|---|
Gestation at delivery (weeks) | 39.1 ± 2.0 |
Preterm birth | 16 (5.4) |
Birth trauma | 4 (1.3) |
Mode of birth | |
Normal vaginal birth | 161 (54.8) |
Instrumental birth | 58 (19.7) |
Caesarean section | 75 (25.5) |
Neonatal anthropometry | |
Large for gestational age (>90%) | 28 (9.6) |
Small for gestational age (<10%) | 25 (8.6) |
Very small for gestational age (<3%) | 7 (2.4) |
Head circumference (cm) | 34.6 ± 2.1 |
Birthweight (g) | 3360.6 ± 554.0 |
Neonatal sex | |
Male | 154 (52.6) |
Female | 139 (47.4) |
APGARs | |
Apgar 1 score (1 min after birth) | 8.3 ± 1.5 |
Apgar 5 score (5 min after birth) | 8.8 ± 1.0 |
Shoulder dystocia | 8 (2.7) |
Jaundice | 34 (11.4) |
Neonatal hypoglycaemia | 10 (3.4) |
SCN/NICU admissions | 51 (17.3) |
Variable | VDBP | Total 25(OH)D | Free 25(OH)D | Bioavailable 25(OH)D | ||||
---|---|---|---|---|---|---|---|---|
β or OR (95%CI) | p | β or OR (95%CI) | p * | β or OR (95%CI) | p * | β or OR (95%CI) | p * | |
Birthweight | 0.11 (−0.40, 0.62) | 0.7 | 5.05 (1.90, 8.19) | 0.002 | 18.06 (4.50, 31.6) | 0.02 | 24.78 (4.10, 45.45) | 0.08 |
Jaundice | 0.997 (0.994, 1.000) | 0.04 | 0.98 (0.96, 0.99) | 0.03 | 0.99 (0.91, 1.10) | 0.8 | 1.00 (0.89, 1.13) | 0.9 |
Head Circumference | −0.001 (−0.003, 0.001) | 0.4 | 0.008 (−0.006, 0.02) | 0.2 | 0.05 (−0.004, 0.10) | 0.09 | 0.08 (−0.009, 0.16) | 0.1 |
SGA (<10%) | 1.00 (0.99, 1.00) | 0.8 | 0.99 (0.97, 1.02) | 0.5 | 0.97 (0.85, 1.10) | 0.6 | 0. 0.97 (0.82, 1.14) | 0.7 |
LGA (>90%) | 1.00 (0.99, 1.00) | 0.9 | 1.01 (0.99, 1.03) | 0.4 | 1.02 (0.96, 1.10) | 0.5 | 1.05 (0.95, 1.16) | 0.5 |
Neonatal hypoglycaemia | 1.00 (0.99, 1.00) | 0.5 | 1.01 (0.98, 1.04) | 0.9 | 0.95 (0.77, 1.18) | 0.6 | 0.95 (0.72, 1.24) | 0.7 |
Dependent Variable | Model | VDBP | Total 25(OH)D | Free 25(OH)D | Bioavailable 25(OH)D | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SE | R2 | p | β | SE | R2 | p | β | SE | R2 | p | β | SE | R2 | p | ||
Birthweight | + age | 0.10 | 0.27 | 0.001 | 0.7 | 5.15 | 1.60 | 0.03 | 0.003 | 18.80 | 6.97 | 0.03 | 0.01 | 26.68 | 10.74 | 0.02 | 0.06 |
+ BMI | 0.12 | 0.27 | 0.01 | 0.7 | 7.01 | 1.74 | 0.07 | <0.001 | 20.72 | 7.05 | 0.04 | 0.004 | 22.28 | 10.88 | 0.04 | 0.02 | |
+ ethnicity | 0.15 | 0.26 | 0.07 | 0.6 | 5.36 | 1.78 | 0.10 | 0.004 | 16.96 | 6.95 | 0.09 | 0.04 | 22.02 | 10.81 | 0.08 | 0.1 | |
Jaundice | + age | −0.003 | 0.002 | 0.02 | 0.07 | −0.02 | 0.01 | 0.03 | 0.02 | −0.02 | 0.05 | 0.01 | 0.5 | −0.02 | 0.07 | 0.01 | 0.6 |
+ BMI | −0.003 | 0.002 | 0.03 | 0.1 | −0.02 | 0.01 | 0.04 | 0.05 | −0.01 | 0.05 | 0.03 | 0.6 | −0.01 | 0.07 | 0.03 | 0.7 | |
+ ethnicity | −0.003 | 0.002 | 0.04 | 0.09 | −0.02 | 0.01 | 0.05 | 0.09 | −0.001 | 0.05 | 0.03 | 0.9 | 0.004 | 0.06 | 0.03 | 0.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, M.; Coster, T.G.; Ellery, S.J.; Guingand, D.d.; Lim, S.; Harrison, C.L.; Teede, H.J.; Naderpoor, N.; Mousa, A. Relationships between Total, Free and Bioavailable Vitamin D and Vitamin D Binding Protein in Early Pregnancy with Neonatal Outcomes: A Retrospective Cohort Study. Nutrients 2020, 12, 2495. https://doi.org/10.3390/nu12092495
Fernando M, Coster TG, Ellery SJ, Guingand Dd, Lim S, Harrison CL, Teede HJ, Naderpoor N, Mousa A. Relationships between Total, Free and Bioavailable Vitamin D and Vitamin D Binding Protein in Early Pregnancy with Neonatal Outcomes: A Retrospective Cohort Study. Nutrients. 2020; 12(9):2495. https://doi.org/10.3390/nu12092495
Chicago/Turabian StyleFernando, Melinda, Thisara G. Coster, Stacey J. Ellery, Deborah de Guingand, Siew Lim, Cheryce L. Harrison, Helena J. Teede, Negar Naderpoor, and Aya Mousa. 2020. "Relationships between Total, Free and Bioavailable Vitamin D and Vitamin D Binding Protein in Early Pregnancy with Neonatal Outcomes: A Retrospective Cohort Study" Nutrients 12, no. 9: 2495. https://doi.org/10.3390/nu12092495
APA StyleFernando, M., Coster, T. G., Ellery, S. J., Guingand, D. d., Lim, S., Harrison, C. L., Teede, H. J., Naderpoor, N., & Mousa, A. (2020). Relationships between Total, Free and Bioavailable Vitamin D and Vitamin D Binding Protein in Early Pregnancy with Neonatal Outcomes: A Retrospective Cohort Study. Nutrients, 12(9), 2495. https://doi.org/10.3390/nu12092495