Prevalence of Vitamin D Deficiency in a Large Newborn Cohort from Northern United States and Effect of Intrauterine Drug Exposure
Abstract
1. Introduction
2. Materials and Methods
3. Statistical Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mohamed Hegazy, A.; Mohamed Shinkar, D.; Refaat Mohamed, N.; Abdalla Gaber, H. Association between serum 25 (OH) vitamin D level at birth and respiratory morbidities among preterm neonates. J. Matern. Fetal Neonatal Med. 2018, 31, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.A., Jr.; Rifas-Shiman, S.L.; Litonjua, A.A.; Rich-Edwards, J.W.; Weiss, S.T.; Gold, D.R.; Kleinman, K.; Gillman, M.W. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am. J. Clin. Nutr. 2007, 85, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.A., Jr.; Ingham, T.; Wickens, K.; Thadhani, R.; Silvers, K.M.; Epton, M.J.; Town, G.I.; Pattemore, P.K.; Espinola, J.A.; Crane, J.; et al. Cord-blood 25-hydroxyvitamin D levels and risk of respiratory infection, wheezing, and asthma. Pediatrics 2011, 127, e180–e187. [Google Scholar] [CrossRef] [PubMed]
- Stene, L.C.; Joner, G.; Norwegian Childhood Diabetes Study, G. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: A large, population-based, case-control study. Am. J. Clin. Nutr. 2003, 78, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, I.M.; Joner, G.; Jenum, P.A.; Eskild, A.; Torjesen, P.A.; Stene, L.C. Maternal serum levels of 25-hydroxy-vitamin D during pregnancy and risk of type 1 diabetes in the offspring. Diabetes 2012, 61, 175–178. [Google Scholar] [CrossRef]
- McGrath, J.; Saari, K.; Hakko, H.; Jokelainen, J.; Jones, P.; Jarvelin, M.R.; Chant, D.; Isohanni, M. Vitamin D supplementation during the first year of life and risk of schizophrenia: A Finnish birth cohort study. Schizophr. Res. 2004, 67, 237–245. [Google Scholar] [CrossRef]
- Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.J.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; White, T.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Gestational vitamin D deficiency and autism spectrum disorder. BJPsych. Open 2017, 3, 85–90. [Google Scholar] [CrossRef]
- Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.J.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Gestational vitamin D deficiency and autism-related traits: The Generation R Study. Mol. Psychiatry 2018, 23, 240–246. [Google Scholar] [CrossRef]
- Kovacs, C.S. Vitamin D in pregnancy and lactation: Maternal, fetal, and neonatal outcomes from human and animal studies. Am. J. Clin. Nutr. 2008, 88, 520S–528S. [Google Scholar] [CrossRef]
- Hollis, B.W.; Pittard, W.B., 3rd. Evaluation of the total fetomaternal vitamin D relationships at term: Evidence for racial differences. J. Clin. Endocrinol. Metab. 1984, 59, 652–657. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [CrossRef]
- Specker, B.L. Do North American women need supplemental vitamin D during pregnancy or lactation? Am. J. Clin. Nutr. 1994, 59, 484S–491S, discussion 490S–491S. [Google Scholar] [CrossRef]
- Aghajafari, F.; Nagulesapillai, T.; Ronksley, P.E.; Tough, S.C.; O’Beirne, M.; Rabi, D.M. Association between maternal serum 25-hydroxyvitamin D level and pregnancy and neonatal outcomes: Systematic review and meta-analysis of observational studies. BMJ 2013, 346, f1169. [Google Scholar] [CrossRef]
- Bodnar, L.M.; Simhan, H.N.; Powers, R.W.; Frank, M.P.; Cooperstein, E.; Roberts, J.M. High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J. Nutr. 2007, 137, 447–452. [Google Scholar] [CrossRef]
- Johnson, D.D.; Wagner, C.L.; Hulsey, T.C.; McNeil, R.B.; Ebeling, M.; Hollis, B.W. Vitamin D deficiency and insufficiency is common during pregnancy. Am. J. Perinatol. 2011, 28, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Rudd, R.A.; Aleshire, N.; Zibbell, J.E.; Gladden, R.M. Increases in Drug and Opioid Overdose Deaths--United States, 2000-2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 64, 1378–1382. [Google Scholar] [CrossRef]
- Rudd, R.A.; Seth, P.; David, F.; Scholl, L. Increases in Drug and Opioid-Involved Overdose Deaths - United States, 2010-2015. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 1445–1452. [Google Scholar] [CrossRef]
- Shipton, E.A.; Shipton, E.E.; Shipton, A.J. A Review of the Opioid Epidemic: What Do We Do About It? Pain. Ther. 2018, 7, 23–36. [Google Scholar] [CrossRef]
- Jeynes, K.D.; Gibson, E.L. The importance of nutrition in aiding recovery from substance use disorders: A review. Drug Alcohol. Depend. 2017, 179, 229–239. [Google Scholar] [CrossRef]
- Maeda, A.; Bateman, B.T.; Clancy, C.R.; Creanga, A.A.; Leffert, L.R. Opioid abuse and dependence during pregnancy: Temporal trends and obstetrical outcomes. Anesthesiology 2014, 121, 1158–1165. [Google Scholar] [CrossRef]
- Abdel-Latif, M.E.; Oei, J.; Craig, F.; Lui, K.; NSW; ACT NAS Epidemiology Group. Profile of infants born to drug-using mothers: A state-wide audit. J. Paediatr. Child Health 2013, 49, E80–E86. [Google Scholar] [CrossRef]
- Fang, S.Y.; Huang, N.; Tsay, J.H.; Chang, S.H.; Chen, C.Y. Excess mortality in children born to opioid-addicted parents: A national register study in Taiwan. Drug Alcohol. Depend. 2018, 183, 118–126. [Google Scholar] [CrossRef]
- Holick, M.F. 25-OH-vitamin D assays. J. Clin. Endocrinol. Metab. 2005, 90, 3128–3129. [Google Scholar] [CrossRef][Green Version]
- Holick, M.F. Resurrection of vitamin D deficiency and rickets. J. Clin. Investig. 2006, 116, 2062–2072. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M.; Endocrine, S. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed]
- Wharton, B.; Bishop, N. Rickets. Lancet 2003, 362, 1389–1400. [Google Scholar] [CrossRef]
- Zeghoud, F.; Vervel, C.; Guillozo, H.; Walrant-Debray, O.; Boutignon, H.; Garabedian, M. Subclinical vitamin D deficiency in neonates: Definition and response to vitamin D supplements. Am. J. Clin. Nutr. 1997, 65, 771–778. [Google Scholar] [CrossRef]
- Wagner, C.L.; Greer, F.R.; American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef]
- Markestad, T.; Halvorsen, S.; Halvorsen, K.S.; Aksnes, L.; Aarskog, D. Plasma concentrations of vitamin D metabolites before and during treatment of vitamin D deficiency rickets in children. Acta Paediatr. Scand. 1984, 73, 225–231. [Google Scholar] [CrossRef]
- Pettifor, J.M. Rickets and vitamin D deficiency in children and adolescents. Endocrinol. Metab. Clin. North Am. 2005, 34, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Harrison, H.E. A tribute to the first lady of public health (Martha M. Eliot). V. The disappearance of rickets. Am. J. Public Health Nations Health 1966, 56, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Calvo, M.S.; Whiting, S.J. Prevalence of vitamin D insufficiency in Canada and the United States: Importance to health status and efficacy of current food fortification and dietary supplement use. Nutr. Rev. 2003, 61, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Hanley, D.A.; Davison, K.S. Vitamin D insufficiency in North America. J. Nutr. 2005, 135, 332–337. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D: A millenium perspective. J. Cell Biochem. 2003, 88, 296–307. [Google Scholar] [CrossRef]
- Holick, M.F. The vitamin D epidemic and its health consequences. J. Nutr. 2005, 135, 2739S–2748S. [Google Scholar] [CrossRef]
- Kumar, J.; Muntner, P.; Kaskel, F.J.; Hailpern, S.M.; Melamed, M.L. Prevalence and associations of 25-hydroxyvitamin D deficiency in US children: NHANES 2001-2004. Pediatrics 2009, 124, e362–e370. [Google Scholar] [CrossRef]
- Sachan, A.; Gupta, R.; Das, V.; Agarwal, A.; Awasthi, P.K.; Bhatia, V. High prevalence of vitamin D deficiency among pregnant women and their newborns in northern India. Am. J. Clin. Nutr. 2005, 81, 1060–1064. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Gao, J.; Liu, N.; Yu, S.; Qiu, L.; Wang, D. Maternal factors associated with neonatal vitamin D deficiency. J. Pediatr. Endocrinol. Metab. 2019, 32, 167–172. [Google Scholar] [CrossRef]
- Merewood, A.; Mehta, S.D.; Grossman, X.; Chen, T.C.; Mathieu, J.S.; Holick, M.F.; Bauchner, H. Widespread vitamin D deficiency in urban Massachusetts newborns and their mothers. Pediatrics 2010, 125, 640–647. [Google Scholar] [CrossRef]
- Lee, J.M.; Smith, J.R.; Philipp, B.L.; Chen, T.C.; Mathieu, J.; Holick, M.F. Vitamin D deficiency in a healthy group of mothers and newborn infants. Clin. Pediatr. (Phila) 2007, 46, 42–44. [Google Scholar] [CrossRef]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Makitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J. Clin. Endocrinol. Metab. 2016, 101, 394–415. [Google Scholar] [CrossRef] [PubMed]
- Rostami, M.; Tehrani, F.R.; Simbar, M.; Bidhendi Yarandi, R.; Minooee, S.; Hollis, B.W.; Hosseinpanah, F. Effectiveness of Prenatal Vitamin D Deficiency Screening and Treatment Program: A Stratified Randomized Field Trial. J. Clin. Endocrinol. Metab. 2018, 103, 2936–2948. [Google Scholar] [CrossRef] [PubMed]
- Backstrom, M.C.; Maki, R.; Kuusela, A.L.; Sievanen, H.; Koivisto, A.M.; Ikonen, R.S.; Kouri, T.; Maki, M. Randomised controlled trial of vitamin D supplementation on bone density and biochemical indices in preterm infants. Arch. Dis. Child. Fetal. Neonatal. Ed. 1999, 80, F161–F166. [Google Scholar] [CrossRef] [PubMed]
- Delmas, P.D.; Glorieux, F.H.; Delvin, E.E.; Salle, B.L.; Melki, I. Perinatal serum bone Gla-protein and vitamin D metabolites in preterm and fullterm neonates. J. Clin. Endocrinol. Metab. 1987, 65, 588–591. [Google Scholar] [CrossRef]
- Salle, B.L.; Glorieux, F.H.; Delvin, E.E.; David, L.S.; Meunier, G. Vitamin D metabolism in preterm infants. Serial serum calcitriol values during the first four days of life. Acta Paediatr Scand 1983, 72, 203–206. [Google Scholar] [CrossRef]
- Dawodu, A.; Nath, R. High prevalence of moderately severe vitamin D deficiency in preterm infants. Pediatr. Int. 2011, 53, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.H.; Van Marter, L.J.; McElrath, T.F.; Tabatabai, P.; Litonjua, A.A.; Weiss, S.T.; Christou, H. Vitamin D status among preterm and full-term infants at birth. Pediatr. Res. 2014, 75, 75–80. [Google Scholar] [CrossRef]
- Morgan, C.; Dodds, L.; Langille, D.B.; Weiler, H.A.; Armson, B.A.; Forest, J.C.; Giguere, Y.; Woolcott, C.G. Cord blood vitamin D status and neonatal outcomes in a birth cohort in Quebec, Canada. Arch. Gynecol. Obstet. 2016, 293, 731–738. [Google Scholar] [CrossRef]
- Sethi, A.; Kochar, I.; Vij, V. Prevalence of Vitamin D deficiency in cord blood. J. Clin. Neonatol. 2019, 8. [Google Scholar] [CrossRef]
- Vinkhuyzen, A.A.E.; Eyles, D.W.; Burne, T.H.; Blanken, L.M.E.; Kruithof, C.J.; Verhulst, F.; Jaddoe, V.W.; Tiemeier, H.; McGrath, J.J. Prevalence and predictors of vitamin D deficiency based on maternal mid-gestation and neonatal cord bloods: The Generation R Study. J. Steroid. Biochem. Mol. Biol. 2016, 164, 161–167. [Google Scholar] [CrossRef]
Variables | Number (%) Total: 1517 |
---|---|
Gestational Age, Median (Min, Max) | 36(30,42) |
Gestational age | |
Term (≥37 weeks) | 685(45) |
Preterm (<37 weeks) | 832(55) |
Groups Based on Birth Gestation | |
Early Preterm (<34 weeks) | 335(22) |
Late Preterm (34–36 weeks) | 497(33) |
Term (≥37 weeks) | 685(45) |
Gender | |
Male | 830(55) |
Ethnicity | |
Caucasian | 692(46) |
African American | 626(41) |
Birth Weight, Median (Min, Max) | 2559(1500,4561) |
Size | |
SGA—Small for Gestational Age | 185(12) |
AGA—Appropriate for Gestational Age | 1191(79) |
LGA—Large for Gestational Age | 97(6) |
Vitamin D Level, Median (Min, Max) | 19(3,223) |
Vitamin D Level, 25[OH]D | |
Deficiency (<15 ng/mL) | 476(31) |
Insufficiency (15–30 ng/mL) | 747(49) |
Sufficiency (31–100 ng/mL) | 288(19) |
Toxicity (>100 ng/mL) | 4(0.3) |
Alkaline Phosphatase Level Available | 489(32) |
Alkaline Phosphatase Level, Median (Min, Max) | 175(22,697) |
Maternal Drug Exposure | 471(31) |
Opiate | 210(14) |
Marijuana | 156(10) |
Cocaine | 65(4) |
Benzodiazepine | 10(0.7) |
Polydrug Use | 133(28) |
Prenatal Vitamin | 1133(75) |
Mothers with Vitamin D Level | 52(4) |
Mother’s 25[OH]D level, Median (Min, Max) | 18(4,64) |
Mother’s Vitamin D Level, 25[OH]D | |
Deficiency (<15 ng/mL) | 20(38) |
Insufficiency (15–30 ng/mL) | 23(44) |
Sufficiency (31–100 ng/mL) | 9(17) |
Variable, N (%) | Deficiency (N = 476) | Insufficiency (N = 747) | Sufficiency (N = 288) | Toxicity (N = 4) |
---|---|---|---|---|
Gender: Male | 252 (53) | 421 (51) | 154 (19) | 2 (0.2) |
Ethnicity: | ||||
Caucasian | 130 (27) | 366 (53) | 192 (28) | 3 (0.4) |
African American | 302 (63) | 258 (41) | 64 (10) | 1 (0.2) |
Birth Gestation: | ||||
Early Preterm (<34 w) | 107 (32) | 178 (53) | 50 (15) | 0 (0) |
Late Preterm (34–36 w) | 155 (31) | 251 (51) | 89 (18) | 1 (0.2) |
Term (≥37 w) | 214 (31) | 318 (46) | 149 (22) | 3 (0.4) |
Mother’s BMI, Median (Q1, Q3) | 30 (24,39) | 27 (23,33) | 28 (25,33) | 28 (28,28) |
Prenatal Vitamin | 361 (76) | 540 (72) | 228 (79) | 3 (75) |
Mother’s Vitamin D Level Median (Q1, Q3) | 9 (9,15) | 22 (15,29) | 25 (20,31) | ---- |
Mothers Drug Exposure | 113 (24) | 210 (28) | 143 (50) | 3 (75) |
Opiate | 47 (42) | 99 (47) | 62 (43) | 2 (66) |
Marijuana | 60 (53) | 77 (37) | 18 (13) | 0 (0) |
Cocaine | 16 (14) | 37 (18) | 12 (8) | 0 (0) |
Benzodiazepine | 3 (3) | 5 (2) | 2 (1) | 0 (0) |
Gestational Age Group | Intrauterine Illicit Drug Exposure | Number of Subjects | Vitamin D Level (ng/mL) Median (P25, P75) | p Value |
---|---|---|---|---|
All Neonates | Yes | 469 | 22.9 (15, 33.2) | <0.001 |
No | 1045 | 17.8 (13, 24.7) | ||
Term Neonates (≥37 weeks) | Yes | 234 | 25.5 (15.9, 35) | <0.001 |
No | 449 | 16.8 (12.4, 24) | ||
Late Preterm (34–36 weeks) | Yes | 151 | 21 (14,33) | 0.010 |
No | 345 | 18.5 (13.7, 24.8) | ||
Early Preterm (<34 weeks) | Yes | 84 | 19.7 (14.1, 29) | 0.22 |
No | 251 | 18.6 (13.3, 25.4) |
Characteristics | N | Spearman Correlation Coefficient | 95% CI | p Value |
---|---|---|---|---|
Neonate Alkaline Phosphatase | 489 | −0.13 | (−0.22,−0.04) | 0.003 |
Birth Weight | 1515 | 0 | (−0.05,0.05) | 0.98 |
Gestational Age | 1515 | 0.02 | (−0.04,0.07) | 0.55 |
Maternal Vitamin D Level | 52 | 0.64 | (0.42,0.86) | <0.001 |
Maternal BMI | 232 | −0.03 | (−0.16,0.10) | 0.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanike, N.; Hospattankar, K.G.; Sharma, A.; Worley, S.; Groh-Wargo, S. Prevalence of Vitamin D Deficiency in a Large Newborn Cohort from Northern United States and Effect of Intrauterine Drug Exposure. Nutrients 2020, 12, 2085. https://doi.org/10.3390/nu12072085
Kanike N, Hospattankar KG, Sharma A, Worley S, Groh-Wargo S. Prevalence of Vitamin D Deficiency in a Large Newborn Cohort from Northern United States and Effect of Intrauterine Drug Exposure. Nutrients. 2020; 12(7):2085. https://doi.org/10.3390/nu12072085
Chicago/Turabian StyleKanike, Neelakanta, Krupa Gowri Hospattankar, Amit Sharma, Sarah Worley, and Sharon Groh-Wargo. 2020. "Prevalence of Vitamin D Deficiency in a Large Newborn Cohort from Northern United States and Effect of Intrauterine Drug Exposure" Nutrients 12, no. 7: 2085. https://doi.org/10.3390/nu12072085
APA StyleKanike, N., Hospattankar, K. G., Sharma, A., Worley, S., & Groh-Wargo, S. (2020). Prevalence of Vitamin D Deficiency in a Large Newborn Cohort from Northern United States and Effect of Intrauterine Drug Exposure. Nutrients, 12(7), 2085. https://doi.org/10.3390/nu12072085