The Influence of Nutritional and Lifestyle Factors on Glioma Incidence
Abstract
1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Nutritional Factors
3.1.1. Alcohol Consumption
3.1.2. Tea and Coffee
3.1.3. Fruits and Vegetables
3.1.4. Fish Intake
3.1.5. Red Meat and N-Nitroso Compounds
3.1.6. Antioxidants
4. Lifestyle Factors
4.1. Anthropometric Indicators
4.2. Physical Activity
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca. Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Goodenberger, M.L.; Jenkins, R.B. Genetics of adult glioma. Cancer Genet. 2012, 205, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, A.M.; Taylor, J.W.; Wiencke, J.K.; Wrensch, M.R. Genetic and molecular epidemiology of adult diffuse glioma. Nat. Rev. Neurol. 2019, 15, 405–417. [Google Scholar] [CrossRef]
- Pisapia, D.J. The Updated World Health Organization Glioma Classification: Cellular and Molecular Origins of Adult Infiltrating Gliomas. Arch. Pathol. Lab. Med. 2017, 141, 1633–1645. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Tonn, J.C.; Stupp, R.; Preusser, M.; Cohen-Jonathan-Moyal, E.; Henriksson, R.; Le Rhun, E.; Balana, C.; Chinot, O.; et al. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 2017, 18, 315–329. [Google Scholar] [CrossRef]
- World Cancer Research Found/American Institute for Cancer Research. Diet, nutrition, physical activity and cancer: a global perspective. Continuous update project expert report. Available online: http://dietandcancerreport.org (accessed on 21 December 2019).
- Harper, C. The neuropathology of alcohol-specific brain damage, or does alcohol damage the brain? J. Neuropathol. Exp. Neurol. 1998, 57, 101–110. [Google Scholar] [CrossRef]
- Cogliano, V.J.; Baan, R.; Straif, K.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; et al. Preventable exposures associated with human cancers. J. Natl. Cancer Inst. 2011, 103, 1827–1839. [Google Scholar] [CrossRef]
- Schwedhelm, C.; Boeing, H.; Hoffmann, G.; Aleksandrova, K.; Schwingshackl, L. Effect of diet on mortality and cancer recurrence among cancer survivors: a systematic review and meta-analysis of cohort studies. Nutr. Rev. 2016, 74, 737–748. [Google Scholar] [CrossRef]
- Qi, Z.Y.; Shao, C.; Yang, C.; Wang, Z.; Hui, G.Z. Alcohol consumption and risk of glioma: a meta-analysis of 19 observational studies. Nutrients 2014, 6, 504–516. [Google Scholar] [CrossRef]
- Allès, B.; Pouchieu, C.; Gruber, A.; Lebailly, P.; Loiseau, H.; Fabbro-Peray, P.; Letenneur, L.; Baldi, I. Dietary and alcohol intake and central nervous system tumors in adults: results of the CERENAT multicenter case-control study. Neuroepidemiology 2016, 47, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Kuan, A.S.; Green, J.; Kitahara, C.M.; Key, T.; Reeves, G.K.; Floud, S.; Balkwill, A.; Bradbury, K.; Liao, L.M.; Freedman, N.D.; et al. Diet and risk of glioma: combined analysis of 3 large prospective studies in the UK and USA. Neuro Oncol. 2019, 21, 944–952. [Google Scholar] [CrossRef] [PubMed]
- Ratna, A.; Mandrekar, P. Alcohol and Cancer: Mechanisms and Therapies. Biomolecules 2017, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Poole, R.; Kennedy, O.J.; Roderick, P.; Fallowfield, J.A.; Hayes, P.C.; Parkes, J. Coffee consumption and health: umbrella review of meta-analyses of multiple health outcomes. BMJ 2017, 359, 5024. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.W.; Scharf, G.; Nagel, G.; Prustomersky, S.; Schulte-Hermann, R.; Kaina, B. Coffee and its chemopreventive components Kahweol and Cafestol increase the activity of O6-methylguanine-DNA methyltransferase in rat liver–comparison with phase II xenobiotic metabolism. Mutat Res. 2003, 522, 57–68. [Google Scholar] [CrossRef]
- Shirakami, Y.; Shimizu, M. Possible mechanisms of green tea and its constituents against cancer. Molecules 2018, 23, 2284. [Google Scholar] [CrossRef] [PubMed]
- Le, C.T.; Leenders, W.; Molenaar, R.; Cornelis, N. Effects of the green tea polyphenol epigallocatechin-3-gallate on glioma: a critical evaluation of the literature. Nutr. Cancer 2018, 70, 1–17. [Google Scholar]
- Malerba, S.; Galeone, C.; Pelucchi, C.; Turati, F.; Hashibe, M.; La Vecchia, C.; Tavani, A. A meta-analysis of coffee and tea consumption and the risk of glioma in adults. Cancer Causes Control 2013, 24, 267–276. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Z.; Jin, Y.; Guo, J. Association between tea and coffee consumption and brain cancer risk: an updated meta-analysis. World J. Surg. Oncol. 2019, 17, 51–59. [Google Scholar] [CrossRef]
- Cote, D.J.; Bever, A.M.; Wilson, K.M.; Smith, T.R.; Smith-Warner, S.A.; Stampfer, M.J. A prospective study of tea and coffee intake and risk of glioma. Int. J. Cancer 2020, 146, 2442–2449. [Google Scholar] [CrossRef]
- Kang, S.S.; Han, K.S.; Ku, B.M.; Lee, Y.K.; Hong, J.; Shin, H.Y.; Almonte, A.G.; Woo, D.H.; Brat, D.J.; Hwang, E.M.; et al. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival. Cancer Res. 2010, 70, 1173–1183. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef] [PubMed]
- Ying, B.S. Association between fruit and vegetable intake and risk for glioma: a meta-analysis. Nutrition 2014, 30, 1272–1278. [Google Scholar]
- Holick, C.N.; Giovannucci, E.L.; Rosner, B.; Stampfer, M.J.; Michaud, D.S. Prospective study of intake of fruit, vegetables, and carotenoids and the risk of adult glioma. Am. J. Clin. Nutr. 2007, 85, 877–886. [Google Scholar] [CrossRef]
- Terry, M.B.; Howe, G.; Pogoda, J.M.; Zhang, F.F.; Ahlbom, A.; Choi, B.; Giles, G.G.; Little, J.; Lubin, F.; Menegoz, F.; et al. An international case-control study of adult diet and brain tumor risk: A histology-specific analysis by food group. Ann. Epidemiol. 2009, 19, 161–171. [Google Scholar] [CrossRef]
- McCullough, M.L.; Giovannucci, E.L. Diet and cancer prevention. Oncogene 2004, 23, 6349–6364. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar]
- Lian, W.; Wang, R.; Xing, B.; Yao, Y. Fish intake and the risk of brain tumor: A meta-analysis with systematic review. Nutr. J. 2017, 16, 1. [Google Scholar] [CrossRef]
- Dadfarma, A.; Shayanfar, M.; Benisi-Kohansal, S.; Mohammad-Shirazi, M.; Sharifi, G.; Hosseini, G.; Esmaillzadeh, A. Dietary polyunsaturated fat intake in relation to glioma: a case-control study. Nutr. Cancer. 2018, 70, 1026–1033. [Google Scholar] [CrossRef]
- Serini, S.; Calviello, G. Long-chain omega-3 fatty acids and cancer: any cause for concern? Curr. Opin. Clin. Nutr. Metab. Care. 2018, 21, 83–89. [Google Scholar] [CrossRef]
- Tricker, A.R. N-nitroso compounds and man: sources of exposure, endogenous formation and occurrence in body fluids. Eur. J. Cancer Prev. 1997, 6, 226–268. [Google Scholar] [CrossRef] [PubMed]
- Nagao, M.; Tsugane, S. Cancer in Japan: Prevalence, prevention and the role of heterocyclic amines in human carcinogenesis. Genes Environ. 2016, 1, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zou, D.; Cao, D.; Xie, P. Association between processed meat and red meat consumption and risk for glioma: a meta-analysis from 14 articles. Nutrition 2015, 31, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Willett, W.; Esmaillzadeh, A. Red and processed meat consumption and risk of glioma in adults: A systematic review and meta-analysis of observational studies. J. Res. Med. Sci. 2015, 20, 602–612. [Google Scholar] [PubMed]
- Ward, H.A.; Gayle, A.; Jakszyn, P.; Merritt, M.; Melin, B.; Freisling, H.; Weiderpass, E.; Tjonneland, A.; Olsen, A.; Dahm, C.C.; et al. Meat and heme iron intake in relation to glioma in the European Prospective Investigation into Cancer and Nutrition study. Eur. J. Cancer Prev. 2018, 27, 379–383. [Google Scholar] [CrossRef]
- Wang, P.; Chong-Xian, H.; Yuanyuan, L.; Dong, Z. Dietary nitrite and nitrate is not associated with adult glioma risk: a meta-analysis. Int. J. Clin. Exp. Med. 2016, 9, 8334–8340. [Google Scholar]
- Xie, L.; Mo, M.; Jia, H.X.; Liang, F.; Yuan, J.; Zhu, J. Association between dietary nitrate and nitrite intake and sitespecific cancer risk: evidence from observational studies. Oncotarget 2016, 7, 56915–56932. [Google Scholar] [CrossRef]
- Mut-Salud, N.; Álvarez, P.J.; Garrido, J.M.; Carrasco, E.; Aránega, A.; Rodríguez-Serrano, F. Antioxidant intake and antitumor therapy: toward nutritional recommendations for optimal results. Oxid. Med. Cell Longev. 2016, 6719534. [Google Scholar] [CrossRef]
- Das Gupta, S.; Suh, N. Tocopherols in cancer: An update. Mol. Nutr. Food Res. 2016, 60, 1354–1363. [Google Scholar] [CrossRef]
- Jain, A.; Tiwari, A.; Verma, A.; Jain, S.K. Vitamins for Cancer Prevention and Treatment: An Insight. Curr. Mol. Med. 2017, 17, 321–340. [Google Scholar] [CrossRef]
- Qin, S.; Wang, M.; Zhang, T.; Zhang, S. Vitamin E intake is not associated with glioma risk: evidence from a meta-analysis. Neuroepidemiology 2014, 43, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Dubrow, R.; Darefsky, A.S.; Park, Y.; Mayne, S.T.; Moore, S.C.; Kilfoy, B.; Cross, A.J.; Sinha, R.; Hollenbeck, A.R.; Schatzkin, A.; et al. Dietary components related to N-nitroso compound formation: a prospective study of adult glioma. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 1709–1722. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Yang, L.; Guo, S. All-trans retinoic acid inhibits migration, invasion and proliferation, and promotes apoptosis in glioma cells in vitro. Oncol. Lett. 2015, 9, 2833–2838. [Google Scholar] [CrossRef]
- Bouterfa, H.; Picht, T.; Kess, D.; Herbold, C.; Noll, E.; Black, P.M.; Roosen, K.; Tonn, J.C. Retinoids inhibit human glioma cell proliferation and migration in primary cell cultures but not in established cell lines. Neurosurgery 2000, 46, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Zhong, X.; Xu, L.; Han, W. Association between dietary vitamin A intake and the risk od glioma: evidence from a meta-analysis. Nutrients 2015, 7, 8897–8904. [Google Scholar] [CrossRef]
- DeLorenze, G.N.; McCoy, L.; Tsai, A.L.; Quesenberry, C.P.; Rice, T.; Il’yasova, D.; Wrensch, M. Daily intake of antioxidants in relation to survival among adult patients diagnosed with malignant glioma. BMC Cancer 2010, 10, 215. [Google Scholar] [CrossRef]
- Naidu, K.A.; Tang, J.L.; Naidu, K.A.; Prockop, L.D.; Nicosia, S.V.; Coppola, D. Antiproliferative and apoptotic effect of ascorbyl stearate in human glioblastoma multiforme cells: modulation of insulin-like growth factor-I receptor (IGF-IR) expression. J. Neurooncol. 2001, 54, 15–22. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, X.; Tan, Y.; Qiu, L.; Fang, H.; Li, W. Association between vitamin C intake and glioma risk: evidence from a meta-analysis. Neuroepidemiology 2015, 44, 39–44. [Google Scholar] [CrossRef]
- Hoang, B.X.; Han, B.; Shaw, D.G.; Nimni, M. Zinc as a possible preventive and therapeutic agent in pancreatic, prostate, and breast cancer. Eur. J. Cancer Prev. 2016, 25, 457–461. [Google Scholar] [CrossRef]
- Dimitropoulou, P.; Nayee, S.; Liu, J.F.; van Tongeren, M.; Hepworth, S.J.; Muir, K.R. Dietary zinc intake and brain cancer in adults: a case-control study. Br. J. Nutr. 2008, 99, 667–673. [Google Scholar] [CrossRef][Green Version]
- Lawenda, B.D.; Kelly, K.M.; Ladas, E.J.; Sagar, S.M.; Vickers, A.; Blumberg, J.B. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? J. Natl. Cancer. Inst. 2008, 100, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Conklin, K.A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr. Cancer Therapies 2004, 3, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Il’yasowa, D.; Marcello, J.E.; McCoy, L.; Rice, T.; Wrensch, M. Total dietary antioxidant index and survival in patients with glioblastoma multiforme. Cancer Causes Control 2009, 20, 1255–1260. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tedeschi-Blok, N.; Lee, M.; Sison, J.D.; Miike, R.; Wrensch, M. Inverse association of antioxidant and phytoestrogen nutrient intake with adult glioma in the San Francisco Bay Area: a case-control study. BMC Cancer 2006, 6, 148–160. [Google Scholar] [CrossRef][Green Version]
- Rooprai, H.K.; Christidou, M.; Pilkington, G.J. The potential for strategies using micronutrients and heterocyclic drugs to treat invasive gliomas. Acta Neurochir. 2003, 145, 683–690. [Google Scholar] [CrossRef]
- Puri, T.; Goyal, S.; Julka, P.K.; Nair, O.; Sharma, D.N.; Rath, G.K. Lycopene in treatment of high-grade gliomas: A pilot study. Neurol India 2010, 58, 20–23. [Google Scholar] [CrossRef]
- Benson, V.S.; Pirie, K.; Green, J.; Casabonne, D.; Beral, V. Lifestyle factors and primary glioma and meningioma tumors in the Million Women Study cohort. Br. J. Cancer. 2008, 99, 185–190. [Google Scholar] [CrossRef]
- Moore, S.C.; Rajaraman, P.; Dubrow, R.; Darefsky, A.S.; Koebnick, C.; Hollenbeck, A.; Schatzkin, A.; Leitzmann, M.F. Height, body mass index, and physical activity in relations to glioma risk. Cancer. Res. 2009, 69, 8349–8355. [Google Scholar] [CrossRef]
- Wiedmann, M.K.H.; Brunborg, C.; Di Ieva, A.; Lindemann, K.; Johannesen, T.B.; Vatten, L.; Helseth, E.; Zwart, J.A. The impact of body mass index and height on the risk for glioblastoma and other glioma subgroups: a large prospective cohort study. Neuro Oncol. 2017, 19, 976–985. [Google Scholar] [CrossRef]
- Cote, D.J.; Downer, M.K.; Smith, T.R.; Smith-Warner, S.A.; Egan, K.M.; Stampfer, M.J. Height, waist circumference, body mass index, and body somatotype across the life course and risk of glioma. Cancer Causes Control. 2018, 29, 707–719. [Google Scholar] [CrossRef]
- Michaud, D.S.; Bové, G.; Gallo, V.; Schlehofer, B.; Tjønneland, A.; Olsen, A.; Overvad, K.; Dahm, C.C.; Teucher, B.; Boeing, H.; et al. Anthropometric measures, physical activity, and risk of glioma and meningioma in a large prospective cohort study. Cancer Prev. Res. 2011, 4, 1385–1392. [Google Scholar] [CrossRef]
- Kitahara, C.M.; Wang, S.S.; Melin, B.S.; Wang, Z.; Braganza, M.; Inskip, P.D.; Albanes, D.; Andersson, U.; Freeman, L.E.B.; Buring, J.E.; et al. Association between adult height, genetic susceptibility and risk of glioma. Int. J. Epidemiol. 2012, 41, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. International Agency for Research on Cancer Handbook Working Group. Body Fatness and Cancer-viewpoint of the IARC Working Group. N. Engl. J. Med 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Colditz, G.A.; Peterson, L.L. Obesity and cancer: evidence, impact, and future directions. Clin. Chem. 2018, 64, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Huang, Q.; Liu, H. Different body mass index grade on the risk of developing glioma: a meta-analysis. Chin. Neurosurg. J. 2015, 1, 7. [Google Scholar] [CrossRef][Green Version]
- Niedermaier, T.; Behrens, G.; Schmid, D.; Schlecht, I.; Fischer, B.; Leitzmann, M.F. Body mass index, physical activity, and risk of adult meningioma and glioma: A meta-analysis. Neurology 2015, 85, 1342–1350. [Google Scholar] [CrossRef]
- Little, R.B.; Madden, M.H.; Thompson, R.C.; Olson, J.J.; LaRocca, R.V.; Pan, E.; Browning, J.E.; Egan, K.E.; Nabors, L.B. Anthropometric factors in relation to risk of glioma. Cancer Causes Control. 2013, 24, 1025–1031. [Google Scholar] [CrossRef]
- Sergentanis, T.N.; Tsivgoulis, G.; Perlepe, C.; Stathopoulos, I.N.; Tzanninis, I.G.; Sergentanis, I.N.; Psaltopoulou, T. Obesity and risk for brain/CNS tumors, gliomas and meningiomas: a meta-analysis. PLoS ONE 2015, 10, 0136974. [Google Scholar] [CrossRef]
- Kabat, G.C.; Rohan, T.E. Adiposity at different periods of life and risk of adult glioma in a cohort of postmenopausal women. Cancer Epidemiol. 2018, 54, 71–74. [Google Scholar] [CrossRef]
- Lönn, S.; Inskip, P.D.; Pollak, M.N.; Weinstein, S.J.; Virtamo, J.; Albanes, D. Glioma risk in relation to serum levels of insulin-like growth factors. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 844–846. [Google Scholar] [CrossRef]
Dietary/Lifestyle Factor | Effect on Glioma Incidence | Based on Evidence [Ref.] |
---|---|---|
Alcohol | N/I * | Meta-analysis, n = 1,462,336, GC ** = 4247 |
(19 studies: 4 cohort and 15 case-control) [11] | ||
Case-control study, n = 1479, Neuroepithelial tumors cases = 494, of which GC = 103 [12] | ||
Combined 3 cohort studies, n = 1,262,104, GC = 2313 [13] | ||
Coffee | Protective | Meta-analysis, n = 1,684,262, GC = 2583 |
(11 studies: 8 cohort and 3 case-control) [20] | ||
N/I | Meta-analysis, n = 1,320,889, GC = 2075 | |
(6 studies: 4 cohort and 2 case-control) [19] | ||
Combined 3 cohort studies, n = 237,516, GC = 554 [21] | ||
Combined 3 cohort studies, n = 1,262,104, GC = 2313 [13] | ||
Tea | Protective | Meta-analysis, n = 1,186,950, GC = 1797 |
(4 studies: 3 cohort and 1 case-control) [19] | ||
Combined 3 cohort studies, | ||
n = 237,516, GC = 554 [21] | ||
N/I | Combined 3 cohort studies, n = 1,262,104, GC = 2313 [13] | |
Meta-analysis, n = 1,510,397, n = 2226 | ||
(8 studies: 6 cohort and 2 case-control) [20] | ||
Both Coffee and Tea | Protective | Meta-analysis, n = 864,387, GC = 1582 |
(3 cohort studies) [19] | ||
Fruit | Protective in Asians | Meta-analysis, n = N/A ***, GC = 377 |
(5 case-control studies:) [24] | ||
N/I | Case-control study, n = 1479, Neuroepithelial tumors cases = 494, of which GC = 103 [12] | |
Meta-analysis, n = N/A, GC = 3994 | ||
(17 studies: 15 case-control, 2 prospective) [24] | ||
Vegetables | Protective (vegetables) | Meta-analysis, n = N/A, GC = 5562 |
(15 studies: 14 case-control, 1 prospective) [24] | ||
Protective (yellow-orange and the green-leafy) | Case-control study, n = 4034, GC = 1185 [26] | |
N/I | Case-control study, n = 1479, Neuroepithelial tumors cases = 494, of which GC = 103 [12] | |
Fish | Protective | Case-control study, n = 348, GC = 128 [30] |
N/I | Combined 3 cohort studies, n = 1,262,104, GC = 2313 [13] | |
Meta-analysis, n = 501,617, Brain tumor cases = 4428, GC = 854 | ||
(5 case-control studies) [29] | ||
Red Meat | Increasing the risk | Meta-analysis, n = 37,802, GC = 2181 |
(6 studies: 1 cohort, 5 case-control) [35] | ||
N/I | Meta-analysis, n = 836,370, GC = 1156, | |
(3 studies: 2 cohort, 1 case-control) [34] | ||
Cohort study, n = 408,751, GC = 688 [36] | ||
Processed Meat | Increasing the risk | Meta-analysis, n = 877,640, GC = 3896, |
(14 studies: 3 prospective, 11 case-control) [34] | ||
Meta-analysis, n = 820,660, GC = 5058 | ||
(17 studies: 3 cohort, 14 case-control) [35] | ||
N/I | Cohort study, n = 408,751, GC = 688 [36] | |
Total (red meat and red processed meat) | N/I | Meta-analysis, n = 781,707, GC = 2172 |
(4 studies: 2 cohort, 2 case-control) [35] | ||
Nitrate | N/I | Meta-analysis, n = N/A, GC = 1771 |
(7 studies: 2 cohort, 5 case-control) [37] | ||
Meta-analysis, n = N/A, GC = N/A, | ||
(5 studies: 2 cohort, 3 case-control) [38] | ||
Nitrite | Increasing the risk | Meta-analysis, n = N/A, GC = N/A, |
(6 studies: 2 cohort, 4 case-control) [38] | ||
N/I | Meta-analysis, n = N/A, GC = 2264 | |
(9 studies: 2 cohort, 7 case-control) [37] | ||
Vitamin E | N/I | Meta-analysis, n = N/A, GC = 3180 |
(10 studies: 2 cohort, 8 case-control) [42] | ||
Vitamin A | Protective | Meta-analysis, n = 4123, GC = 1841 |
(7 case-control studies) [46] | ||
Vitamin C | Protective among Americans | Meta-analysis, n = N/A, GC = 3409 (15 studies: 2 cohort, 13 case-control) [49] |
Zinc | N/I | Case-control study, n = 1513, GC = 637 [51] |
Height | Increasing the risk | Cohort study, n = 1,300,000, GC = 646 [58] |
Cohort study n = 270,395, GC = 480 [59] | ||
Cohort study n = 1,800,000, GC = 4382 [60] | ||
2 cohort studies n = 173,096, GC = 508 [61] | ||
Meta-analysis, n = 6088, GC = 1354 | ||
(15 studies: 13 prospective, 2 case-control) [63] | ||
N/I | Cohort study, n = 380,775, GC = 340 [62] | |
Body Weight, BMI | Increasing the risk | Cohort study n = 1,800,000, GC = 4382 [60] |
Cohort study, n = 380,775, GC = 340 [62] | ||
Meta-analysis, n = N/A, GC = 3762 (6 studies: 5 cohort, 1 case-control) [66] | ||
Meta-analysis, n = N/A, GC = 3057 (12 studies) [67] | ||
Meta-analysis, n = 10,156,370, GC = 3683 | ||
(22 studies: 14 cohort, 8 case-control) | ||
[69] | ||
Cohort study, n = 92,557, GC = 217 [70] | ||
N/I | 2 cohort studies, n = 173,096, GC = 508 [61] | |
Physical Activity | Protective | Cohort study n = 1,800,000, GC = 4382 [60] |
Meta-analysis, n = N/A, GC = 3057 | ||
(12 studies) [67] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bielecka, J.; Markiewicz-Żukowska, R. The Influence of Nutritional and Lifestyle Factors on Glioma Incidence. Nutrients 2020, 12, 1812. https://doi.org/10.3390/nu12061812
Bielecka J, Markiewicz-Żukowska R. The Influence of Nutritional and Lifestyle Factors on Glioma Incidence. Nutrients. 2020; 12(6):1812. https://doi.org/10.3390/nu12061812
Chicago/Turabian StyleBielecka, Joanna, and Renata Markiewicz-Żukowska. 2020. "The Influence of Nutritional and Lifestyle Factors on Glioma Incidence" Nutrients 12, no. 6: 1812. https://doi.org/10.3390/nu12061812
APA StyleBielecka, J., & Markiewicz-Żukowska, R. (2020). The Influence of Nutritional and Lifestyle Factors on Glioma Incidence. Nutrients, 12(6), 1812. https://doi.org/10.3390/nu12061812