Is Macronutrients Intake a Challenge for Cardiometabolic Risk in Obese Adolescents?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Measurements
2.2.1. Anthropometrics
2.2.2. Biochemical Assessments
2.2.3. Dietary Habits
2.2.4. Cardiometabolic Risk Assessment
2.3. Statistical Analysis
3. Results
3.1. Anthropometric Parameters in Obese Adolescents
3.2. Macronutrients Intake in Obese Adolescents
3.3. Glucose and Lipid Metabolism in Obese Adolescents
3.4. Association between Macronutrients and Cardiometabolic Risk Factors
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Conflicts of Interest
References
- Arroyo-Johnson, C.; Mincey, K.D. Obesity Epidemiology Worldwide. Gastroenterol. Clin. N. Am. 2016, 45, 571–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremmel, M.; Gerdtham, U.-G.; Nilsson, P.; Saha, S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, E.A.; Graham, W.C.K.; Malhotra, R. Lifetime direct medical costs of childhood obesity. Pediatrics 2014, 133, 854–862. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Kopp, W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2221. [Google Scholar] [CrossRef] [Green Version]
- Rito, A.I.; Buoncristiano, M.; Spinelli, A.; Salanave, B.; Kunešová, M.; Hejgaard, T.; García Solano, M.; Fijałkowska, A.; Sturua, L.; Hyska, J.; et al. Association between Characteristics at Birth, Breastfeeding and Obesity in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative–COSI 2015/2017. Obes. Facts 2019, 12, 226–243. [Google Scholar] [CrossRef] [Green Version]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome; Springer: Cham, Switzerland, 2017; pp. 1–17. [Google Scholar]
- AL, M.; EV, K.; PW, Y. Prevalence of Cardiovascular Disease Risk Factors Among US Adolescents, 1999–2008. Pediatrics 2012, 129, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Mottillo, S.; Filion, K.B.; Genest, J.; Joseph, L.; Pilote, L.; Poirier, P.; Rinfret, S.; Schiffrin, E.L.; Eisenberg, M.J. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 56, 1113–1132. [Google Scholar] [CrossRef] [Green Version]
- Valerio, G.; Maffeis, C.; Saggese, G.; Ambruzzi, M.A.; Balsamo, A.; Bellone, S.; Bergamini, M.; Bernasconi, S.; Bona, G.; Calcaterra, V.; et al. Diagnosis, treatment and prevention of pediatric obesity: Consensus position statement of the Italian Society for Pediatric Endocrinology and Diabetology and the Italian Society of Pediatrics. Ital. J. Pediatr. 2018, 44, 88. [Google Scholar] [CrossRef] [Green Version]
- Katzmarzyk, P.T.; Barlow, S.; Bouchard, C.; Catalano, P.M.; Hsia, D.S.; Inge, T.H.; Lovelady, C.; Raynor, H.; Redman, L.M.; Staiano, A.E.; et al. An evolving scientific basis for the prevention and treatment of pediatric obesity. Int. J. Obes. 2014, 38, 887–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Khudairy, L.; Loveman, E.; Colquitt, J.L.; Mead, E.; Johnson, R.E.; Fraser, H.; Olajide, J.; Murphy, M.; Velho, R.M.; O’Malley, C.; et al. Diet, physical activity and behavioural interventions for the treatment of overweight or obese adolescents aged 12 to 17 years. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO|BMI-for-Age. WHO. 2014. Available online: www.who.int/childgrowth/standards/bmi_for_age/en (accessed on 1 February 2020).
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation; World Health Organization: Geneva, Switzerland, 2011; ISBN 9789241501491. [Google Scholar]
- McCarthy, H.D.; Jarrett, K.V.; Crawley, H.F. The development of waist circumference percentiles in British children aged 5.0–16.9 y. Eur. J. Clin. Nutr. 2001, 55, 902–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.A.; Rodríguez, G.; Guillén, J.; Rabanaque, M.J.; León, J.F.; Ariño, A. Anthropometric measurements in both sides of the body in the assessment of nutritional status in prepubertal children. Eur. J. Clin. Nutr. 2002, 56, 1208–1215. [Google Scholar] [CrossRef] [Green Version]
- Yoo, E.-G. Waist-to-height ratio as a screening tool for obesity and cardiometabolic risk. Korean J. Pediatr. 2016, 59, 425–431. [Google Scholar] [CrossRef]
- Santoro, N.; Amato, A.; Grandone, A.; Brienza, C.; Savarese, P.; Tartaglione, N.; Marzuillo, P.; Perrone, L.; Miraglia Del Giudice, E. Predicting metabolic syndrome in obese children and adolescents: Look, measure and ask. Obes. Facts 2013, 6, 48–56. [Google Scholar] [CrossRef]
- Völgyi, E.; Tylavsky, F.A.; Lyytikäinen, A.; Suominen, H.; Alén, M.; Cheng, S. Assessing body composition with DXA and bioimpedance: Effects of obesity, physical activity, and age. Obesity 2008, 16, 700–705. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [Green Version]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: Summary report. Pediatrics 2011, 128 (Suppl. 5), S213–S256. [Google Scholar] [CrossRef] [Green Version]
- Block, G.; Hartman, A.M.; Dresser, C.M.; Carroll, M.D.; Gannon, J.; Gardner, L. A data-based approach to diet questionnaire design and testing. Am. J. Epidemiol. 1986, 124, 453–469. [Google Scholar] [CrossRef]
- Kolodziejczyk, J.K.; Merchant, G.; Norman, G.J. Reliability and validity of child/adolescent food frequency questionnaires that assess foods and/or food groups. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 4–13. [Google Scholar] [CrossRef] [PubMed]
- Società Italiana di Nutrizione Umana. LARN Livelli di Assunzione di Riferimento di Nutrienti ed Energia Per La Popolazione Italiana; IV Revisio; SICS: Rome, Italy; ISBN 9788890685224.
- Shashaj, B.; Luciano, R.; Contoli, B.; Morino, G.S.; Spreghini, M.R.; Rustico, C.; Sforza, R.W.; Dallapiccola, B.; Manco, M. Reference ranges of HOMA-IR in normal-weight and obese young Caucasians. Acta Diabetol. 2016, 53, 251–260. [Google Scholar] [CrossRef] [PubMed]
- d’Annunzio, G.; Vanelli, M.; Pistorio, A.; Minuto, N.; Bergamino, L.; Iafusco, D.; Lorini, R.; Banin, P.; Cardella, F.; Diabetes Study Group of the Italian Society for Pediatric Endocrinology and Diabetes; et al. Insulin resistance and secretion indexes in healthy Italian children and adolescents: A multicentre study. Acta Biomed. 2009, 80, 21–28. [Google Scholar] [PubMed]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function From Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.J.; Yanovski, J.A. Estimation of insulin sensitivity in children: Methods, measures and controversies. Pediatr. Diabetes 2014, 15, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative Insulin Sensitivity Check Index: A Simple, Accurate Method for Assessing Insulin Sensitivity in Humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Placzkowska, S.; Pawlik-Sobecka, L.; Kokot, I.; Piwowar, A. Indirect Insulin Resistance Detection: Current Clinical Trends and Laboratory Limitations. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2019, 163. [Google Scholar] [CrossRef] [Green Version]
- Calcaterra, V.; Montalbano, C.; de Silvestri, A.; Pelizzo, G.; Regalbuto, C.; Paganelli, V.; Albertini, R.; Cave, F.D.; Larizza, D.; Cena, H. Triglyceride Glucose Index as a Surrogate Measure of Insulin Sensitivity in a Caucasian Pediatric Population. J. Clin. Res. Pediatr. Endocrinol. 2019, 2019, 31088046. [Google Scholar] [CrossRef]
- Manco, M.; Grugni, G.; Di Pietro, M.; Balsamo, A.; Di Candia, S.; Morino, G.S.; Franzese, A.; Di Bonito, P.; Maffeis, C.; Valerio, G. Triglycerides-to-HDL cholesterol ratio as screening tool for impaired glucose tolerance in obese children and adolescents. Acta Diabetol. 2016, 53, 493–498. [Google Scholar] [CrossRef]
- Di Bonito, P.; Moio, N.; Scilla, C.; Cavuto, L.; Sibilio, G.; Sanguigno, E.; Forziato, C.; Saitta, F.; Iardino, R.E.; Capaldo, B.; et al. Usefulness of the High triglyceride-to-HDL Cholesterol Ratio to Identify Cardiometabolic Risk Factors and Preclinical Signs of Organ Damage in Outpatient Children. Diabetes Care 2012, 35, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Niroumand, S.; Khajedaluee, M.; Khadem-Rezaiyan, M.; Abrishami, M.; Juya, M.; Khodaee, G.; Dadgarmoghaddam, M. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med. J. Islam. Repub. Iran 2015, 29, 240. [Google Scholar]
- Ejtahed, H.S.; Kelishadi, R.; Hasani-Ranjbar, S.; Angoorani, P.; Motlagh, M.E.; Shafiee, G.; Ziaodini, H.; Taheri, M.; Qorbani, M.; Heshmat, R. Discriminatory Ability of Visceral Adiposity Index as an Indicator for Modeling Cardio-Metabolic Risk Factors in Pediatric Population: The CASPIAN-V Study. J. Cardiovasc. Thorac. Res. 2019, 11, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashwell, M.; Gibson, S. Waist-to-height ratio as an indicator of ‘early health risk’: Simpler and more predictive than using a ‘matrix’ based on BMI and waist circumference. BMJ Open 2016, 6, e010159. [Google Scholar] [CrossRef] [Green Version]
- Barlow, S.E.; Dietz, W.H. Obesity evaluation and treatment: Expert Committee recommendations. The Maternal and Child Health Bureau, Health Resources and Services Administration and the Department of Health and Human Services. Pediatrics 1998, 102, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, H.D.; Cole, T.J.; Fry, T.; Jebb, S.A.; Prentice, A.M. Body fat reference curves for children. Int. J. Obes. 2006, 30, 598–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.G.; Goldberg, A.C. Treatment of Adults With Familial Hypercholesterolemia and Evidence for Treatment: Recommendations From the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 2011, 5, S18–S29. [Google Scholar] [CrossRef]
- Zaki, M.E.; El-Bassyouni, H.T.; El-Gammal, M.; Kamal, S. Indicators of the metabolic syndrome in obese adolescents. Arch. Med. Sci. 2015, 11, 92–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaber, L.A.; Brown, M.B.; Hammad, A.; Zhu, Q.; Herman, W.H. The prevalence of the metabolic syndrome among arab americans. Diabetes Care 2004, 27, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Bustos, P.; Saez, K.; Gleisner, A.; Ulloa, N.; Calvo, C.; Asenjo, S. Metabolic syndrome in obese adolescents. Pediatr. Diabetes 2010, 11, 55–60. [Google Scholar] [CrossRef]
- Bussler, S.; Penke, M.; Flemming, G.; Elhassan, Y.S.; Kratzsch, J.; Sergeyev, E.; Lipek, T.; Vogel, M.; Spielau, U.; Körner, A.; et al. Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm. Res. Paediatr. 2017, 88, 181–193. [Google Scholar] [CrossRef]
- Gidding, S.S.; Dennison, B.A.; Birch, L.L.; Daniels, S.R.; Gillman, M.W.; Gilman, M.W.; Lichtenstein, A.H.; Rattay, K.T.; Steinberger, J.; Stettler, N.; et al. Dietary recommendations for children and adolescents: A guide for practitioners: Consensus statement from the American Heart Association. Circulation 2005, 112, 2061–2075. [Google Scholar] [CrossRef] [PubMed]
- Gow, M.L.; Ho, M.; Burrows, T.L.; Baur, L.A.; Stewart, L.; Hutchesson, M.J.; Cowell, C.T.; Collins, C.E.; Garnett, S.P. Impact of Dietary Macronutrient Distribution on BMI and Cardiometabolic Outcomes in Overweight and Obese Children and Adolescents: A Systematic Review. Nutr. Rev. 2014, 72, 453–470. [Google Scholar] [CrossRef] [PubMed]
- Sartorius, K.; Sartorius, B.; Madiba, T.E.; Stefan, C. Does high-carbohydrate intake lead to increased risk of obesity? A systematic review and meta-analysis. BMJ Open 2018, 8, e018449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakobsen, M.U.; Dethlefsen, C.; Joensen, A.M.; Stegger, J.; Tjønneland, A.; Schmidt, E.B.; Overvad, K. Intake of carbohydrates compared with intake of saturated fatty acids and risk of myocardial infarction: Importance of the glycemic index. Am. J. Clin. Nutr. 2010, 91, 1764–1768. [Google Scholar] [CrossRef]
- del Mar Bibiloni, M.; Maffeis, C.; Llompart, I.; Pons, A.; Tur, J.A. Dietary factors associated with subclinical inflammation among girls. Eur. J. Clin. Nutr. 2013, 67, 1264–1270. [Google Scholar] [CrossRef]
- Shivappa, N.; Hebert, J.R.; Marcos, A.; Diaz, L.-E.; Gomez, S.; Nova, E.; Michels, N.; Arouca, A.; González-Gil, E.; Frederic, G.; et al. Association between dietary inflammatory index and inflammatory markers in the HELENA study. Mol. Nutr. Food Res. 2017, 61, 1600707. [Google Scholar] [CrossRef]
- Appannah, G.; Pot, G.K.; Huang, R.C.; Oddy, W.H.; Beilin, L.J.; Mori, T.A.; Jebb, S.A.; Ambrosini, G.L. Identification of a Dietary Pattern Associated With Greater Cardiometabolic Risk in Adolescence. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Andrade, M.I.S.D.; Oliveira, J.S.; Leal, V.S.; Lima, N.M.D.S.; Bezerra, P.B.; Santiago, E.R.C.; Lira, P.I.C.D. Prevalence of insulin resistance and association with metabolic risk factors and food consumption in adolescents-recife/Brazil. Rev. Paul. Pediatr. 2020, 38, e2019016. [Google Scholar] [CrossRef]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M.; Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef]
- Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Salminen, V.; Louheranta, A.; et al. Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle Among Subjects With Impaired Glucose Tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef]
- Lindström, J.; Ilanne-Parikka, P.; Peltonen, M.; Aunola, S.; Eriksson, J.G.; Hemiö, K.; Hämäläinen, H.; Härkönen, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; et al. Sustained reduction in the incidence of type 2 diabetes by lifestyle intervention: Follow-up of the Finnish Diabetes Prevention Study. Lancet 2006, 368, 1673–1679. [Google Scholar] [CrossRef]
- Lindström, J.; Louheranta, A.; Mannelin, M.; Rastas, M.; Salminen, V.; Eriksson, J.; Uusitupa, M.; Tuomilehto, J.; Finnish Diabetes Prevention Study Group. The Finnish Diabetes Prevention Study (DPS): Lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care 2003, 26, 3230–3236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | Mean (SD) | Median (25–75° pc) |
---|---|---|
Age (y) | 11 (1) | 12 (10–12) |
BMI z-score | 2.7 (0.6) | 2.5 (2.25–2.96) |
Waist circumference (cm) | 91.7 (9) | 91 (86–97) |
Tricipital skinfold (mm) | 31.6 (6) | 31.4 (27.4–36.7) |
WHtR | 0.6 (0.1) | 0.59 (0.56–0.63) |
FM (g) | 27,420 (9097) | 25,300 (20,200–32,600) |
FFM (g) | 42,424 (8764) | 41,100 (36,800–47,100) |
FM (%) | 38 (6) | 37 (34–42) |
FFM (%) | 61 (6) | 62 (58–65) |
Systolic blood pressure (mmHg) | 116 (11) | 114 (110–123) |
Diastolic blood pressure (mmHg) | 62 (8) | 61 (57–66) |
Variable | Mean (SD) | Median (25–75° Centile) | Reference Values [24] |
---|---|---|---|
Energy (kcal/day) | 2358 (836) | 2243 (1692–2868) | Boys: 2340–3480 kcal/day (AR) |
Girls: 2120–2690 kcal/day (AR) | |||
Proteins (g/day) | 102 (44) | 91 (71–122) | Boys: 39–50 g/day (AR) |
Girls: 39–40 g/day (AR) | |||
% | 17 (5) | 17 (15–20) | 12–18% En (RI) |
Total fats (g/day) | 88 (44) | 83 (58–109) | |
% | 30 (8) | 31 (27–35) | 20–35% En (RI) |
Saturated fats (g/day) | 22 (10) | 19 (15–25) | <10% En (SDT) |
% | 8.2 (3) | 8 (7–25) | |
Monounsaturated fats (g/day) | 33 (14) | 31 (22–41) | |
% | 12 (5) | 12 (9–15) | |
Polyunsaturated fats (g/day) | 10 (5) | 9 (7–12) | |
% | 4 (2) | 4 (3–4) | 5–10% En (RI) |
Carbohydrates (g/day) | 309 (115) | 294 (223–375) | |
% | 48 (11) | 50 (46–54) | 45–60% En (RI) |
Sugars (g/day) | 106 (50) | 94 (73–134) | |
% | 18 (6) | 17 (14–22) | <15% En (SDT) |
Soluble Fiber (g/day) | 5 (2) | 5 (3–6) | 8.4 g/1000 kcal (AI) |
Insoluble Fiber (g/day) | 9 (5) | 9 (6–13) |
Variable | Mean (SD) | Median (25–75° Centile) | Normal Values |
---|---|---|---|
Glucose (mg/dL) | 84 (7.5) | 84 (79–89) | <100 |
HbA1c (mmol/mol) | 34.9 (3.5) | 35 (33–37) | 20–42 |
HOMA-IR | 4.2 (2.9) | 3.7 (2.4–5.4) | <75° pc for sex and age in obese young Caucasian according to [26] |
HOMA-β | 374 (266) | 305 (230–420) | |
QUICK index | 0.32 (0.02) | 0.32 (0.30–0.33) | |
TyG index | 4.5 (0.29) | 4.5 (4.3–4.6) | 8 [32] |
Variable | Mean (SD) | Median (25–75° Centile) | Reference Values |
---|---|---|---|
Total Cholesterol (mg/dL) | 153 (26) | 151 (132–169) | ≤200 mg/dL [22] |
LDL Cholesterol (mg/dL) | 91 (23) | 89 (76–105) | ≤130 mg/dL [22] |
HDL Cholesterol (mg/dL) | 46 (11) | 45 (39–54) | >40 mg/dL [22] |
Triglycerides (mg/dL) | 121 (102) | 88 (67–133) | <130 mg/dL [22] |
TG/HDL | 3.0 (3.5) | 1.9 (1.3–3.2) | ≤2.2 [33,34] |
AIP | 0.4 (0.9) | 0.3 (0.1–0.5) |
BMI Z-Score | HOMA-IR | HOMA-β | QUICK Index | TyG Index | TG/HDL | AIP | VAI Index | |
---|---|---|---|---|---|---|---|---|
Energy (kcal) | 0.217 0.037 * | 0.152 0.146 | 0.237 0.022 * | −0.170 0.104 | 0.117 0.262 | 0.023 0.825 | 0.027 0.796 | 0.037 0.728 |
Proteins (%) | −0.009 0.929 | 0.169 0.106 | 0.111 0.290 | −0.162 0.121 | 0.032 0.762 | 0.088 0.399 | 0.088 0.403 | 0.068 0.520 |
Proteins (g) | 0.240 0.020 * | 0.224 0.031 * | 0.249 0.016 * | −0.235 0.023 * | 0.134 0.201 | 0.038 0.716 | 0.042 0.691 | 0.038 0.714 |
Total fats (%) | 0.130 0.215 | 0.110 0.295 | 0.203 0.051 | −0.110 0.293 | −0.023 0.823 | −0.029 0.783 | −0.029 0.780 | 0.076 0.467 |
Total fats (g) | 0.291 0.005 * | 0.129 0.218 | 0.288 0.005 * | −0.143 0.172 | 0.157 0.132 | 0.080 0.445 | 0.083 0.427 | 0.150 0.152 |
Saturated (%) | −0.112 0.284 | 0.227 0.028 * | 0.148 0.158 | −0.210 0.043 * | 0.046 0.660 | 0.051 0.625 | 0.051 0.626 | 0.044 0.678 |
Saturated (g) | 0.133 0.204 | 0.268 0.009 * | 0.278 0.007* | −0.274 0.008 * | 0.137 0.192 | 0.039 0.711 | 0.042 0.690 | 0.074 0.482 |
Monounsaturated (%) | −0.007 0.950 | 0.241 0.020 * | 0.200 0.055 | −0.213 0.040 * | −0.009 0.931 | 0.015 0.889 | 0.013 0.900 | 0.048 0.645 |
Polyunsaturated (%) | −0.003 0.978 | 0.031 0.769 | 0.106 0.313 | −0.003 0.976 | 0.023 0.830 | 0.106 0.313 | 0.108 0.305 | 0.101 0.334 |
Carbohydrates (%) | −0.299 0.004 * | −0.182 0.081 | −0.276 0.007 * | 0.177 0.089 | −0.101 0.336 | −0.061 0.559 | −0.061 0.564 | −0.157 0.134 |
Carbohydrates (g) | 0.050 0.639 | 0.046 0.662 | 0.122 0.245 | −0.066 0.531 | 0.046 0.663 | −0.037 0.724 | −0.034 0.747 | −0.042 0.694 |
Sugars (g) | 0.137 0.191 | 0.015 0.888 | 0.160 0.126 | −0.031 0.766 | 0.082 0.433 | 0.040 0.703 | 0.044 0.673 | 0.027 0.797 |
Sugars (%) | −0.072 0.493 | −0.199 0.056 | −0.057 0.589 | 0.186 0.074 | −0.019 0.860 | 0.025 0.812 | 0.026 0.807 | −0.003 0.975 |
Insoluble fiber (g) | 0.016 0.880 | 0.026 0.807 | 0.070 0.504 | −0.035 0.737 | 0.081 0.438 | 0.024 0.821 | 0.022 0.833 | 0.011 0.917 |
Soluble fiber (g) | 0.036 0.734 | −0.038 0.717 | 0.057 0.589 | 0.027 0.798 | 0.045 0.669 | −0.002 0.982 | −0.003 0.975 | 0.002 0.983 |
B | Std. Error | t | Sig. | |
---|---|---|---|---|
(Constant) | −0.163 | 0.206 | −0.794 | 0.430 |
Energy intake, kcal (log) | 0.383 | 0.115 | 3.327 | 0.001 |
Carbohydrate, g (log) | −0.285 | 0.109 | −2.621 | 0.010 |
B | Std. Error | t | Sig. | |
---|---|---|---|---|
(Constant) | –1.464 | 0.592 | –2.474 | 0.015 |
Age, years (log) | 1.525 | 0.539 | 2.830 | 0.006 |
Saturated fats, g (log) | 0.295 | 0.121 | 2.427 | 0.017 |
Saturated Fats <10% (n = 72) | Saturated Fats ≥10% (n = 21) | Saturated Fats <7% (n = 34) | Saturated Fats ≥7% (n = 59) | |
---|---|---|---|---|
HOMA-IR < 3.42 | 38 | 7 | 21 | 24 |
HOMA-IR ≥ 3.42 | 34 | 14 | 13 | 35 |
B | Std. Error | t | Sig. | |
---|---|---|---|---|
(Constant) | 1.894 | 0.234 | 8.083 | <0.001 |
Total fats, g (log) | 0.321 | 0.123 | 2.612 | 0.011 |
B | Std. Error | t | Sig. | |
---|---|---|---|---|
(Constant) | −0.234 | 0.081 | −2.906 | 0.005 |
Age, years (log) | −0.196 | 0.073 | −2.664 | 0.009 |
Saturated fats, g (log) | −0.042 | 0.017 | −2.547 | 0.013 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizzuso, S.; Amatruda, M.; Del Torto, A.; D’Auria, E.; Ippolito, G.; Zuccotti, G.V.; Verduci, E. Is Macronutrients Intake a Challenge for Cardiometabolic Risk in Obese Adolescents? Nutrients 2020, 12, 1785. https://doi.org/10.3390/nu12061785
Vizzuso S, Amatruda M, Del Torto A, D’Auria E, Ippolito G, Zuccotti GV, Verduci E. Is Macronutrients Intake a Challenge for Cardiometabolic Risk in Obese Adolescents? Nutrients. 2020; 12(6):1785. https://doi.org/10.3390/nu12061785
Chicago/Turabian StyleVizzuso, Sara, Matilde Amatruda, Alberico Del Torto, Enza D’Auria, Giulio Ippolito, Gian Vincenzo Zuccotti, and Elvira Verduci. 2020. "Is Macronutrients Intake a Challenge for Cardiometabolic Risk in Obese Adolescents?" Nutrients 12, no. 6: 1785. https://doi.org/10.3390/nu12061785
APA StyleVizzuso, S., Amatruda, M., Del Torto, A., D’Auria, E., Ippolito, G., Zuccotti, G. V., & Verduci, E. (2020). Is Macronutrients Intake a Challenge for Cardiometabolic Risk in Obese Adolescents? Nutrients, 12(6), 1785. https://doi.org/10.3390/nu12061785