After the intervention with the capsules of BMP, both experimental and control groups in this study were investigated.
3.2. BMP Intervention
The blood biochemistry indices in both groups were monitored after 3 months. In
Table 2, as a result of paired
t-testing such that all
p-values are greater than 0.05, subjects in the control group revealed no significant differences between the first and third monitoring.
The FG result is one of the most used data for blood sugar monitoring in order to judge the performance of diabetes control. Healthy people normally have a 70–110 mg/dL FG level before breakfast. Diabetes could be determined for plasma glucose levels equal to or greater than 126 mg/dL on an empty stomach.
As we expected, the paired t-test results of biochemical tests before and after the intervention showed no significant differences in the control group, in which the average fasting blood glucose was 124.9 ± 40.1 mg/dL and 133.2 ± 49.7 mg/dL (p = 0.061 > 0.05), and the HbA1c was 7.5 ± 1.2% and 7.5 ± 1.1% (p = 0.0852 > 0.05). HbA1c reflected the glycemic control in the human body over 2–3 months. Normally, HbA1c is maintained at 4–6% for a healthy person, and physicians identify a patient as diabetic when the HbA1c reaches 6.50% or above. To ensure quality of life, an HbA1c level of 7% is essential for diabetic patients. Regarding other critical indices, the paired t-test results show no significant changes for insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), AST, ALT, creatinine, and BUN.
In contrast, significant changes were found in FG and HbA1c for the test group. The paired-
t-test results in
Table 3 show that FG decreased from 136.8 ± 63.5 mg/dL to 118.0 ± 35.5 mg/dL (
p = 0.007 < 0.05), and HbA1c from 7.8 ± 1.4% to 7.4 ± 1.1% (
p = 0.000 < 0.05), respectively.
Statistical results of the paired
t-test, as shown in
Table 3, also indicate that some biochemical and hematological indices have changed, e.g., TG, HDL-C, LDL-C, and BUN. The TG of the experimental group decreased from 147.9 ± 85.9 mg/dL to 114.7 ± 64.8 mg/dL (
p = 0.000 < 0.05) after three months of intervention.
In
Table 4, the average FG of the experiment group improved by 5.19% (not statistically significant) from 136.8 ± 64.0 (mg/dL) to 129.7 ± 47.3 by the completion of the first month. The FG of experimental participants reached normal levels, at 120.3 ± 32.3 and 118.0 ± 35.8 for T2 and T3 respectively. The overall improvement was 13.73% from 136.8 ± 64.0 (mg/dL) in T0 to 118.0 ± 35.8 in T3.
Improvements in all periods are mostly statistically significant for T0 − T1 (p = 0.165 > 0.05) and T2 − T3 (p = 0.539 > 0.05). This means that the intervention material starts to work almost at the beginning of the intervention, and it helps to maintain FG at a rather stable level after T2 (T2 − T3 is not significant). This is especially important in terms of avoiding exposing the patients to a risk of hypoglycemia. In other words, BMP helps to regulate FG to an ideal level, instead of continuously dropping. Notably, the change from T2 to T3 was not statistically significant for the test group; this could be interpreted as the blood level having been regulated to a stable and safe value.
In the same period, levels of FG of the control group increased by 8.13 mg (or 6.89%) from 123.6 ± 42.6 mg/dL in T0 to a higher level of 131.5 ± 51.9 mg/dL in T3 (p = 0.155 > 0.05). Although the change was not statistically significant, diabetes control in terms of the FG level was not apparent in the control group.
The HbA1c values give the average glucose levels in human blood, and the HbA1c levels are directly proportional to the blood glucose levels. The right-hand side of
Table 4 shows that the average HbA1c of the experimental group drops 0.98% from 7.8 ± 1.4% to 7.7 ± 1.4% in the first month. It decreased further by 3.16% from 7.7 ± 1.4% to 7.5 ± 1.4% at the end of month two, and there was an additional 2.32% improvement from 7.5 ± 1.4% to 7.3 ± 1.5% by the end of month three.
The overall improvement was 0.49 percentage points, or 6.34% in three months. Changes were statistically significant for all periods except for the periods of T0 − T1 and T2 − T3, which means that the capsules of BMP became effective at the start of T2, and the effects remained stable for the rest of the experiment, as shown on the right-hand side of
Table 4. After three months of continuous intervention with BMP, the average HbA1c reduced from 7.8 ± 1.4% to 7.3 ± 1.5% (
p < 0.05). In contrast, the average HbA1c of the control group showed no significant difference during the experimental period (from 7.5 ± 1.2% to 7.5 ± 1.1%,
p = 0.852 > 0.05).
These results mean that the intervention helped to maintain the levels of blood sugar, which could help patients control diabetes.
We further compared the T3 indices between the test and control groups. It appears that some of them are significantly different, such as TC, TG, and LDL-C, as shown in
Table 5. It is interesting to note that the differences in HbA1c, FG, and insulin are not statistically significant.
The values in
Table 5 being not significantly different between groups may imply that BMP has no side effects on humans and may be safer to use. Despite that the HbA1c (
p = 0.300 > 0.05), FG (
p = 0.80 > 0.05), and insulin (
p = 0.56 > 0.05) are not significantly different between the experimental and control groups (
Table 5), the paired
t-test of T0 and T3 (
Table 2 and
Table 3) on same indices are significantly different for the experimental group and not for the control group. This may imply that the BMP is effective, but not significantly superior to the control group for a three-month period. Despite the fact that the experimental group patients can improve their levels of blood glucose with the BMP, the control group may maintain an acceptable level with the prescribed medication.