Association of Adherence to Specific Mediterranean Diet Components and Cardiorespiratory Fitness in Young Adults
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, D.; Sui, X.; Church, T.S.; Lavie, C.J.; Jackson, A.S.; Blair, S.N. Changes in Fitness and Fatness on the Development of Cardiovascular Disease Risk Factors. J. Am. Coll. Cardiol. 2012, 59, 665–672. [Google Scholar] [CrossRef]
- Moreira, C.; Santos, R.; Moreira, P.; Lobelo, F.; Ruiz, J.R.; Vale, S.; Santos, P.C.; Abreu, S.; Mota, J. Cardiorespiratory fitness is negatively associated with metabolic risk factors independently of the adherence to a healthy dietary pattern. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 670–676. [Google Scholar] [CrossRef]
- Cureton, K.J.; Warren, G.L. Criterion-referenced standards for youth health-related fitness tests: A tutorial. Res. Q. Exerc. Sport 1990, 61, 7–19. [Google Scholar] [CrossRef]
- Ros, E.; Martínez-González, M.A.; Estruch, R.; Salas-Salvadó, J.; Fitó, M.; Martínez, J.A.; Corella, D. Mediterranean diet and cardiovascular health: Teachings of the PREDIMED study. Adv. Nutr. 2014, 5, 330S–336S. [Google Scholar] [CrossRef]
- Rusu, M.E.; Mocan, A.; Ferreira, I.; Popa, D.S. Health benefits of nut consumption in middle-aged and elderly population. Antioxidants 2019, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Bes-Rastrollo, M.; Sabate, J.; Gomez-Gracia, E.; Alonso, A.; Martinez, J.A.; Martinez-Gonzalez, M.A. Nut consumption and weight gain in a Mediterranean cohort: The SUN study. Obesity (Silver Spring) 2007, 15, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Does nut consumption reduce mortality and/or risk of cardiometabolic disease? An update review based on meta-analyses. Int. J. Environ. Res. Public Health 2019, 16, 4957. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.; Clifton, P.M. Nuts and cardio-metabolic disease: A review of meta-analyses. Nutrients 2018, 10, 1935. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.Y.; Ojo, O.; Wang, L.L.; Wang, Q.; Jiang, Q.; Shao, X.Y.; Wang, X.H. A Randomized Controlled Trial to Compare the E_ect of Peanuts and Almonds on the Cardio-Metabolic and Inflammatory Parameters in Patients with Type 2 Diabetes Mellitus. Nutrients 2018, 10, 1565. [Google Scholar] [CrossRef]
- Mah, E.; Schulz, J.A.; Kaden, V.N.; Lawless, A.L.; Rotor, J.; Mantilla, L.B.; Liska, D.J. Cashew consumption reduces total and LDL cholesterol: A randomized, crossover, controlled-feeding trial. Am. J. Clin. Nutr. 2017, 105, 1070–1078. [Google Scholar] [CrossRef]
- Njike, V.Y.; Ayettey, R.; Petraro, P.; Treu, J.A.; Katz, D.L. Walnut ingestion in adults at risk for diabetes: Effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res. Care 2015, 3, e000115. [Google Scholar] [CrossRef]
- Lasa, A.; Miranda, J.; Bulló, M.; Casas, R.; Salas-Salvadó, J.; Larretxi, I.; Estruch, R.; Ruiz-Gutiérrez, V.; Portillo, M.P. Comparative effect of two Mediterranean diets versus a low-fat diet on glycaemic control in individuals with type 2 diabetes. Eur. J. Clin. Nutr. 2014, 68, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Morgillo, S.; Hill, A.M.; Coates, A.M. The effects of nut consumption on vascular function. Nutrients 2019, 11, 116. [Google Scholar] [CrossRef] [PubMed]
- Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Fischer, S.; Stark, R.G.; Altenhofer, J.; Henze, K.; Parhofer, K.G. A walnut-enriched diet a_ects gut microbiome in healthy caucasian subjects: A randomized, controlled trial. Nutrients 2018, 10, 244. [Google Scholar] [CrossRef] [PubMed]
- Shikany, J.M.; Jacobs, D.R., Jr.; Lewis, C.E.; Steffen, L.M.; Sternfeld, B.; Carnethon, M.R.; Richman, J.S. Associations between food groups, dietary patterns, and cardiorespiratory fitness in the Coronary Artery Risk Development. Am. J. Clin. Nutr. 2013, 98, 1402–1409. [Google Scholar] [CrossRef]
- Howe, A.S.; Skidmore, P.M.; Parnell, W.R.; Wong, J.E.; Lubransky, A.C.; Black, K.E. Cardiorespiratory fitness is positively associated with a healthy dietary pattern in New Zealand adolescents. Public Health Nutr. 2016, 19, 1279–1287. [Google Scholar] [CrossRef]
- Gray, A.; Smith, C. Fitness, dietary intake, and body mass index in urban Native American youth. J. Am. Diet. Assoc. 2003, 103, 1187–1191. [Google Scholar] [CrossRef]
- Cuenca-García, M.; Ortega, F.B.; Huybrechts, I.; Ruiz, J.R.; González-Gross, M.; Ottevaere, C.; Sjöström, M.; Dìaz, L.E.; Ciarapica, D.; Molnar, D.; et al. Cardiorespiratory fitness and dietary intake in European adolescents: The Healthy Lifestyle in Europe by Nutrition in Adolescence study. Br. J. Nutr. 2012, 107, 1850–1859. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; Predimed Investigators. Benefits of the Mediterranean Diet: Insights from the PREDIMED Study for the PREDIMED INVESTIGATORS 1. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef]
- WHO. Obesity: Preventing and Managing the Global Epidemic; Technical Report; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The multistage 20 metre shuttle run test for aerobic fitness. J. Sport Sci. 1988, 6, 93–101. [Google Scholar]
- Cobo-Cuenca, A.I.; Garrido-Miguel, M.; Soriano-Cano, A.; Ferri-Morales, A.; Martínez-Vizcaíno, V.; Martín-Espinosa, N.M. Adherence to Mediterranean Diet and its Association with body compositin and physical fitness in Spanish university students. Nutrients 2019, 11, 2830. [Google Scholar] [CrossRef] [PubMed]
- Viscogliosi, G.; Cipriani, E.; Liguori, M.L.; Marigliano, B.; Saliola, M.; Ettorre, E.; Andreozzi, P. Mediterranean dietary pattern adherence: Associations with prediabetes, metabolic syndrome, and related microinflammation. Metab. Syndr. Relat. Disord. 2013, 11, 210–216. [Google Scholar] [CrossRef]
- Anand, S.S.; Hawkes, C.; De Souza, R.J.; Mente, A.; Dehghan, M.; Nugent, R.; Zulyniak, M.A.; Weis, T.; Bernstein, A.M.; Krauss, R.M.; et al. Food Consumption and its Impact on Cardiovascular Disease: Importance of Solutions Focused on the Globalized Food System. J. Am. Coll. Cardiol. 2015, 66, 1590–1614. [Google Scholar] [CrossRef]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef] [PubMed]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; De Lucia, F.; Olivieri, M.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonanni, A.; Moli-sani Project Investigators. Nutrition knowledge is associated with higher adherence to Mediterranean diet and lower prevalence of obesity. Results from the Moli-sani study. Appetite 2013, 68, 139–146. [Google Scholar] [CrossRef]
- Hanlon, B.; Larson, M.J.; Bailey, B.W.; Lecheminant, J.D. Neural Response to Pictures of Food after Exercise in Normal-Weight and Obese Women. Med. Sci. Sport Exerc. 2012, 44, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.J.; Alonso-Alonso, M.; Bond, D.S.; Pascual-Leone, A.; Blackburn, G.L. The neurocognitive connection between physical activity and eating behaviour. Obes. Rev. 2011, 12, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Artero, E.G.; Ruiz, J.R.; España-Romero, V.; Jiménez-Pavón, D.; Vicente-Rodríguez, G.; Moreno, L.A.; Manios, Y.; Beghin, L.; Ottevaere, C.; et al. Physical fitness levels among European adolescents: The HELENA study. Br. J. Sports Med. 2011, 45, 20–29. [Google Scholar] [CrossRef]
- Secchi, J.D.; García, G.C. Aptitud física cardiorrespiratoria y riesgo cardiometabólico en personas adultas jóvenes. Rev. Esp Salud Pública 2013, 87, 35–48. [Google Scholar] [CrossRef][Green Version]
- Duscha, B.D. Effects of Exercise Training Amount and Intensity on Peak Oxygen Consumption in Middle-Age Men and Women at Risk for Cardiovascular Disease. Chest J. 2005, 128, 2788–2793. [Google Scholar] [CrossRef]
- Wang, C.Y.; Haskell, W.L.; Farrell, S.W.; LaMonte, M.J.; Blair, S.N.; Curtin, L.R.; Hughes, J.P.; Burt, V.L. Cardiorespiratory Fitness Levels Among US Adults 20-49 Years of Age: Findings From the 1999-2004 National Health and Nutrition Examination Survey. Am. J. Epidemiol. 2010, 171, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.M.; Spring, T.J.; Zalesin, K.C.; Kaeding, K.R.; Janosz, K.E.N.; McCullough, P.A.; Franklin, B.A. Lower Than Predicted Resting Metabolic Rate Is Associated With Severely Impaired Cardiorespiratory Fitness in Obese Individuals. Obesity 2012, 20, 505–511. [Google Scholar] [CrossRef] [PubMed]
- PÉRUSSE, L.; Gagnon, J.; Province, M.A.; Rao, D.C.; Wilmore, J.H.; Leon, A.S.; Bouchard, C.; Skinner, J.S. Familial aggregation of submaximal aerobic performance in the HERITAGE family study. Med. Sci. Sport Exerc. 2001, 33, 597–604. [Google Scholar] [CrossRef] [PubMed]
Total (n = 275) | Men (n = 100) | Women (n = 175) | p | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Age (year) * | 22.2 | 6.3 | 23.0 | 6.7 | 21.7 | 6.0 | 0.004 |
Alcohol (units/week) * | 2.6 | 4.1 | 2.9 | 4.2 | 2.3 | 4.1 | 0.118 |
Tobacco * | 1.7 | 3.9 | 2.7 | 5.3 | 1.1 | 2.7 | 0.145 |
Smoking (cig./day) † | 15.5 | 15.5 | 15.6 | 0.560 | |||
PA (min/dau) * | 63.2 | 52.0 | 75.9 | 52.4 | 53.1 | 49.6 | 0.002 |
Maximum oxygen uptake, VO2max (ml/kg/min) | 43.9 | 8.5 | 46.4 | 8.9 | 39.7 | 6.0 | 0.000 |
Healthy CRF (%) † | 75.9 | 74.1 | 78.8 | 0.797 | |||
BMI (kg/m2) * | 24.4 | 6.0 | 25.7 | 7.9 | 23.5 | 4.0 | 0.000 |
Low BMI (%) ‡ | 3.4 | 2.9 | 3.7 | 0.006 | |||
Normal BMI (%) ‡ | 66.5 | 54 | 73 | 0.006 | |||
Overweight (%) ‡ | 20.5 | 30.4 | 14.3 | 0.006 | |||
Obesity (%) ‡ | 9.5 | 11.8 | 8.1 | 0.006 | |||
WC (cm) * | 79.5 | 12.5 | 85.9 | 12.4 | 75.4 | 10.8 | 0.000 |
High WC (%) † | 23.3 | 22.0 | 24.1 | 0.763 |
Total Mean ± SD | Men Mean ± SD | Women Mean± SD | p | ||||
---|---|---|---|---|---|---|---|
Mediterranean Diet (MedD) score (mean ± SD) | 6.2 | 1.8 | 6.2 | 2.0 | 6.2 | 1.7 | 0.901 |
MDA low ≤5 (%) | 33.6 | 34.5 | 32.9 | 0.741 | |||
MDA medium 6−9 (%) | 62.8 | 60.9 | 64.1 | 0.741 | |||
MDA high ≥10 (%) | 3.6 | 4.5 | 3.0 | 0.741 | |||
1. Using olive oil as the main culinary fat (%) | 94.9 | 96.4 | 94.0 | 0.419 | |||
2. ≥4 Table spoons olive oil/day (%) | 13.4 | 10.0 | 15.7 | 0.209 | |||
3. ≥2 Servings of vegetables/day (%) | 38.7 | 31.8 | 43.3 | 0.059 | |||
4. ≥3 Pieces of fruit/day (%) | 16.4 | 24.8 | 10.9 | 0.004 | |||
5. <1 Serving of red or processed meat/day (%) | 43.3 | 37.6 | 47.0 | 0.137 | |||
6. <1 Serving of butter, margarine or cream/day (%) | 85.3 | 84.4 | 86.0 | 0.730 | |||
7. <1 Glass of sugar-sweetened beverages/day (%) | 72.1 | 67.3 | 75.3 | 0.171 | |||
8. Moderate wine consumption (%) | 1.1 | 0.9 | 1.2 | 1.0 | |||
9. ≥3 Servings of pulses/week (%) | 21.5 | 20.2 | 22.4 | 0.764 | |||
10. ≥3 Servings of fish/week (%) | 13.4 | 13.6 | 13.3 | 1.0 | |||
11. <2 Commercial pastries/week (%) | 75.1 | 77.3 | 73.7 | 0.571 | |||
12. ≥3 Servings of tree nuts/week (%) | 14.0 | 20.6 | 9.5 | 0.018 | |||
13. Preferring white meat over red meat (%) | 74.7 | 74.5 | 74.9 | 1.0 | |||
14. ≥2 “Sofrito”/week (%) | 65.7 | 70.0 | 62.9 | 0.246 | |||
Energy (Kcal/d) * | 1886 | 645 | 2140 | 715 | 1719 | 535 | 0.000 |
% Protein | 17.4 | 4.1 | 17.2 | 4.2 | 17.6 | 4.1 | 0.421 |
% Total fat | 40.4 | 7.8 | 39.6 | 7.7 | 40.9 | 7.8 | 0.208 |
% SFA (Saturated fatty acids) | 13.3 | 3.6 | 12.8 | 3.6 | 13.6 | 3.5 | 0.121 |
% MUFA (monounsaturated fatty acids) | 18.4 | 4.8 | 18.4 | 4.8 | 18.4 | 4.7 | 0.933 |
% PUFA (polyunsaturated fatty acids) * | 5.3 | 1.8 | 5.2 | 1.5 | 5.4 | 2.0 | 0.298 |
Cholesterol (mg/day) * | 283 | 155 | 294 | 139 | 275 | 165 | 0.143 |
% Carbohydrates | 41.9 | 8.8 | 42.8 | 8.5 | 41.3 | 8.9 | 0.203 |
Fiber (g/day) * | 18.3 | 9.2 | 20.9 | 9.8 | 16.7 | 8.4 | 0.001 |
Total (n = 258) | Low (n = 63) | High (n = 195) | p | ||||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||
Age (y) * | 21.9 | 5.8 | 24.3 | 8.7 | 21.11 | 4.2 | 0.017 |
Alcohol (units/week) * | 2.2 | 3.2 | 2.0 | 2.7 | 2.3 | 3.4 | 0.863 |
Tobacco (cig./day) * | 3.6 | 5.6 | 5.0 | 8.6 | 3.3 | 4.9 | 0.974 |
Smoking (%) | 20.7 | 19.0 | 21.2 | 1.0 | |||
PA (min/d) * | 78 | 58 | 54 | 66 | 87 | 52 | 0.002 |
VO2max (ml/kg/min) | 43.9 | 8.5 | 33.7 | 5.1 | 47.1 | 6.6 | 0.000 |
BMI (Kg/m2) * | 23.7 | 3.8 | 26.9 | 5.0 | 22.7 | 2.8 | 0.000 |
Low BMI <18.5 (%) † | 3.4 | 0.0 | 4.5 | 0.000 | |||
Normal BMI 18.5−24.9 (%) † | 71.3 | 38.1 | 81.8 | 0.000 | |||
Overweight 25−29.9 (%) † | 14.9 | 28.6 | 10.6 | 0.000 | |||
Obesity >30 (%) † | 10.3 | 33.3 | 3.1 | 0.000 | |||
WC (cm) * | 79.6 | 11.7 | 87.5 | 12.8 | 77.0 | 10.2 | 0.001 |
High WC (%) | 15.3 | 33.3 | 9.4 | 0.014 |
Total (n = 258) Mean ± SD | Low (n = 63) Mean ± SD | Healthy (n = 195) Mean ± SD | p | ||||
---|---|---|---|---|---|---|---|
MedD score * | 6.2 | 1.8 | 6.1 | 2.2 | 6.4 | 1.8 | 0.319 |
MDA low ≤5 (%) | 27.6 | 42.9 | 22.7 | ||||
MDA medium 6−9 (%) | 69.0 | 52.4 | 74.2 | 0.167 | |||
MDA high ≥10 (%) | 3.4 | 4.8 | 3.0 | ||||
1. Using olive oil as the main culinary fat (%) | 94.3 | 100 | 92.4 | 0.330 | |||
2. ≥4 Tablespoons olive oil/day (%) | 13.8 | 4.8 | 16.7 | 0.279 | |||
3. ≥2 Servings of vegetables/day (%) | 43.0 | 47.6 | 41.4 | 0.800 | |||
4. ≥3 Pieces of fruit/day (%) | 27.6 | 28.6 | 27.3 | 1.0 | |||
5. <1 Serving of red or processed meat/day (%) | 42.5 | 38.1 | 43.9 | 0.801 | |||
6. <1 Serving of butter, margarine or cream/day (%) | 82.8 | 81.0 | 83.3 | 0.751 | |||
7. <1 Glass of sugar-sweetened beverages/day (%) | 73.6 | 61.9 | 77.3 | 0.255 | |||
8. Moderate wine consumption (%) | 1.1 | 0.0 | 1.5 | 1.0 | |||
9. ≥3 Servings of pulses/week (%) | 20.0 | 25.0 | 18.5 | 0.533 | |||
10. ≥3 Servings of fish/week (%) | 11.5 | 14.3 | 10.6 | 0.699 | |||
11. <2 Commercial pastries/week (%) | 73.6 | 72.7 | 76.2 | 1.0 | |||
12. ≥3 Servings of tree nuts/week (%) | 19.3 | 9.5 | 22.6 | 0.336 | |||
13. Preferring white meat over red meat (%) | 72.4 | 76.2 | 71.2 | 0.783 | |||
14. ≥2 “Sofrito”/week (%) | 66.7 | 52.4 | 71.2 | 0.121 | |||
Energy (Kcal/day) * | 2142 | 788 | 1914 | 880 | 2223 | 746 | 0.088 |
% Protein | 16.6 | 3.6 | 15.7 | 3.9 | 16.9 | 3.5 | 0.226 |
% Total fat | 39.9 | 6.8 | 39.8 | 8.1 | 40.0 | 6.4 | 0.913 |
% AGS (Saturated fatty acids) | 13.0 | 3.5 | 13.2 | 4.3 | 12.9 | 3.2 | 0.743 |
% AGM (monounsaturated fatty acids) | 18.4 | 4.4 | 18.3 | 4.9 | 18.5 | 4.2 | 0.447 |
% AGP (polyunsaturated fatty acids) * | 5.3 | 1.7 | 5.1 | 1.6 | 5.4 | 1.8 | 0.421 |
Cholesterol (mg/day) * | 292 | 147 | 246 | 142 | 309 | 147 | 0.150 |
% Carbohydrates | 43.3 | 8.3 | 44.4 | 10.1 | 42.9 | 7.7 | 0.531 |
Fiber (g/day) | 21.9 | 9.9 | 20.0 | 11.2 | 22.5 | 9.4 | 0.263 |
B | 95% CI | p | |
---|---|---|---|
Item 12. ≥ Servings of tree nuts/week (%) | 0.320 | 2.4, 10.7 | 0.002 |
Sex | −0.590 | −14.6, −6.7 | 0.000 |
Age | −0.299 | −0.7, −0.1 | 0.003 |
Smoke | 0.126 | −1.2, 6.3 | 0.187 |
PA | 0.061 | −0.0, 0.0 | 0.532 |
BMI | −0.443 | −8.3, −2.2 | 0.001 |
WC | −0.182 | −0.3, 0.0 | 0.169 |
Kcal/d | −0.041 | −0.0, 0.0 | 0.687 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santi-Cano, M.J.; Novalbos-Ruiz, J.P.; Bernal-Jiménez, M.Á.; Bibiloni, M.d.M.; Tur, J.A.; Rodriguez Martin, A. Association of Adherence to Specific Mediterranean Diet Components and Cardiorespiratory Fitness in Young Adults. Nutrients 2020, 12, 776. https://doi.org/10.3390/nu12030776
Santi-Cano MJ, Novalbos-Ruiz JP, Bernal-Jiménez MÁ, Bibiloni MdM, Tur JA, Rodriguez Martin A. Association of Adherence to Specific Mediterranean Diet Components and Cardiorespiratory Fitness in Young Adults. Nutrients. 2020; 12(3):776. https://doi.org/10.3390/nu12030776
Chicago/Turabian StyleSanti-Cano, Mª José, José Pedro Novalbos-Ruiz, María Ángeles Bernal-Jiménez, María del Mar Bibiloni, Josep A. Tur, and Amelia Rodriguez Martin. 2020. "Association of Adherence to Specific Mediterranean Diet Components and Cardiorespiratory Fitness in Young Adults" Nutrients 12, no. 3: 776. https://doi.org/10.3390/nu12030776
APA StyleSanti-Cano, M. J., Novalbos-Ruiz, J. P., Bernal-Jiménez, M. Á., Bibiloni, M. d. M., Tur, J. A., & Rodriguez Martin, A. (2020). Association of Adherence to Specific Mediterranean Diet Components and Cardiorespiratory Fitness in Young Adults. Nutrients, 12(3), 776. https://doi.org/10.3390/nu12030776