Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Compounds
2.2. Cell Cultures
2.3. Permeability Assay
2.3.1. Preparation of Inserts with Caco-2 Cells
2.3.2. Measuring of the Monolayer Integrity
2.3.3. Metabolism and Absorption of Tested Compounds
2.4. LC/MS Analysis
2.4.1. Standards
2.4.2. Sample Purification
2.4.3. LC/MS Analysis of Metabolites
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
| Compound | Molecular Formula | Neutral Molecule Exact Mass: | Measured [M -H]- Exact Mass | Comparison with Standard | Detected | 
|---|---|---|---|---|---|
| trans-resveratrol | C14H12O3 | 228.0786 | 227.0708 | YES | YES | 
| cis-resveratrol | C14H12O3 | 228.0786 | 227.0708 | YES | YES | 
| dihydroresvaratrol | C14H14O3 | 230.0943 | 229.0865 | YES | YES | 
| trans-resveratrol-O-sulphate | C14H12O6S | 308.3064 | 307.0276 | YES | YES | 
| cis-resveratrol-O-sulphate | C14H12O6S | 308.3064 | 307.0276 | NO | YES | 
| dihydroresvaratrol-O-sulphate | C14H14O6S | 310.3223 | 309.0433 | NO | YES | 
| trans-resveratrol-O-glucuronide | C20H20O9 | 404.3674 | 403.1029 | YES | YES | 
| cis-resveratrol-O-glucuronide | C20H20O9 | 404.3674 | 403.1029 | NO | YES | 
| dihydroresvaratrol-O-glucuronide | C20H22O9 | 406.3832 | 405.1186 | NO | YES | 
| dihydroxymethylstilbene | C15H14O2 | 226.0994 | 225.0916 | NO | NO | 
| methylresveratrol | C15H14O3 | 242.0943 | 241.0865 | NO | NO | 
| dihydroxymethylstilbene | C15H14O2 | 212.0837 | 211.0759 | NO | NO | 
| hydroxystilbene | C14H12O | 196.0888 | 195.0810 | NO | NO | 
| stilbene | C14H12 | 180.0939 | 179.0861 | NO | NO | 
| dihydroxymethyldihydrostilbene | C15H16O2 | 226.0994 | 225.0916 | NO | NO | 
| methyl-dihydroresveratrol | C15H16O3 | 242.0943 | 241.0865 | NO | NO | 
| dihydroxydihydrostilbene | C14H14O2 | 212.0837 | 211.0759 | NO | NO | 
| hydroxydihydrostilbene | C14H14O | 196.0888 | 195.0810 | NO | NO | 
| dihydrostilbene | C14H14 | 180.0939 | 179.0861 | NO | NO | 
| phendiol | C6H6O2 | 110.0368 | 109.0290 | NO | NO | 
| phenol | C6H6O | 94.0419 | 93.0340 | NO | NO | 
| ethylenphenol | C8H10O | 122.0732 | 121.0653 | NO | NO | 
| ethylphenol | C8H10O2 | 138.0681 | 137.0603 | NO | NO | 
Appendix B
| Compound | Calibration Curve Equation | R^2 | Linear Range [ng/mL] | LOD [ng/mL] | LOQ [ng/mL] | RSD [%] of Injection Triplicate | 
|---|---|---|---|---|---|---|
| tRes | Y = 1570.9X – 11845 | 0.9961 | 5-1000 | 8.2 | 9.8 | 1.68 | 
| cRes | Y = 3587X – 24484 | 0.9990 | 5-500 | 7.1 | 7.8 | 0.12 | 
| dhRes | Y = 612.13X – 5494.6 | 0.9906 | 5-800 | 10.4 | 13.6 | 3.15 | 
| tRes-3-O-sulphate | Y = 543.14X – 8201.7 | 0.9902 | 100-600 | 17.4 | 22.6 | 2.41 | 
| tRes-3-O-glucuronide | Y = 398.29X – 2733.6 | 0.9961 | 100-1000 | 9.4 | 15.4 | 2.98 | 
References
- El Khawand, T.; Courtois, A.; Valls, J.; Richard, T.; Krisa, S. A review of dietary stilbenes: sources and bioavailability. Phytochem. Rev. 2018, 17, 1007–1029. [Google Scholar] [CrossRef]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis. Oncol. 2017, 35, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.; Castro, M.; Falqué, E. Evolution of trans- and cis-resveratrol content in red grapes (Vitis vinifera L. cv Mencía, Albarello and Merenzao) during ripening. Eur. Food Res. Technol. 2008, 227, 667–674. [Google Scholar] [CrossRef]
- Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 1992, 339, 1523–1526. [Google Scholar] [CrossRef]
- Kopp, P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the’French paradox’? Eur. J. Endocrinol. 1998, 138, 619–620. [Google Scholar] [CrossRef]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Dispos. 2004, 32, 1377–1382. [Google Scholar] [CrossRef]
- Wenzel, E.; Somoza, V. Metabolism and bioavailability of trans-resveratrol. Mol. Nutr. Food Res. 2005, 49, 472–481. [Google Scholar] [CrossRef]
- Jarosova, V.; Vesely, O.; Marsik, P.; Jaimes, J.D.; Smejkal, K.; Kloucek, P.; Havlik, J. Metabolism of stilbenoids by human faecal microbiota. Molecules 2019, 24, 1155. [Google Scholar] [CrossRef]
- Bode, L.M.; Bunzel, D.; Huch, M.; Cho, G.S.; Ruhland, D.; Bunzel, M.; Bub, A.; Franz, C.M.; Kulling, S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013, 97, 295. [Google Scholar] [CrossRef]
- Juan, M.E.; González-Pons, E.; Planas, J.M. Multidrug Resistance Proteins Restrain the Intestinal Absorption of trans-Resveratrol in Rats. J. Nutr. 2010, 140, 489–495. [Google Scholar] [CrossRef]
- Maier-Salamon, A.; Hagenauer, B.; Wirth, M.; Gabor, F.; Szekeres, T.; Jäger, W. Increased transport of resveratrol across monolayers of the human intestinal Caco-2 cells is mediated by inhibition and saturation of metabolites. Pharm. Res. 2006, 23, 2107–2115. [Google Scholar] [CrossRef]
- Urpi-Sarda, M.; Zamora-Ros, R.; Lamuela-Raventos, R.; Cherubini, A.; Jauregui, O.; De La Torre, R.; Covas, M.I.; Estruch, R.; Jaeger, W.; Andres-Lacueva, C. HPLC-Tandem Mass Spectrometric Method to Characterize Resveratrol Metabolism in Humans. Clin. Chem. 2007, 53, 292–299. [Google Scholar] [CrossRef]
- Boocock, D.J.; Faust, G.E.S.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 1246–1252. [Google Scholar] [CrossRef]
- Chen, M.; Yi, L.; Jin, X.; Xie, Q.; Zhang, T.; Zhou, X.; Chang, H.; Fu, Y.; Zhu, J.; Zhang, Q.; et al. Absorption of resveratrol by vascular endothelial cells through passive diffusion and an SGLT1-mediated pathway. J. Nutr. Biochem. 2013, 24, 1823–1829. [Google Scholar] [CrossRef]
- Maier-Salamon, A.; Böhmdorfer, M.; Riha, J.; Thalhammer, T.; Szekeres, T.; Jaeger, W. Interplay between metabolism and transport of resveratrol. Ann. N. Y. Acad. Sci. 2013, 1290, 98–106. [Google Scholar] [CrossRef]
- Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-1α. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]
- Timmers, S.; Konings, E.; Bilet, L.; Houtkooper, R.H.; van de Weijer, T.; Goossens, G.H.; Hoeks, J.; van der Krieken, S.; Ryu, D.; Kersten, S.; et al. Calorie Restriction-like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metab. 2011, 14, 612–622. [Google Scholar] [CrossRef]
- Falomir, E.; Lucas, R.; Peñalver, P.; Martí-Centelles, R.; Dupont, A.; Zafra-Gómez, A.; Carda, M.; Morales, J.C. Cytotoxic, Antiangiogenic and Antitelomerase Activity of Glucosyl- and Acyl- Resveratrol Prodrugs and Resveratrol Sulfate Metabolites. ChemBioChem 2016, 17, 1343–1348. [Google Scholar] [CrossRef]
- Storniolo, C.E.; Quifer-Rada, P.; Lamuela-Raventos, R.M.; Moreno, J.J. Piceid presents antiproliferative effects in intestinal epithelial Caco-2 cells, effects unrelated to resveratrol release. Food Funct. 2014, 5, 2137–2144. [Google Scholar] [CrossRef]
- Su, D.; Cheng, Y.; Liu, M.; Liu, D.; Cui, H.; Zhang, B.; Zhou, S.; Yang, T.; Mei, Q. Comparision of Piceid and Resveratrol in Antioxidation and Antiproliferation Activities In Vitro. PLoS ONE 2013, 8, e54505. [Google Scholar] [CrossRef]
- Jarosova, V.; Doskocil, I.; Volstatova, T.; Havlik, J. Adhesive Property of Different Strains of Lactobacilli in the Presence of Resveratrol. Sci. Agric. Bohem. 2018, 49, 291–296. [Google Scholar] [CrossRef]
- Hubatsch, I.; Ragnarsson, E.G.E.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shin, Y.; Yu, C.; Kosmeder, J.; Hirschelman, W.; Pezzuto, J.; van Breemen, R. Increasing the Throughput and Productivity of Caco-2 Cell Permeability Assays Using Liquid Chromatography-Mass Spectrometry: Application to Resveratrol Absorption and Metabolism. Comb. Chem. High Throughput Screen. 2012, 6, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.; Vitrac, X.; Decendit, A.; Ennamany, R.; Krisa, S.; Mérillon, J.M. Cellular uptake and efflux of trans-piceid and its aglycone trans-resveratrol on the apical membrane of human intestinal Caco-2 cells. J. Agric. Food Chem. 2005, 53, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Kaldas, M.I.; Walle, U.K.; Walle, T. Resveratrol transport and metabolism by human intestinal Caco-2 cells. J. Pharm. Pharmacol. 2003, 55, 307–312. [Google Scholar] [CrossRef]
- Kuhnle, G.; Spencer, J.P.E.; Chowrimootoo, G.; Schroeter, H.; Debnam, E.S.; Srai, S.K.S.; Rice-Evans, C.; Hahn, U. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochem. Biophys. Res. Commun. 2000, 272, 212–217. [Google Scholar] [CrossRef]
- Azorín-Ortuño, M.; Yáñez-Gascón, M.J.; Vallejo, F.; Pallarés, F.J.; Larrosa, M.; Lucas, R.; Morales, J.C.; Tomás-Barberán, F.A.; García-Conesa, M.T.; Espín, J.C. Metabolites and tissue distribution of resveratrol in the pig. Mol. Nutr. Food Res. 2011, 55, 1154–1168. [Google Scholar] [CrossRef]
- Sabolovic, N.; Humbert, A.C.; Radominska-Pandya, A.; Magdalou, J. Resveratrol is efficiently glucuronidated by UDP-glucuronosyltransferases in the human gastrointestinal tract and in Caco-2 cells. Biopharm. Drug Dispos. 2006, 27, 181–189. [Google Scholar] [CrossRef]
- Juan, M.E.; Alfaras, I.; Planas, J.M. Determination of dihydroresveratrol in rat plasma by HPLC. J. Agric. Food Chem. 2010, 58, 7472–7475. [Google Scholar] [CrossRef]





© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarosova, V.; Vesely, O.; Doskocil, I.; Tomisova, K.; Marsik, P.; Jaimes, J.D.; Smejkal, K.; Kloucek, P.; Havlik, J. Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. Nutrients 2020, 12, 595. https://doi.org/10.3390/nu12030595
Jarosova V, Vesely O, Doskocil I, Tomisova K, Marsik P, Jaimes JD, Smejkal K, Kloucek P, Havlik J. Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. Nutrients. 2020; 12(3):595. https://doi.org/10.3390/nu12030595
Chicago/Turabian StyleJarosova, Veronika, Ondrej Vesely, Ivo Doskocil, Katerina Tomisova, Petr Marsik, Jose D. Jaimes, Karel Smejkal, Pavel Kloucek, and Jaroslav Havlik. 2020. "Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model" Nutrients 12, no. 3: 595. https://doi.org/10.3390/nu12030595
APA StyleJarosova, V., Vesely, O., Doskocil, I., Tomisova, K., Marsik, P., Jaimes, J. D., Smejkal, K., Kloucek, P., & Havlik, J. (2020). Metabolism of cis- and trans-Resveratrol and Dihydroresveratrol in an Intestinal Epithelial Model. Nutrients, 12(3), 595. https://doi.org/10.3390/nu12030595
 
        


 
       