Influence of a Functional Nutrients-Enriched Infant Formula on Language Development in Healthy Children at Four Years Old
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Ethics, Consent, and Permissions
2.3. Assessments of Children Language: Oral Language Task of Navarra-Revised (PLON-R)
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the COGNIS Study Participants at Four Years Old
3.2. Effects of Infant Formulas on Language Development in COGNIS-Children at Four Years Old
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Head Zauche, L.; Darcy Mahoney, A.E.; Thul, T.A.; Zauche, M.S.; Weldon, A.B.; Stapel-Wax, J.L. The Power of Language Nutrition for Children’s Brain Development, Health, and Future Academic Achievement. J. Pediatr. Health Care 2017, 31, 493–503. [Google Scholar] [CrossRef]
- Kuhl, P.K. Early language acquisition: Cracking the speech code. Nat. Rev. Neurosci. 2004, 5, 831–843. [Google Scholar] [CrossRef]
- Werker, J.F.; Hensch, T.K. Critical Periods in Speech Perception: New Directions. Annu. Rev. Psychol. 2015, 66, 173–196. [Google Scholar] [CrossRef]
- Pivik, R.T.; Andres, A.; Bai, S.; Cleves, M.A.; Tennal, K.B.; Gu, Y.; Badger, T.M. Infant Diet-Related Changes in Syllable Processing Between 4 and 5 Months: Implications for Developing Native Language Sensitivity. Dev. Neuropsychol. 2016, 41, 215–230. [Google Scholar] [CrossRef]
- Mulder, K.A.; Elango, R.; Innis, S.M. Fetal DHA inadequacy and the impact on child neurodevelopment: A follow-up of a randomised trial of maternal DHA supplementation in pregnancy. Br. J. Nutr. 2018, 119, 271–279. [Google Scholar] [CrossRef]
- Colombo, J.; Carlson, S.E.; Cheatham, C.L.; Shaddy, D.J.; Kerling, E.H.; Thodosoff, J.M.; Gustafson, K.M.; Brez, C. Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. Am. J. Clin. Nutr. 2013, 98, 403–412. [Google Scholar] [CrossRef]
- Hernell, O.; Domellof, M.; Grip, T.; Lonnerdal, B.; Timby, N. Physiological Effects of Feeding Infants and Young Children Formula Supplemented with Milk Fat Globule Membranes. Nestle Nutr. Inst. Workshop Ser. 2019, 90, 35–42. [Google Scholar]
- Timby, N.; Domellöf, E.; Hernell, O.; Lönnerdal, B.; Domellöf, M. Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. Am. J. Clin. Nutr. 2014, 99, 860–868. [Google Scholar] [CrossRef]
- Cerdó, T.; Ruíz, A.; Suárez, A.; Campoy, C. Probiotic, prebiotic, and brain development. Nutrients 2017, 9, 1247. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R.; Osadchiy, V.; Kalani, A.; Mayer, E.A. The Brain-Gut-Microbiome Axis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Ruiz, A.; García-Santos, J.A.; Bermúdez, M.G.; Herrmann, F.; Diéguez, E.; Sepúlveda-Valbuena, N.; García, S.; Miranda, M.T.; De-Castellar, R.; Rodríguez-Palmero, M.; et al. Cortical Visual Evoked Potentials and Growth in Infants Fed with Bioactive Compounds-Enriched Infant Formula: Results from COGNIS Randomized Clinical Trial. Nutrients 2019, 11, 2456. [Google Scholar] [CrossRef] [PubMed]
- Salas Lorenzo, I.; Chisaguano Tonato, A.; de la Garza Puentes, A.; Nieto, A.; Herrmann, F.; Dieguez, E.; Castellote, A.; López-Sabater, M.; Rodríguez-Palmero, M.; Campoy, C.; et al. The Effect of an Infant Formula Supplemented with AA and DHA on Fatty Acid Levels of Infants with Different FADS Genotypes: The COGNIS Study. Nutrients 2019, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Association, W.M. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Aguinaga, G.; Armentia, M.L.; Fraile, A.; Olangua, P.; Uriz, N. PLON-R: Prueba de Lenguaje Oral Navarra—Revisada: Manual, 2nd ed.; TEA Ediciones, Ed.; Madrid, Spain, 2005; ISBN 8471748398. [Google Scholar]
- Mahurin Smith, J. Breastfeeding and language outcomes: A review of the literature. J. Commun. Disord. 2015, 57, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, L.; Jean Louis Dulience, S.; Wolff, P.; Cox, K.; Lesorogol, C.; Kohl, P. Nutrition factors predict earlier acquisition of motor and language milestones among young children in Haiti. Acta Paediatr. Int. J. Paediatr. 2016, 105, e406–e411. [Google Scholar] [CrossRef] [PubMed]
- Bourre, J.M. Diet, Brain Lipids, and Brain Functions: Polyunsaturated Fatty Acids, Mainly Omega-3 Fatty Acids BT—Handbook of Neurochemistry and Molecular Neurobiology: Neural Lipids; Lajtha, A., Tettamanti, G., Goracci, G., Eds.; Springer: Boston, MA, USA, 2009; pp. 409–441. ISBN 978-0-387-30378-9. [Google Scholar]
- Krol, K.M.; Grossmann, T. Psychological effects of breastfeeding on children and mothers. Bundesgesundheitsblatt. Gesundh. Gesundh. 2018, 61, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Suchdev, P.S.; Boivin, M.J.; Forsyth, B.W.; Georgieff, M.K.; Guerrant, R.L.; Nelson, C.A., 3rd. Assessment of Neurodevelopment, Nutrition, and Inflammation from Fetal Life to Adolescence in Low-Resource Settings. Pediatrics 2017, 139, S23–S37. [Google Scholar] [CrossRef]
- Horta, B.L.; de Sousa, B.A.; de Mola, C.L. Breastfeeding and neurodevelopmental outcomes. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 174–178. [Google Scholar] [CrossRef]
- Martin, C.; Ling, P.-R.; Blackburn, G. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- Cheatham, C.L.; Sheppard, K.W. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. Nutrients 2015, 7, 9079–9095. [Google Scholar] [CrossRef]
- Choi, H.J.; Kang, S.K.; Chung, M.R. The relationship between exclusive breastfeeding and infant development: A 6-and 12-month follow-up study. Early Hum. Dev. 2018, 127, 42–47. [Google Scholar]
- Jasani, B.; Simmer, K.; Patole, S.K.; Rao, S.C. Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst. Rev. 2017, 3, CD000376. [Google Scholar] [CrossRef] [PubMed]
- Heaton, A.E.; Meldrum, S.J.; Foster, J.K.; Prescott, S.L.; Simmer, K. Does docosahexaenoic acid supplementation in term infants enhance neurocognitive functioning in infancy? Front. Hum. Neurosci. 2013, 7, 774. [Google Scholar] [CrossRef]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.S.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef]
- Devlin, A.M.; Chau, C.M.Y.; Dyer, R.; Matheson, J.; McCarthy, D.; Yurko-Mauro, K.; Innis, S.M.; Grunau, R.E. Developmental Outcomes at 24 Months of Age in Toddlers Supplemented with Arachidonic Acid and Docosahexaenoic Acid: Results of a Double Blind Randomized, Controlled Trial. Nutrients 2017, 9, 975. [Google Scholar] [CrossRef]
- Kamino, D.; Studholme, C.; Liu, M.; Chau, V.; Miller, S.P.; Synnes, A.; Rogers, E.E.; Barkovich, A.J.; Ferriero, D.M.; Brant, R.; et al. Postnatal polyunsaturated fatty acids associated with larger preterm brain tissue volumes and better outcomes. Pediatr. Res. 2018, 83, 93–101. [Google Scholar] [CrossRef]
- Marien, P.; Borgatti, R. Language and the cerebellum. Handb. Clin. Neurol. 2018, 154, 181–202. [Google Scholar]
- Agostoni, C.; Zuccotti, G.V.; Radaelli, G.; Besana, R.; Podesta, A.; Sterpa, A.; Rottoli, A.; Riva, E.; Giovannini, M. Docosahexaenoic acid supplementation and time at achievement of gross motor milestones in healthy infants: A randomized, prospective, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2009, 89, 64–70. [Google Scholar] [CrossRef]
- Meldrum, S.J.; D’Vaz, N.; Simmer, K.; Dunstan, J.A.; Hird, K.; Prescott, S.L. Effects of high-dose fish oil supplementation during early infancy on neurodevelopment and language: A randomised controlled trial. Br. J. Nutr. 2012, 108, 1443–1454. [Google Scholar] [CrossRef]
- Lee, H.; Padhi, E.; Hasegawa, Y.; Larke, J.; Parenti, M.; Wang, A.; Hernell, O.; Lönnerdal, B.; Slupsky, C. Compositional Dynamics of the Milk Fat Globule and Its Role in Infant Development. Front. Pediatr. 2018, 6, 313. [Google Scholar] [CrossRef]
- Ingvordsen Lindahl, I.E.; Artegoitia, V.M.; Downey, E.; O’Mahony, J.A.; O’Shea, C.-A.; Ryan, C.A.; Kelly, A.L.; Bertram, H.C.; Sundekilde, U.K. Quantification of Human Milk Phospholipids: The Effect of Gestational and Lactational Age on Phospholipid Composition. Nutrients 2019, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Timby, N.; Hernell, O.; Vaarala, O.; Melin, M.; Lönnerdal, B.; Domellöf, M. Infections in infants fed formula supplemented with bovine milk fat globule membranes. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H. Functional brain development in humans. Nat. Rev. Neurosci. 2001, 2, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Brauer, J.; Anwander, A.; Friederici, A.D. Neuroanatomical prerequisites for language functions in the maturing brain. Cereb. Cortex 2011, 21, 459–466. [Google Scholar] [CrossRef]
- Belfort, M.B.; Anderson, P.J.; Nowak, V.A.; Lee, K.J.; Molesworth, C.; Thompson, D.K.; Doyle, L.W.; Inder, T.E. Breast Milk Feeding, Brain Development, and Neurocognitive Outcomes: A 7-Year Longitudinal Study in Infants Born at Less Than 30 Weeks’ Gestation. J. Pediatr. 2016, 177, 133–139. [Google Scholar] [CrossRef]
- Luby, J.L.; Belden, A.C.; Whalen, D.; Harms, M.P.; Barch, D.M. Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume. J. Am. Acad. Child Adolesc. Psychiatry 2016, 55, 367–375. [Google Scholar] [CrossRef]
- Duncan, A.F.; Matthews, M.A. Neurodevelopmental Outcomes in Early Childhood. Clin. Perinatol. 2018, 45, 377–392. [Google Scholar] [CrossRef]
- Schwab, J.F.; Lew-Williams, C. Language learning, socioeconomic status, and child-directed speech. Wiley Interdiscip. Rev. Cogn. Sci. 2016, 7, 264–275. [Google Scholar] [CrossRef]
- McKean, C.; Reilly, S.; Bavin, E.L.; Bretherton, L.; Cini, E.; Conway, L.; Cook, F.; Eadie, P.; Prior, M.; Wake, M.; et al. Language Outcomes at 7 Years: Early Predictors and Co-Occurring Difficulties. Pediatrics 2017, 139, e20161684. [Google Scholar] [CrossRef]
- Quinn, P.; O’Callaghan, M.; Williams, G.; Najman, J.; Andersen, M.; Bor, W. The effect of breastfeeding on child development at 5 years: A cohort study. J. Paediatr. Child Health 2001, 37, 465–469. [Google Scholar] [CrossRef]
Follow up Four Years Old | |||||
---|---|---|---|---|---|
Parents characteristics | SF (n = 46) | EF (n = 43) | BF (n = 33) | p1 | |
Maternal age (years) | 31.00 (24.00–35.00) a | 31.00 (28.00–34.00) a,b | 34.00 (31.00–38.00) b | 0.019 | |
Maternal pBMI (kg/m2) | 24.17 (21.05–26.30) | 25.15 (22.21–28.48) | 24.46 (23.05–25.95) | 0.478 | |
Maternal educational level | Primary | 6 (13.04%) | 9 (20.93%) | 1 (3.03%) | 0.001 |
Secondary | 12 (26.09%) a,b | 13 (30.23%) b | 2 (6.06%) a | ||
VT | 13 (28.26%) | 15 (34.88%) | 9 (27.27%) | ||
University | 15 (32.61%) a | 6 (13.95%) a | 21 (63.64%) b | ||
Maternal IQ (points) | 104.00 (95.00–112.50) a,b | 100.00 (89.00–108.00) a | 111.00 (96.00–117.00) b | 0.023 | |
Smoking during pregnancy | No | 36 (80.00%) | 36 (83.72%) | 31 (93.94%) | 0.220 |
Yes | 9 (20.00%) | 7 (16.28%) | 2 (6.06%) | ||
GWG (kg) | 7.00 (3.50–10.00) | 7.00 (4.00–10.00) | 6.25 (4.50–8.50) | 0.758 | |
Type of delivery | Vaginal | 34 (73.91%) | 31 (72.09%) | 25 (75.76%) | 0.937 |
Cesarean | 12 (26.09%) | 12 (27.91%) | 8 (24.24%) | ||
Postpartum Depression | No | 35 (76.09%) | 34 (80.95%) | 28 (84.85%) | 0.621 |
Yes | 11 (23.91%) | 8 (19.05%) | 5 (15.15%) | ||
Paternal age (years) | 32.50 ± 6.69 a | 33.54 ± 5.56 a,b | 36.24 ± 4.38 b | 0.027 | |
Paternal educational level | Primary | 11 (25.00%) | 16 (39.02%) | 6 (18.18%) | 0.040 |
Secondary | 16 (36.36%)a | 9 (21.95%) a,b | 4 (12.12%) b | ||
VT | 8 (18.18%) | 9 (21.95%) | 10 (30.30%) | ||
University | 9 (20.45%) | 7 (17.07%) | 13 (39.39%) | ||
Paternal IQ (points) | 106.86 ± 12.38 | 104.29 ± 15.81 | 106.90 ± 12.93 | 0.659 | |
Socioeconomic status | Low | 9 (19.57%) a,b | 10 (23.81%) b | 1 (3.03%) a | <0.001 |
Middle-Low | 22 (47.83%) a | 25 (59.52%) a | 6 (18.18%) b | ||
Middle-High | 12 (26.09%) a,b | 4 (9.52%) b | 17 (51.52%) a | ||
High | 3 (6.52%) a | 3 (7.14%) a,b | 9 (27.27%) b | ||
Place of residence | Urban | 20 (44.44%) | 11 (26.19%) | 8 (24.24%) | 0.095 |
Rural | 25 (55.56%) | 31 (73.81%) | 25 (75.76%) | ||
Siblings | 0 | 15 (33.33%) | 18 (42.86%) | 8 (24.24%) | 0.238 |
≥1 | 30 ± 66.67 | 24 ± 57.14 | 25 ± 75.76 | ||
Gestational age (weeks) | 40.00 (39.00–41.00) | 40.00 (39.00–41.00) | 40.00 (39.00–41.00) | 0.697 | |
Newborn and child characteristics | |||||
Birth weight (g) | 3402.89 ± 402.49 | 3418.84 ± 482.08 | 3374.24 ± 392.58 | 0.904 | |
Birth length (cm) | 51.00 (50.00–52.00) | 51.00 (50.00–52.00) | 51.00 (50.00–52.00) | 0.678 | |
Birth head circumference (cm) | 35.00 (34.00–36.00) | 34.00 (34.00–35.00) | 35.00 (34.00–35.00) | 0.155 | |
Children sex | Boy | 31 (67.39%) a | 27 (62.79%) a,b | 13 (39.39%) b | 0.034 |
Girl | 15 (32.61%) a | 16 (37.21%) a,b | 20 (60.61%) b | ||
Children IQ (points) | 111.50 (97.00–118.00) | 113.00 (103.00–120.00) | 115.00 (105.00–121.00) | 0.551 | |
Children BMI/Age | Severe thinness | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | 0.388 |
Thinness | 0 (0.00%) | 0 (0.00%) | 0 (0.00%) | ||
Adequate weight | 33 (71.74%) | 25 (58.14%) | 26 (78.79%) | ||
Risk of overweight | 9 (19.57%) | 13 (30.23%) | 4 (12.12%) | ||
Overweight | 4 (8.70%) | 4 (9.30%) | 3 (9.09%) | ||
Obesity | 0 (0.00%) | 1 (2.33%) | 0 (0.00%) | ||
Bilingual | 2 (4.30%) | 3 (7.00%) | 2 (6.10%) | 0.890 | |
Speech therapy | 5 (10.90%) | 1 (2.30%) | 1 (3.00%) | 0.264 |
PLON-R Scores | SF (n = 46) | EF (n = 43) | BF (n = 33) | Punadj | F (df) | Padj | ηp2 |
---|---|---|---|---|---|---|---|
Form 1 | 54.85 ± 18.18 | 56.49 ± 16.92 | 59.39 ± 15.28 | 0.503 | 0.387 (2,102) | 0.680 | 0.008 |
Phonology | 0.80 ± 0.54 | 0.81 ± 0.39 | 0.91 ± 0.29 | 0.376 | 2.006 (2,102) | 0.140 | 0.038 |
Morphology-Syntax | 3.28 ± 1.05 | 3.40 ± 0.85 | 3.48 ± 0.87 | 0.630 | 1.285 (2,102) | 0.281 | 0.025 |
Sentences repeat | 1.48 ± 0.75 | 1.44 ± 0.70 | 1.58 ± 0.71 | 0.717 | 0.850 (2,102) | 0.431 | 0.016 |
Oral Spontaneous Expression | 1.8 ± 0.40 | 1.95 ± 0.30 | 1.91 ± 0.29 | 0.512 | 1.493 (2,102) | 0.230 | 0.028 |
Content 1 | 41.50 ± 16.64 a | 42.84 ± 18.08 a,b | 51.42 ± 15.05 b | 0.026 | 0.826 (2,102) | 0.441 | 0.016 |
Lexicon | 1.20 ± 0.58 | 1.35 ± 0.65 | 1.52 ± 0.51 | 0.062 | 1.091 (2,102) | 0.340 | 0.021 |
Comprehension | 0.89 ± 0.31 | 0.91 ± 0.29 | 1.00 ± 0.00 | 0.161 | 1.080 (2,102) | 0.343 | 0.021 |
Expression | 0.30 ± 0.47 | 0.44 ± 0.50 | 0.52 ± 0.51 | 0.149 | 0.707 (2,102) | 0.496 | 0.014 |
Colors identification | 0.98 ± 0.15 | 1.00 ± 0.00 | 0.97 ± 0.17 | 0.557 | 1.442 (2,102) | 0.241 | 0.028 |
Spatial relations | 0.85 ± 0.36 | 0.77 ± 0.43 | 0.94 ± 0.24 | 0.078 | 0.266 (2,102) | 0.767 | 0.005 |
Opposites | 0.61 ± 0.49 | 0.65 ± 0.48 | 0.82 ± 0.39 | 0.090 | 0.539 (2,102) | 0.585 | 0.010 |
Basic needs | 0.78 ± 0.42 | 0.72 ± 0.45 | 0.88 ± 0.33 | 0.207 | 0.048 (2,102) | 0.953 | 0.001 |
Use 1 | 46.00 ± 11.35 a | 51.86 ± 11.15 b | 50.79 ± 10.51 a,b | 0.033 | 3.461 (2,102) | 0.035 | 0.064 |
Oral Spontaneous Expression (picture) | 1.89 ± 0.38 | 1.93 ± 0.34 | 1.91 ± 0.29 | 0.866 | 2.376 (2,102) | 0.098 | 0.045 |
Oral Spontaneous Expression (puzzle) | 0.4 ± 0.50 a | 0.70 ± 0.46 b | 0.67 ± 0.48 a,b | 0.024 | 4.472 (2,102) | 0.014 | 0.081 |
PLON-R Total Score 1 | 47.07 ± 16.90 a | 51.23 ± 18.12 a,b | 57.48 ± 15.18 b | 0.029 | 1.512 (2,102) | 0.225 | 0.029 |
PLON-R Scales | SF (n = 46) | EF (n = 43) | BF (n = 33) | Chi-Square | P1 | |
---|---|---|---|---|---|---|
Form | Delayed/Need to improve | 13 (28.26) | 9 (20.93) | 4 (12.12) | 2.991 | 0.224 |
Normal | 33 (71.74) | 34 (79.07) | 29 (87.88) | |||
Content | Delayed/Need to improve | 37 (80.43) | 32 (74.42) | 20 (60.61) | 2.991 | 0.142 |
Normal | 9 (19.57) | 11 (25.58) | 13 (39.39) | |||
Use | Delayed/Need to improve | 28 (60.87) a | 14 (32.56) b | 13 (39.39) a,b | 7.786 | 0.020 |
Normal | 18 (39.13) a | 29 (67.44) b | 20 (60.61) a,b | |||
PLON-R Total Score | Delayed/Need to improve | 25 (54.35) a | 19 (44.19) a,b | 8 (24.24) b | 7.188 | 0.027 |
Normal | 21 (45.65) a | 24 (55.81) a,b | 25 (75.76) b |
PLON-R Scales | SF Group * OR (95% CI) | p | Socioeconomic Status † OR (95% CI) | p |
---|---|---|---|---|
Form | - | - | - | - |
Content | - | - | 3.583 (0.977–13.148) | 0.054 |
Use | 8.500 (1.504–48.049) | 0.015 | - | - |
Total Score | - | - | 4.821 (0.966–24.063) | 0.055 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto-Ruiz, A.; Diéguez, E.; Sepúlveda-Valbuena, N.; Catena, E.; Jiménez, J.; Rodríguez-Palmero, M.; Catena, A.; Miranda, M.T.; García-Santos, J.A.; G. Bermúdez, M.; et al. Influence of a Functional Nutrients-Enriched Infant Formula on Language Development in Healthy Children at Four Years Old. Nutrients 2020, 12, 535. https://doi.org/10.3390/nu12020535
Nieto-Ruiz A, Diéguez E, Sepúlveda-Valbuena N, Catena E, Jiménez J, Rodríguez-Palmero M, Catena A, Miranda MT, García-Santos JA, G. Bermúdez M, et al. Influence of a Functional Nutrients-Enriched Infant Formula on Language Development in Healthy Children at Four Years Old. Nutrients. 2020; 12(2):535. https://doi.org/10.3390/nu12020535
Chicago/Turabian StyleNieto-Ruiz, Ana, Estefanía Diéguez, Natalia Sepúlveda-Valbuena, Elvira Catena, Jesús Jiménez, María Rodríguez-Palmero, Andrés Catena, M. Teresa Miranda, José Antonio García-Santos, Mercedes G. Bermúdez, and et al. 2020. "Influence of a Functional Nutrients-Enriched Infant Formula on Language Development in Healthy Children at Four Years Old" Nutrients 12, no. 2: 535. https://doi.org/10.3390/nu12020535
APA StyleNieto-Ruiz, A., Diéguez, E., Sepúlveda-Valbuena, N., Catena, E., Jiménez, J., Rodríguez-Palmero, M., Catena, A., Miranda, M. T., García-Santos, J. A., G. Bermúdez, M., & Campoy, C. (2020). Influence of a Functional Nutrients-Enriched Infant Formula on Language Development in Healthy Children at Four Years Old. Nutrients, 12(2), 535. https://doi.org/10.3390/nu12020535