Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Methods
2.3. NNS Consumption Extraction
2.3.1. Analysis of NNS Consumption Patterns
2.3.2. Analysis of NNS Consumer Demographics
- Group 1 (n = 36): decreased SSB consumption (≥1.5 fl oz) with increased NNS consumption (>3.0 total NNS mg)
- Group 2 (n = 43): decreased SSB consumption (≥1.5 fl oz) but no increase in NNS consumption (≤2.99 total NNS mg)
- Group 3 (n = 22): increased/no change in SSB consumption, regardless of NNS consumption
2.4. Statistical Analyses
3. Results
3.1. Changes in Frequency of NNS Consumers and Non-Consumers Over Time
3.2. Changes in Non-Nutritive Sweetener Consumption Over Time
3.3. Changes in Non-Nutritive Sweetener Consumption Sources Over Time
3.4. Differences in Demographics Between SSB-NNS Consumption Change Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bowman, S.A.; Clemens, J.C.; Martin, C.L.; Anand, J.; Steinfeldt, L.C.; Moshfegh, A.J. Added Sugars Intake of Americans: What We Eat in America; NHANES 2013-2014; U.S. Department of Agriculture, Agricultural Research Service: Beltsville, MD, USA, 2017. [CrossRef]
- Rippe, J.M.; Angelopoulos, T.J. Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding. Nutrients 2016, 8, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segal, L.M.; Rayburn, J.; Beck, S.E. The State of Obesity 2017: Better Policies for a Healthier America. Available online: http://sf-nutrition.org/wp-content/uploads/2017/12/stateofobesity2017.pdf (accessed on 6 November 2020).
- Sylvetsky, A.C.; Rother, K.I. Trends in the consumption of low-calorie sweeteners. Physiol. Behav. 2016, 164, 446–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedrick, V.E.; Passaro, E.M.; Davy, B.M.; You, W.; Zoellner, J.M. Characterization of Non-Nutritive Sweetener Intake in Rural Southwest Virginian Adults Living in a Health-Disparate Region. Nutrients 2017, 9, 757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvetsky, A.C.; Jin, Y.; Clark, E.J.; Welsh, J.A.; Rother, K.I.; Talegawkar, S.A. Consumption of Low-Calorie Sweeteners among Children and Adults in the United States. J. Acad. Nutr. Diet. 2017, 117, 441–448.e2. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M.; et al. Nonnutritive sweeteners and cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Can. Med. Assoc. J. 2017, 189, E929–E939. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, G.L.; Kanders, B.S.; Lavin, P.T.; Keller, S.D.; Whatley, J. The effect of aspartame as part of a multidisciplinary weight-control program on short- and long-term control of body weight. Am. J. Clin. Nutr. 1997, 65, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Madjd, A.; A Taylor, M.; Delavari, A.; Emalekzadeh, R.; A Macdonald, I.; Farshchi, H.R. Effects on weight loss in adults of replacing diet beverages with water during a hypoenergetic diet: A randomized, 24-wk clinical trial. Am. J. Clin. Nutr. 2015, 102, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.E.; Perez, V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am. J. Clin. Nutr. 2014, 100, 765–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.; Beck, J.; Cardel, M.; Wyatt, H.R.; Foster, G.D.; Pan, Z.; Wojtanowski, A.C.; Veur, S.S.V.; Herring, S.J.; Brill, C.; et al. The effects of water and non-nutritive sweetened beverages on weight loss and weight maintenance: A randomized clinical trial. Obesity 2015, 24, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.C.; Wyatt, H.R.; Foster, G.D.; Pan, Z.; Wojtanowski, A.C.; Veur, S.S.V.; Herring, S.J.; Brill, C.; Hill, J.O. The effects of water and non-nutritive sweetened beverages on weight loss during a 12-week weight loss treatment program. Obesity 2014, 22, 1415–1421. [Google Scholar] [CrossRef]
- Tate, D.F.; Turner-McGrievy, G.; Lyons, E.; Stevens, J.; Erickson, K.; Polzien, K.; Diamond, M.; Wang, X.; Popkin, B. Replacing caloric beverages with water or diet beverages for weight loss in adults: Main results of the Choose Healthy Options Consciously Everyday (CHOICE) randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 555–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madjd, A.; Taylor, M.A.; Delavari, A.; Malekzadeh, R.; Macdonald, I.A.; Farshchi, H.R. Beneficial effects of replacing diet beverages with water on type 2 diabetic obese women following a hypo-energetic diet: A randomized, 24-week clinical trial. Diabetes Obes. Metab. 2016, 19, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, C.W.; Shardell, M.; Tanaka, T.; Liu, D.D.; Gravenstein, K.S.; Simonsick, E.M.; Egan, J.M.; Ferrucci, L. Chronic Low-Calorie Sweetener Use and Risk of Abdominal Obesity among Older Adults: A Cohort Study. PLoS ONE 2016, 11, e0167241. [Google Scholar] [CrossRef] [Green Version]
- Mph, S.P.F.; Ms, K.W.; Hazuda, H.P. Diet Soda Intake Is Associated with Long-Term Increases in Waist Circumference in a Biethnic Cohort of Older Adults: The San Antonio Longitudinal Study of Aging. J. Am. Geriatr. Soc. 2015, 63, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Stellman, S.D.; Garfinkel, L. Artificial sweetener use and one-year weight change among women. Prev. Med. 1986, 15, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Nettleton, J.A.; Lutsey, P.L.; Wang, Y.; Lima, J.A.; Michos, E.D.; Jacobs, D.R. Diet Soda Intake and Risk of Incident Metabolic Syndrome and Type 2 Diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2009, 32, 688–694. [Google Scholar] [CrossRef] [Green Version]
- Palmnäs, M.S.A.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-Dose Aspartame Consumption Differentially Affects Gut Microbiota-Host Metabolic Interactions in the Diet-Induced Obese Rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef]
- Hess, E.L.; Myers, E.A.; Swithers, S.E.; E Hedrick, V. Associations Between Nonnutritive Sweetener Intake and Metabolic Syndrome in Adults. J. Am. Coll. Nutr. 2018, 37, 487–493. [Google Scholar] [CrossRef]
- Kuk, J.L.; Brown, R.E. Aspartame intake is associated with greater glucose intolerance in individuals with obesity. Appl. Physiol. Nutr. Metab. 2016, 41, 795–798. [Google Scholar] [CrossRef] [Green Version]
- Swithers, S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 24, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Collison, K.S.; Makhoul, N.J.; Zaidi, M.Z.; Al-Rabiah, R.; Inglis, A.; Andres, B.L.; Ubungen, R.; Shoukri, M.; Al-Mohanna, F.A. Interactive effects of neonatal exposure to monosodium glutamate and aspartame on glucose homeostasis. Nutr. Metab. 2012, 9, 58. [Google Scholar] [CrossRef] [Green Version]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nat. Cell Biol. 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Swithers, S.E.; Laboy, A.F.; Clark, K.; Cooper, S.; Davidson, T. Experience with the high-intensity sweetener saccharin impairs glucose homeostasis and GLP-1 release in rats. Behav. Brain Res. 2012, 233, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toigo, E.V.P.; Huffell, A.; Mota, C.; Bertolini, D.; Pettenuzzo, L.; Dalmaz, C. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame. Appetite 2015, 87, 168–174. [Google Scholar] [CrossRef]
- Fowler, S.P.; Williams, K.; Resendez, R.G.; Hunt, K.J.; Hazuda, H.P.; Stern, M.P. Fueling the Obesity Epidemic? Artificially Sweetened Beverage Use and Long-term Weight Gain. Obesity 2008, 16, 1894–1900. [Google Scholar] [CrossRef]
- Peters, J.; Beck, J. Low Calorie Sweetener (LCS) use and energy balance. Physiol. Behav. 2016, 164, 524–528. [Google Scholar] [CrossRef]
- Campos, V.; Despland, C.; Brandejsky, V.; Kreis, R.; Schneiter, P.; Boesch, C.H.; Tappy, L. Metabolic Effects of Replacing Sugar-Sweetened Beverages with Artificially-Sweetened Beverages in Overweight Subjects with or without Hepatic Steatosis: A Randomized Control Clinical Trial. Nutrients 2017, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Zoellner, J.M.; Hedrick, V.E.; You, W.; Chen, Y.; Davy, B.M.; Porter, K.J.; Bailey, A.; Lane, H.; Alexander, R.; Estabrooks, P.A. Effects of a behavioral and health literacy intervention to reduce sugar-sweetened beverages: A randomized-controlled trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Zoellner, J.; Chen, Y.; Davy, B.; You, W.; Hedrick, V.; Corsi, T.; Estabrooks, P. Talking health, a pragmatic randomized-controlled health literacy trial targeting sugar-sweetened beverage consumption among adults: Rationale, design & methods. Contemp. Clin. Trials 2013, 37, 43–57. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Agriculture Economic Research Service. Rural-Urban Continuum Codes 2013. Available online: http://www.ers.usda.gov/data-products/rural-urban-continuum-codes/.aspx (accessed on 30 March 2020).
- United States Department of Agriculture. Nutritive and Nonnutritive Sweetener Resources. Available online: https://www.nal.usda.gov/fnic/nutritive-and-nonnutritive-sweetener-resources (accessed on 5 March 2020).
- Sylvetsky, A.C.; A Welsh, J.; Brown, R.J.; Vos, M.B. Low-calorie sweetener consumption is increasing in the United States. Am. J. Clin. Nutr. 2012, 96, 640–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Higgins, K.; Mattes, R.D. A randomized controlled trial contrasting the effects of 4 low-calorie sweeteners and sucrose on body weight in adults with overweight or obesity. Am. J. Clin. Nutr. 2019, 109, 1288–1301. [Google Scholar] [CrossRef]
- Huang, M.; Quddus, A.; Stinson, L.; Shikany, J.M.; Howard, B.V.; Kutob, R.M.; Lu, B.; E Manson, J.; Eaton, C.B. Artificially sweetened beverages, sugar-sweetened beverages, plain water, and incident diabetes mellitus in postmenopausal women: The prospective Women’s Health Initiative observational study. Am. J. Clin. Nutr. 2017, 106, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, J.R.; Johnson, C.M.; Dean, W.R. Less-healthy eating behaviors have a greater association with a high level of sugar-sweetened beverage consumption among rural adults than among urban adults. Food Nutr. Res. 2011, 55, 5819. [Google Scholar] [CrossRef] [Green Version]
- Castro-Quezada, I.; Ruano-Rodríguez, C.; Ribas-Barba, L.; Serra-Majem, L. Misreporting in nutritional surveys: Methodological implications. Nutr. Hosp. 2015, 31, 31. [Google Scholar]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method Accurately Estimates Group Total Energy and Nutrient Intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef]
Baseline | 6 Months | ||||
---|---|---|---|---|---|
NNS Consumers n (%) | Non-Consumers n (%) | Became NNS Consumers n (%) | Remained NNS Consumers n (%) | Became Non-Consumers n (%) | Remained Non-Consumers n (%) |
30 (30) | 71 (70) | 25 (25) | 21 (21) | 9 (9) | 46 (45) |
NNS Type | Baseline Mean ± SD | 6 Months Mean ± SD | Mean difference ± SE a |
---|---|---|---|
Aspartame (mg) | 46.6 ± 107.5 | 83.8 ± 158.7 | 37.2 ± 13.9 ** |
Saccharin (mg) | 0.6 ± 5.1 | 5.8 ± 32.9 | 5.2 ± 3.1 |
Sucralose (mg) | 5.0 ± 21.8 | 26.7 ± 108.7 | 21.6 ± 11.1 |
Acesulfame Potassium (mg) | 8.1 ± 26.9 | 7.8 ± 22.1 | −0.3 ± 2.9 |
Total NNS (mg) | 60.3 ± 127.3 | 124.1 ± 201.6 | 63.7 ± 18.5 *** |
Dietary Sources of NNS | Aspartame | Acesulfame Potassium | Sucralose | Saccharin | ||||
---|---|---|---|---|---|---|---|---|
Baseline mg (%) | 6 Months mg (%) | Baseline mg (%) | 6 Months mg (%) | Baseline mg (%) | 6 Months mg (%) | Baseline mg (%) | 6 Months mg (%) | |
Diet soda | 3563 (76) | 7671 (91) | 291 (36) | 593 (76) | 160 (31) | 168 (6) | 15 (23) | 0 (0) |
Diet tea | 596 (13) | 77 (1) | 288 (36) | 22 (3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Juice or flavored drinks | 208 (4) | 242 (3) | 223 (28) | 132 (17) | 206 (40) | 70 (3) | 0 (0) | 0 (0) |
Yogurt | 124 (3) | 62 (1) | 0 (0) | 0 (0) | 114 (22) | 0 (0) | 0 (0) | 0 (0) |
Tabletop sweetener | 140 (3) | 176 (2) | 0 (0) | 0 (0) | 0 (0) | 2419 (90) | 49 (77) | 586 (100) |
Cereal | 50 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Popcorn | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 22 (4) | 0 (0) | 0 (0) | 0 (0) |
Coffee cream substitute | 0 (0) | 0 (0) | 8 (1) | 6 (1) | 8 (2) | 6 (0) | 0 (0) | 0 (0) |
Ice cream | 17 (0) | 85 (1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Hot cocoa mix | 0 (0) | 146 (2) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Meal replacement product | 0 (0) | 0 (0) | 0 (0) | 26 (3) | 0 (0) | 26 (1) | 0 (0) | 0 (0) |
Total (mg) | 4698 | 8459 | 810 | 779 | 510 | 2689 | 64 | 586 |
Characteristics | Group 1: Decreased SSB with Increased NNS Consumption | Group 2: Decreased SSB but no Increase in NNS Consumption | Group 3: Increased or no Change in SSB, Regardless of Change in NNS Consumption |
---|---|---|---|
(n = 36) | (n = 43) | (n = 22) | |
n (%) | n (%) | n (%) | |
Sex * | |||
Male | 7 (19) | 11 (26) | 0 (0) |
Female | 29 (81) | 32 (74) | 22 (100) |
Mean age ± SD (years) | 44.3 ± 12.9 | 43.3 ± 13.0 | 43.7 ± 13.2 |
Race/Ethnicity | |||
White | 34 (94) | 42 (98) | 21 (96) |
African American | 2 (6) | 1 (2) | 1 (4) |
Mean weight ± SD (kg) | 94.8 ± 28.9 | 87.7 ± 21.5 | 93.1 ± 25.5 |
Mean body mass index (BMI) ± SD (kg/m2) | 34.53 ± 9.1 | 31.68 ± 7.8 | 35.1 ± 9.5 |
BMI category | |||
Underweight (<18.5) | 0 (0) | 0 (0) | 0 (0) |
Normal (18.5–24.9) | 4 (11) | 11 (25) | 2 (9) |
Overweight (25–29.9) | 10 (28) | 8 (19) | 5 (23) |
Obese (≥30) | 22 (61) | 24 (56) | 15 (68) |
Education level | |||
High school graduate or less | 12 (33) | 14 (33) | 8 (36) |
Some college or more | 24 (67) | 29 (67) | 14 (64) |
Mean household income ± SD ($) | 21,528 ± 16,347 | 23,547 ± 16,158 | 22,045 ± 16,432 |
Household income level ($) | |||
≤14,999 | 18 (50) | 16 (37) | 10 (45) |
15,000–34,999 | 10 (28) | 16 (37) | 8 (36) |
35,000–39,999 | 0 (0) | 3 (7) | 0 (0) |
40,000–54,999 | 6 (17) | 2 (5) | 2 (9) |
>55,000 | 2 (6) | 6 (14) | 2 (9) |
Characteristic | Group 1: Decreased SSB with Increased NNS Consumption (n = 36) | Group 2: Decreased SSB but no Increase in NNS Consumption (n = 43) | Group 3: Increased or no change in SSB, Regardless of Change in NNS (n = 22) | Significance Between Groups b | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Baseline Mean ± SD | 6 Months Mean ± SD | Mean Difference ± Std. Error a | Baseline Mean ± SD | 6 Months Mean ± SD | Mean difference ± Std. Error a | Baseline Mean ± SD | 6 Months Mean ± SD | Mean Difference ± Std. Error a | ||
SSB (fl oz) | 34.4 ± 23.5 | 7.3 ± 10.7 | −27.0 ± 3.4 *** | 37.1 ± 31.9 | 14.5 ± 13.9 | −22.5 ± 4.0 *** | 12.7 ± 11.8 | 20.2 ± 15.7 | 7.5 ± 1.5 *** | F = 19.419 p = < 0.001 c |
Total NNS (mg) | 63.0 ± 129.9 | 255.4 ± 216.8 | 192.3 ± 29.2 ***1 | 13.2 ± 36.1 | 0.0 ± 0.0 | −13.2 ± 5.5 *2 | 147.9 ± 184.0 | 151.6 ± 230.9 | 3.5 ± 55.0 1 | F = 17.953 p = < 0.001 |
Weight (kg) | 94.2 ± 28.9 | 94.8 ± 28.8 | 0.5 ± 0.4 1 | 89.0 ± 21.1 | 87.7 ± 21.5 | −1.3 ± 0.8 1 | 94.0 ± 25.7 | 93.0 ± 25.5 | −1.0 ± 0.5 1 | F = 2.094 p = 0.129 |
BMI (kg/m2) | 34.5 ± 9.0 | 34.5 ± 9.0 | 0.10 ± 0.2 1 | 32.1 ± 7.8 | 31.6 ± 7.8 | −0.51 ± 0.2 1 | 35.45 ± 9.5 | 35.0 ± 9.5 | −0.3 ± 0.2 1 | F = 1.620 p = 0.203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acero, D.; Zoellner, J.M.; Davy, B.M.; Hedrick, V.E. Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention. Nutrients 2020, 12, 3428. https://doi.org/10.3390/nu12113428
Acero D, Zoellner JM, Davy BM, Hedrick VE. Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention. Nutrients. 2020; 12(11):3428. https://doi.org/10.3390/nu12113428
Chicago/Turabian StyleAcero, Darlene, Jamie M. Zoellner, Brenda M. Davy, and Valisa E. Hedrick. 2020. "Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention" Nutrients 12, no. 11: 3428. https://doi.org/10.3390/nu12113428
APA StyleAcero, D., Zoellner, J. M., Davy, B. M., & Hedrick, V. E. (2020). Changes in Non-Nutritive Sweetener Consumption Patterns in Response to a Sugar-Sweetened Beverage Reduction Intervention. Nutrients, 12(11), 3428. https://doi.org/10.3390/nu12113428