Association between Iron Status and Incident Type 2 Diabetes: A Population-Based Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources
2.3. Incidence of Type 2 Diabetes
2.4. Clinical and Biochemical Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riddle, M.C.; Herman, W.H. The cost of diabetes cared an elephant in the room. Diabetes Care 2018, 41, 929–932. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of type 2 diabetes—Global burden of disease and forecasted trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Real, J.M.; Manco, M. Effects of iron overload on chronic metabolic diseases. Lancet Diabetes Endocrinol. 2014, 2, 513–526. [Google Scholar] [CrossRef]
- Podmore, C.; Meidtner, K.; Schulze, M.B.; Scott, R.A.; Ramond, A.; Butterworth, A.S.; di Angelantonio, E.; Danesh, J.; Arriola, L.; Barricarte, A.; et al. Association of multiple biomarkers of iron metabolism and type 2 diabetes: The EPIC-Inter act study. Diabetes Care 2016, 39, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Wang, K.; Lo, K.; Zhong, Y.; Yang, A.; Fang, X.; Akezhuoli, H.; Song, Z.; Chen, L.; An, P.; et al. Sex-specific association of circulating ferritin level and risk of type 2 diabetes: A dose-response meta-analysis of prospective studies. J. Clin. Endocrinol. Metab. 2019, 104, 4539–4551. [Google Scholar] [CrossRef]
- Jiang, R.; Manson, J.A.E.; Meigs, J.B.; Ma, J.; Rifai, N.; Hu, F.B. Body iron stores in relation to risk of type 2 diabetes in apparently healthy women. J. Am. Med. Assoc. 2004, 291, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Forouhi, N.G.; Harding, A.H.; Allison, M.; Sandhu, M.S.; Welch, A.; Luben, R.; Bingham, S.; Khaw, K.T.; Wareham, N.J. Elevated serum ferritin levels predict new-onset type 2 diabetes: Results from the EPIC-Norfolk prospective study. Diabetologia 2007, 50, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Montonen, J.; Boeing, H.; Steffen, A.; Lehmann, R.; Fritsche, A.; Joost, H.G.; Schulze, M.B.; Pischon, T. Body iron stores and risk of type 2 diabetes: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetologia 2012, 55, 2613–2621. [Google Scholar] [CrossRef] [Green Version]
- Jehn, M.L.; Guallar, E.; Clark, J.M.; Couper, D.; Duncan, B.B.; Ballantyne, C.M.; Hoogeveen, R.C.; Harris, Z.L.; Pankow, J.S. A prospective study of plasma ferritin level and incident diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Epidemiol. 2007, 165, 1047–1054. [Google Scholar] [CrossRef] [Green Version]
- Aregbesola, A.; de Mello, V.D.F.; Lindström, J.; Voutilainen, S.; Virtanen, J.K.; Keinänen-Kiukaanniemi, S.; Tuomainen, T.; Tuomilehto, J.; Uusitupa, M. Serum adiponectin/Ferritin ratio in relation to the risk of type 2 diabetes and insulin sensitivity. Diabetes Res. Clin. Pract. 2018, 141, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Pitchika, A.; Schipf, S.; Nauck, M.; Dörr, M.; Lerch, M.M.; Felix, S.B.; Markus, M.R.P.; Völzke, H.; Ittermanna, T. Associations of iron markers with type 2 diabetes mellitus and metabolic syndrome: Results from the prospective SHIP study. Diabetes Res. Clin. Pract. 2020, 163, 108149. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, Y.; Zhang, F.; Zhang, S.; Zhou, X.; Ji, L. Elevated serum ferritin concentration is associated with incident type 2 diabetes mellitus in a Chinese population: A prospective cohort study. Diabetes Res. Clin. Pract. 2018, 139, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Le, T.D.; Bae, S.; Hsu, C.E.; Singh, K.P.; Blair, S.N.; Shang, N. Effects of cardiorespiratory fitness on serum ferritin concentration and incidence of type 2 diabetes: Evidence from the Aerobics Center Longitudinal Study (ACLS). Rev. Diabet. Stud. 2008, 5, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Lucotte, G.; Dieterlen, F. A European allele map of the C282Y mutation of hemochromatosis: Celtic versus Viking origin of the mutation? Blood Cells Mol. Dis. 2003, 31, 262–267. [Google Scholar] [CrossRef]
- Aranda, N.; Viteri, F.E.; Montserrat, C.; Arija, V. Effects of C282Y, H63D, and S65C HFE gene mutations, diet, and life-style factors on iron status in a general Mediterranean population from Tarragona, Spain. Ann. Hematol. 2010, 89, 767–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Naska, A.; Costacou, T. Disparities in food habits across Europe. Proc. Nutr. Soc. 2002, 61, 553–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arija, V.; Fernández-Cao, J.C.; Basora, J.; Bulló, M.; Aranda, N.; Estruch, R.; Martínez-González, M.A.; Salas-Salvadó, J. Excess body iron and the risk of type 2 diabetes mellitus: A nested case-control in the PREDIMED (PREvention with MEDiterranean Diet) study. Br. J. Nutr. 2014, 112, 1896–1904. [Google Scholar] [CrossRef] [Green Version]
- Bolíbar, B.; Fina Avilés, F.; Morros, R.; Del Mar Garcia-Gil, M.; Hermosilla, E.; Ramos, R.; Rosell, M.; Rodriguez, J.; Medina, M.; Calero, S.; et al. Base de datos SIDIAP: La historia clínica informatizada de Atención Primaria como fuente de información para la investigación epidemiológica. Med. Clin. 2012, 138, 617–621. [Google Scholar] [CrossRef]
- Babor, T.; Higgins-Biddle, J.C.; Saunders, J.B.; Monteiro, M.G. The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care, 2nd ed.; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Gavin, J.R., III; Alberti, K.G.M.M.; Davidson, M.B.; DeFronzo, R.A.; Drash, A.; Gabbe, S.G.; Genuth, S.; Harris, M.I.; Kahn, R.; Keen, H.; et al. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 1997, 20, 1183–1197. [Google Scholar]
- Silvestre, O.M.; Gonçalves, A.; Nadruz, W.; Claggett, B.; Couper, D.; Eckfeldt, J.H.; Pankow, J.S.; Anker, S.D.; Solomon, S.D. Ferritin levels and risk of heart failure—The atherosclerosis risk in communities study. Eur. J. Heart Fail. 2017, 19, 340–347. [Google Scholar] [CrossRef] [Green Version]
- Kadoglou, N.P.E.; Biddulph, J.P.; Rafnsson, S.B.; Trivella, M.; Nihoyannopoulos, P.; Demakakos, P. The association of ferritin with cardiovascular and all-cause mortality in community-dwellers: The English longitudinal study of ageing. PLoS ONE 2017, 12, e0178994. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, N.; Milman, N.; Völzke, H.; Linneberg, A.; Jorgensen, T. Is serum ferritin within the reference range a risk predictor of cardiovascular disease? A population-based, long-term study comprising 2874 subjects. Br. J. Nutr. 2009, 102, 594–600. [Google Scholar] [CrossRef] [Green Version]
- Rojo-Martínez, G.; Valdés, S.; Soriguer, F.; Vendrell, J.; Urrutia, I.; Pérez, V.; Ortega, E.; Ocón, P.; Montanya, E.; Menéndez, E.; et al. Incidence of diabetes mellitus in Spain as results of the nation-wide cohort [email protected] study. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espelt, A.; Borrell, C.; Palència, L.; Goday, A.; Spadea, T.; Gnavi, R.; Font-Ribera, L.; Kunst, A.E. Socioeconomic inequalities in the incidence and prevalence of type 2 diabetes mellitus in Europe. Gac. Sanit. 2013, 27, 494–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forouhi, N.G.; Luan, J.; Hennings, S.; Wareham, N.J. Incidence of Type 2 diabetes in England and its association with baseline impaired fasting glucose: The Ely study 1990–2000. Diabet. Med. 2007, 24, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Geer, E.B.; Shen, W. Gender differences in insulin resistance, body composition, and energy balance. Gend. Med. 2009, 6, 60–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Sun, B.; Yin, H.; Liu, S. Hepcidin: A promising therapeutic target for iron disorders. Medicine 2016, 95, e3150. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Pelle, E.; Huang, X. Iron and menopause: Does increased iron affect the health of postmenopausal women? Antioxid. Redox Signal. 2009, 11, 2939–2943. [Google Scholar] [CrossRef] [Green Version]
- Rajpathak, S.; Wylie-Rosett, J.; Gunter, M.J.; Negassa, A.; Kabat, G.C.; Rohan, T.E.; Crandall, J.; Diabetes Prevention Program (DPP) Research Group. Biomarkers of body iron stores and risk of developing type 2 diabetes. Diabetes Obes. Metab. 2009, 11, 472–479. [Google Scholar] [CrossRef] [Green Version]
- Aregbesola, A.; Voutilainen, S.; Virtanen, J.K.; Mursu, J.; Tuomainen, T.P. Body iron stores and the risk of type 2 diabetes in middle-aged men. Eur. J. Endocrinol. 2013, 169, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Kunutsor, S.K.; Apekey, T.A.; Walley, J.; Kain, K. Ferritin levels and risk of type 2 diabetes mellitus: An updated systematic review and meta-analysis of prospective evidence. Diabetes Metab. Res. Rev. 2013, 29, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Orban, E.; Schwab, S.; Thorand, B.; Huth, C. Association of iron indices and type 2 diabetes: A meta-analysis of observational studies. Diabetes Metab. Res. Rev. 2014, 30, 372–394. [Google Scholar] [CrossRef] [PubMed]
- Cooksey, R.C.; Jouihan, H.A.; Ajioka, R.S.; Hazel, M.W.; Jones, D.L.; Kushner, J.P.; McClain, D.A. Oxidative stress, β-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 2004, 145, 5305–5312. [Google Scholar] [CrossRef]
- Rains, J.L.; Jain, S.K. Oxidative stress, insulin signaling, and diabetes. Free Radic. Biol. Med. 2011, 50, 567–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suastika, K.; Dwipayana, P.; Siswadi, M.; Tuty, R.A. Age is an important risk factor for type 2 diabetes mellitus and cardiovascular diseases. In Glucose Tolerance; Chackrewarthy, S., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and imaging assessment of body composition: From fat to facts. Front Endocrinol. 2019, 10, 861. [Google Scholar] [CrossRef] [Green Version]
- Hartemink, N.; Boshuizen, H.C.; Nagelkerke, N.J.D.; Jacobs, M.A.M.; Van Houwelingen, H.C. Combining risk estimates from observational studies with different exposure cutpoints: A meta-analysis on body mass index and diabetes type 2. Am. J. Epidemiol. 2006, 163, 1042–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel, R.H.; Kahn, S.E.; Ferrannini, E.; Goldfine, A.B.; Nathan, D.M.; Schwartz, M.W.; Smith, R.J.; Smith, S.R. Obesity and type 2 diabetes: What can be unified and what needs to be individualized? Diabetes Care 2011, 34, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.L.; Koh, W.P.; Yuan, J.M.; Pan, A. Plasma ferritin, C-reactive protein, and risk of incident type 2 diabetes in Singapore Chinese men and women. Diabetes Res. Clin. Pract 2017, 128, 109–118. [Google Scholar] [CrossRef]
- Taylor, R. Insulin resistance and type 2 diabetes. Diabetes 2012, 61, 778–779. [Google Scholar] [CrossRef] [Green Version]
- Campagna, D.; Alamo, A.; Di Pino, A.; Russo, C.; Calogero, A.E.; Purrello, F.; Polosa, R. Smoking and diabetes: Dangerous liaisons and confusing relationships. Diabetol. Metab. Syndr. 2019, 11, 85. [Google Scholar] [CrossRef]
- Lee, C.H.; Goag, E.K.; Lee, S.H.; Chung, K.S.; Jung, J.Y.; Park, M.S.; Kim, Y.S.; Kim, S.K.; Chang, J.; Song, J.H. Association of serum ferritin levels with smoking and lung function in the Korean adult population: Analysis of the fourth and fifth Korean National Health and Nutrition Examination Survey. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 3001–3006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Incident Type 2 Diabetes | |||||
---|---|---|---|---|---|
Overall | No | Yes | |||
n | 206,115 | 193,744 | 12,371 | p Value † | |
Serum ferritin (µg/L) | 62.5 [30.9–127.0] | 60.3 [30.0–122.0] | 107.0 [53.7–207.8] | <0.001 | |
Age (years) | 50.9 ± 10.8 | 50.6 ± 10.8 | 56.5 ± 9.8 | <0.001 | |
Men, n (%) | 56,621 (27.5) | 51,579 (26.6) | 5042 (40.8) | <0.001 | |
BMI (kg/m2) | 27.4 ± 5.1 | 27.2 ± 5.0 | 31.2 ± 5.3 | <0.001 | |
Missing, n (%) * | 30,848 (14.9) | 30,595 (15.8) | 253 (2.0) | ||
Smoking habit, n (%) | <0.001 | ||||
Smoker | 40,511 (19.6) | 38,059 (19.6) | 2452 (19.8) | ||
Non-smoker | 64,503 (31.3) | 60,075 (31.0) | 4428 (35.8) | ||
Ex-smoker | 14,809 (7.2) | 13,675 (7.1) | 1134 (9.2) | ||
Missing * | 86,296 (41.8) | 81,935 (42.3) | 4357 (35.2) | ||
Alcoholism risk levels, n (%) | <0.001 | ||||
0 | 116,581 (56.6) | 108,669 (56.1) | 7912 (64.0) | ||
1 | 47,896 (23.2) | 44,477 (23.0) | 3419 (27.6) | ||
2 | 4113 (2.0) | 3710 (1.9) | 403 (3.3) | ||
3 | 56 (0.03) | 47 (0.02) | 9 (0.1) | ||
Missing * | 37,469 (18.2) | 36,841 (19.0) | 628 (5.1) | ||
Obesity, n (%) | 46,928 (26.8) | 40.294 (24.7) | 6634 (54.8) | <0.001 | |
Missing * | 30,848 (14.9) | 30,595 (15.8) | 253 (2.05) | ||
Hypertension, n (%) | 44,240 (21.5) | 38,744 (20.0) | 5496 (44.4) | <0.001 | |
Dyslipidemia, n (%) | 28,139 (13.6) | 24,757 (12.8) | 3382 (27.3) | <0.001 | |
Serum iron (µmol/L) | 84.1 ± 37.5 | 84.0 ± 37.5 | 85.6 ± 37.0 | <0.001 | |
Missing, n (%) * | 47,925 (23.2) | 45,265 (23.4) | 2660 (21.5) | ||
Hemoglobin (g/dL) | 13.9 ± 1.3 | 1.9 ± 1.3 | 14.4 ± 1.4 | <0.001 | |
Hematocrit (%) | 41.6 ± 3.7 | 41.5 ± 3.6 | 43.0 ± 3.8 | <0.001 | |
MCV (fL) | 90.1 ± 4.3 | 90.1 ± 4.3 | 89.9 ± 4.5 | <0.001 | |
CRP (mg/L) | 3.0 [1.4–6.0] | 2.9 [1.4–5.9] | 4.5 [2.4–8.9] | <0.001 | |
Missing, n (%)* | 124,766 (60.5) | 118,302 (61.1) | 6464 (52.2) |
Quartiles (Q) of Serum Ferritin (µg/L) | ||||||
---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Ptrend† | ||
≤90.0 in Men | 90.1–154.6 in Men | 154.7–258.0 in Men | ≥258.1 in Men | |||
≤25.0 in Women | 25.1–46.0 in Women | 46.1–82.7 in Women | ≥82.8 in Women | |||
n | 52,366 | 51,001 | 51,255 | 51,493 | ||
Serum ferritin (µg/L) | 19.0 [13.0–25.0] | 39.0 [31.8–96.0] | 68.2 [56.0–162.0] | 154.0 [107.0–299.5] | <0.001 | |
Age (years) | 47.3 ± 9.8 | 48.9 ± 10.4 | 51.9 ± 10.7 | 55.8 ± 10.3 | <0.001 | |
Men, n (%) | 14,204 (27.1) | 14,111 (27.7) | 14,184 (27.7) | 14,122 (27.4) | 0.294 | |
BMI (kg/m2) | 26.5 ± 5.0 | 26.9 ± 5.0 | 27.6 ± 5.1 | 28.6 ± 5.1 | <0.001 | |
Missing, n (%) * | 9437 (18.0) | 8256 (16.2) | 7102 (13.9) | 6053 (11.9) | ||
Smoking habit, n (%) | ||||||
Smoker | 10,816 (20.6) | 10,893 (21.4) | 10,073 (19.6) | 8729 (17.0) | ||
Non-smoker | 14,198 (27.1) | 14,707 (28.8) | 16,540 (32.3) | 19,058 (37.0) | ||
Ex-smoker | 3934 (7.5) | 3684 (7.2) | 3697 (7.2) | 3494 (6.8) | ||
Missing* | 23,418 (44.7) | 23,418 (42.6) | 20,945 (40.9) | 20,212 (39.3) | ||
Risk levels of alcoholism, n (%) | <0.001 | |||||
0 | 29,494 (56.3) | 28,604 (56.1) | 29,135 (56.8) | 29,348 (57.0) | ||
1 | 11,000 (21.0) | 11,534 (22.6) | 12,260 (23.9) | 13,102 (25.4) | ||
2 and 3 | 760 (1.4) | 839 (1.6) | 1032 (2.0) | 1538 (3.0) | ||
Missing * | 11,112 (21.2) | 10,024 (19.6) | 8828 (17.2) | 7505 (14.6) | ||
Obesity, n (%) | 9102 (21.2) | 9905 (23.2) | 12,139 (27.5) | 15,782 (34.7) | <0.001 | |
Missing, n (%) * | 9437 (18.0) | 8256 (16.2) | 7102 (13.9) | 6053 (11.9) | ||
Hypertension, n (%) | 4307 (8.2) | 5835 (11.4) | 7718 (15.1) | 10,279 (20.0) | <0.001 | |
Dyslipidemia, n (%) | 7733 (14.8) | 8896 (17.4) | 11,505 (22.4) | 16,106 (31.3) | <0.001 | |
Serum iron (µmol/L) | 74.7 ± 37.8 | 84.3 ± 36.2 | 86.1 ± 35.5 | 91.9 ± 38.1 | <0.001 | |
Missing, n (%) * | 11,363 (21.7) | 12,091 (23.7) | 12,625 (24.7) | 11,846 (23.2) | ||
Hemoglobin (g/dL) | 13.6 ± 1.3 | 13.9 ± 1.3 | 14.1 ± 1.2 | 14.2 ± 1.3 | <0.001 | |
Hematocrit (%) | 40.7 ± 3.8 | 41.6 ± 3.6 | 41.9 ± 3.5 | 42.2 ± 3.4 | <0.001 | |
MCV (fL) | 89.1 ± 4.3 | 90.1 ± 4.1 | 90.3 ± 4.1 | 91.0 ± 4.5 | <0.001 | |
CRP (mg/L) | 2.6 [1.18–5.40] | 2.9 [1.37–6.00] | 3.0 [1.5–6.1] | 3.4 [1.8–6.9] | <0.001 | |
Missing, n (%) * | 32,917 (62.6) | 31,672 (62.1) | 30,518 (59.8) | 29,659 (58.1) |
Quartiles (Q) of Serum Ferritin (µg/L) | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Ptrend | Each SD (1.02 µg/L) Increase in Log-Ferritin | p Value | |
≤90.0 in Men | 90.1–154.6 in Men | 154.7–258.0 in Men | ≥258.1 in Men | ||||
≤25.0 in Women | 25.1–46.0 in Women | 46.1–82.7 in Women | ≥82.8 in Women | ||||
Type 2 diabetes | |||||||
n cases/total n (%) | 2009/52,366 (3.8) | 2237/51,001 (4.4) | 3055/51,001 (6.0) | 5070/51,001 (9.9) | 12,371/206,115 (6.0) | ||
IR per 1000 person-years (%) | 3.8 | 4.9 | 8.2 | 13.5 | 7.5 | ||
Unadjusted | 1.00 (Reference) | 1.15 (1.08–1.22) * | 1.57 (1.49–1.66) * | 2.68 (2.54–2.82) * | <0.001 | 1.67 (1.64–1.71) | <0.001 |
Model 1 | 1.00 (Reference) | 1.08 (1.02–1.15) * | 1.35 (1.27–1.42) * | 2.03 (1.92–2.14) * | <0.001 | 1.43 (1.40–1.46) | <0.001 |
Model 2 † | 1.00 (Reference) | 0.98 (0.91–1.06) | 1.32 (1.23–1.42) * | 1.85 (1.73–1.98) * | <0.001 | 1.39 (1.35–1.43) | <0.001 |
Model 3 ‡ | 1.00 (Reference) | 0.96 (0.89–1.03) | 1.22 (1.14–1.31) * | 1.61 (1.51–1.72) * | <0.001 | 1.31 (1.27–1.34) | <0.001 |
Model 4 § | 1.00 (Reference) | 0.95 (0.85–1.06) | 1.18 (1.65–1.31) * | 1.51 (1.36–1.65) * | <0.001 | 1.26 (1.21–1.32) | <0.001 |
Quartiles (Q) of Serum Ferritin (µg/L) | |||||||
---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Ptrend | Each SD (1.02 µg/L) Increase in Log-Ferritin | p Value | |
≤90.0 in Men | 90.1–154.6 in Men | 154.7–258.0 in Men | ≥258.1 in Men | ||||
≤25.0 in Women | 25.1–46.0 in Women | 46.1–82.7 in Women | ≥82.8 in Women | ||||
Model 1 | 1.00 (Reference) | 0.95 (0.85–1.06) | 1.18 (1.65–1.31) * | 1.51 (1.36–1.65) * | <0.001 | 1.26 (1.21–1.32) | <0.001 |
Model 2 | 1.00 (Reference) | 0.93 (0.82–1.05) | 1.14 (1.02–1.28) * | 1.38 (1.24–1.54) * | <0.001 | 1.21 (1.16–1.27) | <0.001 |
Model 3 | 1.00 (Reference) | 0.95 (0.85–1.07) | 1.17 (1.06–1.30) * | 1.44 (1.30–1.59) * | <0.001 | 1.23 (1.18–1.28) | <0.001 |
Model 4 | 1.00 (Reference) | 0.95 (0.85–1.06) | 1.16 (1.04–1.29) * | 1.47 (1.33–1.63) * | <0.001 | 1.25 (1.21–1.31) | <0.001 |
Model 5 | 1.00 (Reference) | 1.05 (0.93–1.18) | 1.15 (1.03–1.29) * | 1.40 (1.27–1.57) * | <0.001 | 1.18 (1.13–1.23) | <0.001 |
Model 6 | 1.00 (Reference) | 1.04 (0.98–1.10) | 1.22 (1.15–1.29) * | 1.67 (1.59–1.76) * | <0.001 | 1.30 (1.27–1.33) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-López, A.; Iglesias-Vázquez, L.; Pallejà-Millán, M.; Rey Reñones, C.; Flores Mateo, G.; Arija, V. Association between Iron Status and Incident Type 2 Diabetes: A Population-Based Cohort Study. Nutrients 2020, 12, 3249. https://doi.org/10.3390/nu12113249
Díaz-López A, Iglesias-Vázquez L, Pallejà-Millán M, Rey Reñones C, Flores Mateo G, Arija V. Association between Iron Status and Incident Type 2 Diabetes: A Population-Based Cohort Study. Nutrients. 2020; 12(11):3249. https://doi.org/10.3390/nu12113249
Chicago/Turabian StyleDíaz-López, Andrés, Lucía Iglesias-Vázquez, Meritxell Pallejà-Millán, Cristina Rey Reñones, Gemma Flores Mateo, and Victoria Arija. 2020. "Association between Iron Status and Incident Type 2 Diabetes: A Population-Based Cohort Study" Nutrients 12, no. 11: 3249. https://doi.org/10.3390/nu12113249
APA StyleDíaz-López, A., Iglesias-Vázquez, L., Pallejà-Millán, M., Rey Reñones, C., Flores Mateo, G., & Arija, V. (2020). Association between Iron Status and Incident Type 2 Diabetes: A Population-Based Cohort Study. Nutrients, 12(11), 3249. https://doi.org/10.3390/nu12113249