Association between Urinary Cadmium-to-Zinc Intake Ratio and Adult Mortality in a Follow-Up Study of NHANES 1988–1994 and 1999–2004
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Estimation of Dietary Zn Intake
2.3. Biomarker Data
2.4. Mortality Data Linked to the NHANES
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (2012) Toxicological Profile for Cadmium. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp5.pdf (accessed on 5 November 2019).
- Pappas, R.S.; Polzin, G.M.; Zhang, L.; Watson, C.H.; Paschal, D.C.; Ashley, D.L. Cadmium, lead, and thallium in mainstream tobacco smoke particulate. Food Chem. Toxicol. 2006, 44, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, M.E.; Wong, L.Y.; Osterloh, J.D. Smoking status and urine cadmium above levels associated with subclinical renal effects in U.S. adults without chronic kidney disease. Int. J. Hyg. Environ. Health 2011, 214, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Godt, J.; Scheidig, F.; Grosse-Siestrup, C.; Esche, V.; Brandenburg, P.; Reich, A.; Groneberg, D.A. The toxicity of cadmium and resulting hazards for human health. J. Occup. Med. Toxicol. 2006, 1, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.L.; Perlstein, T.S.; Perry, M.J.; McNeely, E.; Weuve, J. Cadmium exposure in association with history of stroke and heart failure. Environ. Res. 2010, 110, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhoft, R.A. Cadmium toxicity and treatment. Sci. World J. 2013, 2013, 394652. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, C.M.; Kovach, J.S.; Meliker, J.R. Urinary cadmium and osteoporosis in U.S. Women ≥50 years of age: NHANES 1988–1994 and 1999–2004. Environ. Health Perspect. 2008, 116, 1338–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartwig, A. Cadmium and cancer. Met. Ions Life Sci. 2013, 11, 491–507. [Google Scholar]
- McCarty, M.F. Zinc and multi-mineral supplementation should mitigate the pathogenic impact of cadmium exposure. Med. Hypotheses 2012, 79, 642–648. [Google Scholar] [CrossRef]
- Li, H.; Fagerberg, B.; Sallsten, G.; Borné, Y.; Hedblad, B.; Engström, G.; Barregard, L.; Andersson, E.M. Smoking-induced risk of future cardiovascular disease is partly mediated by cadmium in tobacco: Malmo Diet and Cancer Cohort Study. Environ. Health 2019, 18, 56. [Google Scholar] [CrossRef] [Green Version]
- Deering, K.E.; Callan, A.C.; Prince, R.L.; Lim, W.H.; Thompson, P.L.; Lewis, J.R.; Hinwood, A.L.; Devine, A. Low-level cadmium exposure and cardiovascular outcomes in elderly Australian women: A cohort study. Int. J. Hyg. Environ. Health 2018, 221, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Esquinas, E.; Pollan, M.; Tellez-Plaza, M.; Francesconi, K.A.; Goessler, W.; Guallar, E.; Umans, J.G.; Yeh, J.; Best, L.G.; Navas-Acien, A. Cadmium exposure and cancer mortality in a prospective cohort: The strong heart study. Environ. Health Perspect. 2014, 122, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Suwazono, Y.; Nogawa, K.; Morikawa, Y.; Nishijo, M.; Kobayashi, E.; Kido, T.; Nakagawa, H.; Nogawa, K. All-cause mortality increased by environmental cadmium exposure in the Japanese general population in cadmium non-polluted areas. J. Appl. Toxicol. 2015, 35, 817–823. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, T.S.; Van Hecke, E.; Thijs, L.; Richart, T.; Kuznetsova, T.; Jin, Y.; Vangronsveld, J.; Roels, H.A.; Staessen, J.A. Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ. Health Perspect. 2008, 116, 1620–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menke, A.; Muntner, P.; Silbergeld, E.K.; Platz, E.A.; Guallar, E. Cadmium levels in urine and mortality among U.S. adults. Environ. Health Perspect. 2009, 117, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Brzoska, M.M.; Moniuszko-Jakoniuk, J. Interactions between cadmium and zinc in the organism. Food Chem. Toxicol. 2001, 39, 967–980. [Google Scholar] [CrossRef]
- Roels, H.A.; Hoet, P.; Lison, D. Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Ren. Fail. 1999, 21, 251–262. [Google Scholar] [CrossRef]
- Brzoska, M.M.; Roszczenko, A.; Galazyn-Sidorczuk, M.; Majewska, K. Zinc supplementation can protect from enhanced risk of femoral neck fracture in male rats chronically exposed to cadmium. Exp. Toxicol. Pathol. 2011, 63, 491–498. [Google Scholar] [CrossRef]
- Rogalska, J.; Pilat-Marcinkiewicz, B.; Brzoska, M.M. Protective effect of zinc against cadmium hepatotoxicity depends on this bioelement intake and level of cadmium exposure: A study in a rat model. Chem. Biol. Interact. 2011, 193, 191–203. [Google Scholar] [CrossRef]
- Bulat, Z.P.; Djukic-Cosic, D.; Malicevic, Z.; Bulat, P.; Matović, V. Zinc or magnesium supplementation modulates cd intoxication in blood, kidney, spleen, and bone of rabbits. Biol. Trace Elem. Res. 2008, 124, 110–117. [Google Scholar] [CrossRef]
- Vance, T.M.; Chun, O.K. Zinc Intake Is Associated with Lower Cadmium Burden in U.S. Adults. J. Nutr. 2015, 145, 2741–2748. [Google Scholar] [CrossRef] [Green Version]
- Van Wijngaarden, E.; Singer, E.A.; Palapattu, G.S. Prostate-specific antigen levels in relation to cadmium exposure and zinc intake: Results from the 2001–2002 National Health and Nutrition Examination Survey. Prostate 2008, 68, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.S.; Caffrey, J.L.; Lin, J.W.; Bayliss, D.; Faramawi, M.F.; Bateson, T.F.; Sonawane, B. Increased risk of cancer mortality associated with cadmium exposures in older Americans with low zinc intake. J. Toxicol. Environ. Health A 2013, 76, 1–15. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. National Health and Nutrition Examination Survey III, 1988–1994. Centers for Disease Control and Prevention (CDC). Available online: https://wwwn.cdc.gov/nchs/nhanes/nhanes3/DataFiles.aspx (accessed on 5 November 2019).
- U.S. Department of Health and Human Services. National Health and Nutrition Examination Survey Data 1999–2000. Centers for Disease Control and Prevention (CDC). Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=1999 (accessed on 5 November 2019).
- U.S. Department of Health and Human Services. National Health and Nutrition Examination Survey Data 2001–2002. Centers for Disease Control and Prevention (CDC). Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2001 (accessed on 5 November 2019).
- U.S. Department of Health and Human Services. National Health and Nutrition Examination Survey Data 2003–2004. Centers for Disease Control and Prevention (CDC). Available online: https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/default.aspx?BeginYear=2003 (accessed on 5 November 2019).
- U.S. Cancer Statistics Working Group. U.S. Cancer Statistics Data Visualizations Tool, Based on November 2018 Submission Data (1999–2016); June 2019, U.S.; Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute: Atlanta, GA, USA, 2019. [Google Scholar]
- Kenneth, D.K.; Sherry, L.; Murphy, J.X.; Elizabeth, A. National Vital Statistics Reports; Department of Health and Human Services; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Hyattsville, MD, USA, 2019. [Google Scholar]
- Gunter, E.W.; Lewis, B.G.; Koncikowski, S.M. Laboratory Procedures Used for the Third National Health and Nutrition Examination Survey (NHANES III), 1988–1994; Atlanta, G.A., Ed.; Department of Health and Human Services, Centers for Disease Control and Prevention: Cincinnati, OH, USA, 1996. [Google Scholar]
- National Center for Health Statistics, NHANES. Laboratory/Medical Technologists Procedures Manual (LPM); Centers for Disease Control and Prevention: Hyattsville, MD, USA, 2004. [Google Scholar]
- Jarup, L. Cadmium overload and toxicity. Nephrol. Dial. Transplant. 2002, 17, 35–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Center for Health Statistics. Office of Analysis and Epidemiology, NCHS 2011 Linked Mortality Files Matching Methodology, September, 2013; National Center for Health Statistics: Hyattsville, MD, USA, 2013; Available online: http://www.cdc.gov/nchs/data_access/data_linkage/mortality/linkage_methods_analytical_support/2011_linked_mor tality_file_matching_methodology.pdf (accessed on 5 November 2019).
- World Health Organization (WHO). International Statistical Classification of Disease and Related Health Problems, Tenth Revision (ICD-10); WHO: Geneva, Switzerland, 1992. [Google Scholar]
- Ronksley, P.E.; Ronksley, P.E.; Brien, S.E.; Turner, B.J.; Mukamal, K.J.; Ghali, W.A. Association of alcohol consumption with selected cardiovascular disease outcomes: A systematic review and meta-analysis. BMJ 2011, 342, d671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, B.; Veeranki, S.P.; Zhao, M.; Ma, C.; Yan, Y.; Mi, J. Relationship of Alcohol Consumption to All-Cause, Cardiovascular, and Cancer-Related Mortality in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, S.S.; Calle, E.E.; Patel, A.V.; Thun, M.J. Predictors of pancreatic cancer mortality among a large cohort of United States adults. Cancer Causes Control 2000, 11, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Ratnasinghe, L.D.; Graubard, B.I.; Kahle, L.; Tangrea, J.A.; Taylor, P.R.; Hawk, E. Aspirin use and mortality from cancer in a prospective cohort study. Anticancer Res. 2004, 24, 3177–3184. [Google Scholar]
- Aluli, N.E.; Reyes, P.W.; Brady, S.K.; Tsark, J.U.; Jones, K.L.; Mau, M.; Howard, W.J.; Howard, B.V. All-cause and CVD mortality in Native Hawaiians. Diabetes Res. Clin. Pract. 2010, 89, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Dacey, L.J.; Munoz, J.J.; Johnson, E.R.; Leavitt, B.J.; Maloney, C.T.; Morton, J.R.; Olmstead, E.M.; Birkmeyer, J.D.; O′Connor, G.T. Effect of preoperative aspirin use on mortality in coronary artery bypass grafting patients. Ann. Thorac. Surg. 2000, 70, 1986–1990. [Google Scholar] [CrossRef]
- Lantz, P.M.; House, J.S.; Lepkowski, J.M.; Williams, D.R.; Mero, R.P.; Chen, J. Socioeconomic factors, health behaviors, and mortality: Results from a nationally representative prospective study of US adults. JAMA 1998, 279, 1703–1708. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.B. Factors affecting the variability in the observed levels of cadmium in blood and urine among former and current smokers aged 20–64 and ≥65years. Environ. Sci. Pollut. Res. Int. 2017, 24, 8837–8851. [Google Scholar] [CrossRef] [PubMed]
- Padilla, M.A.; Elobeid, M.; Ruden, D.M.; Allison, D.B. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99–02. Int. J. Environ. Res. Public Health 2010, 7, 3332–3347. [Google Scholar] [CrossRef] [PubMed]
- Hecht, E.M.; Arheart, K.L.; Lee, D.J.; Hennekens, C.H.; Hlaing, W.M. Interrelation of Cadmium, Smoking, and Cardiovascular Disease (from the National Health and Nutrition Examination Survey). Am. J. Cardiol. 2016, 118, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Nawrot, T.S.; Martens, D.S.; Hara, A.; Plusquin, M.; Vangronsveld, J.; Roels, H.A.; Staessen, J.A. Association of total cancer and lung cancer with environmental exposure to cadmium: The meta-analytical evidence. Cancer Causes Control 2015, 26, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Nagata, C.; Nagao, Y.; Nakamura, K.; Wada, K.; Tamai, Y.; Tsuji, M.; Yamamoto, S.; Kashiki, Y. Cadmium exposure and the risk of breast cancer in Japanese women. Breast Cancer Res. Treat. 2013, 138, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: Systematic review and meta-analysis of cohort studies. Int. J. Epidemiol. 2016, 45, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Melough, M.M.; Vance, T.M.; Kim, D.; Noh, H.; Koo, S.I.; Chun, O.K. The relationship between zinc intake and cadmium burden is influenced by smoking status. Food Chem. Toxicol. 2019, 125, 210–216. [Google Scholar] [CrossRef]
NHANES 1988–1994 | p-Value ** | NHANES 1999–2004 | p-Value ** | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Urinary Cd Concentration (µg/g Creatinine) (Range) | Urinary Cd Concentration (µg/g Creatinine) (Range) | |||||||||
Q1 * | Q2 * | Q3 * | Q4 * | Q1 * | Q2 * | Q3 * | Q4 * | |||
(n = 3033) | (n = 3034) | (n = 3035) | (n = 3033) | (n = 876) | (n = 877) | (n = 877) | (n = 876) | |||
(0.00–0.29) | (0.29–0.52) | (0.52–0.90) | (0.90–23.35) | (0–0.22) | (0.22–0.37) | (0.37–0.62) | (0.62–4.20) | |||
Follow-up time, mean, years | 19.0 (0.2) | 17.9 (0.2) | 16.9 (0.3) | 15.4 (0.2) | <0.0001 | 9.6 (0.1) | 9.5 (0.2) | 9.1 (0.1) | 8.8 (0.2) | <0.0001 |
Age, mean, years | 43.0 (0.4) | 49.1 (0.5) | 53.9 (0.6) | 57.8 (0.6) | <0.0001 | 44.7 (0.6) | 51.3 (0.6) | 54.8 (0.7) | 57.8 (0.7) | <0.0001 |
Men, % | 57.2 | 49.8 | 43.5 | 35.8 | <0.0001 | 63.0 | 45.2 | 40.0 | 33.7 | <0.0001 |
Ethnicity | <0.0001 | 0.073 | ||||||||
White, % | 86.1 | 82.3 | 83.3 | 86.7 | 81.5 | 83.0 | 84.9 | 83.1 | ||
Black, % | 9.0 | 13.0 | 12.3 | 9.9 | 11.1 | 10.6 | 10.0 | 11.9 | ||
Mexican-American, % | 4.9 | 4.7 | 4.4 | 3.4 | 7.4 | 6.4 | 5.1 | 4.9 | ||
BMI | <0.0005 | <0.005 | ||||||||
BMI < 25, % | 40.9 | 37.5 | 38.1 | 44.2 | 27.4 | 24.1 | 30.1 | 39.8 | ||
25 ≤ BMI < 30, % | 35.0 | 35.0 | 34.4 | 35.0 | 39.1 | 39.9 | 38.2 | 34.0 | ||
BMI ≥ 30, % | 24.1 | 27.5 | 27.5 | 20.8 | 33.5 | 36.0 | 31.7 | 26.2 | ||
Smoking 1 | <0.0001 | <0.0001 | ||||||||
Never | 63.2 | 48.3 | 34.5 | 22.5 | 67.5 | 55.8 | 40.1 | 24.5 | ||
Former | 25.4 | 32.2 | 32.9 | 32.7 | 24.7 | 30.0 | 35.4 | 34.2 | ||
Current (<15 cigarettes/d) | 6.1 | 7.5 | 8.4 | 9.3 | 5.2 | 7.6 | 9.3 | 10.8 | ||
Current (≥15 cigarettes/d) | 5.3 | 12.0 | 24.2 | 34.5 | 2.6 | 6.6 | 15.2 | 30.5 | ||
PIR 2 > 1.3, % | 88.7 | 84.7 | 82.1 | 77.7 | <0.0001 | 86.7 | 83.2 | 79.2 | 74.4 | <0.0005 |
Diabetes mellitus 3, % | 5.7 | 7.7 | 8.3 | 10.4 | <0.0001 | 14.9 | 14.1 | 20.0 | 15.7 | 0.374 |
Hypertension 4, % | 22.2 | 33.7 | 40.6 | 47.6 | <0.0001 | 26.2 | 37.5 | 44.0 | 45.6 | <0.0001 |
Aspirin use 5, % | 8.4 | 12.6 | 15.3 | 18.4 | <0.0001 | 10.5 | 13.8 | 15.6 | 21.6 | <0.001 |
Supplement use 6, % | 46.6 | 43.1 | 42.2 | 41.1 | 0.0695 | 54.3 | 59.2 | 58.8 | 57.9 | 0.307 |
History of CHD7 or stroke, % | 1.7 | 3.5 | 5.8 | 8.2 | <0.0001 | 2.3 | 4.9 | 7.3 | 10.7 | <0.0001 |
History of cancer, % | 4.2 | 9.2 | 12.8 | 13.8 | <0.0001 | 7.6 | 8.3 | 11.6 | 14.4 | <0.001 |
Dietary intake, mean | ||||||||||
Zinc, mg/d | 12.7 (0.2) | 11.8 (0.2) | 11.6 (0.4) | 10.7 (0.4) | <0.01 | 13.5 (0.5) | 11.7 (0.3) | 11.1 (0.4) | 10.7 (0.5) | <0.0005 |
Alcohol, g/d | 10.4 (1.0) | 8.7 (0.8) | 10.0 (1.2) | 9.5 (0.9) | 0.112 | 12.6 (1.4) | 10.8 (1.7) | 10.1 (1.8) | 10.6 (1.7) | 0.311 |
Saturated fats, g/d | 29.5 (0.5) | 27.0 (0.5) | 25.6 (0.8) | 24.5 (0.4) | <0.0001 | 30.3 (1.0) | 26.1 (0.8) | 24.2 (0.7) | 23.3 (0.6) | <0.0001 |
Urinary Cd Concentration | No. of Death | Crude Mortality Rate | Age-Standardized Mortality Rate 1 |
---|---|---|---|
(per 100,000) | (per 100,000) | ||
All-cause death | |||
All | 5367 | 1636.5 | 2357.7 |
Quartile 1 (lowest) | 705 | 653.8 | 1918.7 |
Quartile 2 | 1062 | 1202.1 | 1915.5 |
Quartile 3 | 1534 | 2023.9 | 2332.8 |
Quartile 4 (highest) | 2066 | 3065.5 | 2935.0 |
Cancer death | |||
All | 1194 | 389.2 | 486.9 |
Quartile 1 | 139 | 161.0 | 343.4 |
Quartile 2 | 198 | 225.6 | 321.6 |
Quartile 3 | 320 | 460.4 | 475.9 |
Quartile 4 | 537 | 842.8 | 733.7 |
CVD death | |||
All | 1677 | 483.0 | 754.4 |
Quartile 1 | 229 | 196.2 | 680.7 |
Quartile 2 | 347 | 396.7 | 687.3 |
Quartile 3 | 501 | 611.5 | 741.2 |
Quartile 4 | 600 | 831.7 | 840.8 |
Urinary Cd Concentration (µg/g Creatinine) (Range) | p for Trend | ||||
---|---|---|---|---|---|
Q1 (n = 3910) | Q2 (n = 3910) | Q3 (n = 3911) | Q4 (n = 3910) | ||
(0–0.27) | (0.27–0.48) | (0.48–0.82) | (0.82–23.35) | ||
All-cause | |||||
Model 1 1 | 1.00 | 1.13 (0.96–1.33) | 1.44 (1.26–1.64) | 2.04 (1.75–2.37) | <0.0001 |
Model 2 2 | 1.00 | 0.99 (0.82–1.18) | 1.13 (0.96–1.33) | 1.38 (1.14–1.68) | <0.0001 |
Cancer | |||||
Model 1 | 1.00 | 1.01 (0.75–1.36) | 1.68 (1.31–2.14) | 2.90 (2.14–3.93) | <0.0001 |
Model 3 3 | 1.00 | 0.84 (0.60–1.18) | 1.21 (0.90–1.62) | 1.54 (1.05–2.27) | <0.005 |
CVD | |||||
Model 1 | 1.00 | 1.12 (0.87–1.45) | 1.29 (0.99–1.66) | 1.68 (1.32–2.13) | <0.0001 |
Model 4 4 | 1.00 | 0.95 (0.73–1.25) | 1.01 (0.77–1.33) | 1.22 (0.95–1.57) | 0.052 |
Urinary Cd Concentration (µg/g Creatinine) (Range) | |||||
1st Tertile of Dietary Zn Intake | pfor trend | ||||
Q1 (n = 1303) | Q2 (n = 1304) | Q3 (n = 1304) | Q4 (n = 1303) | ||
(0.00–0.31) | (0.31–0.54) | (0.54–0.93) | (0.93–16.17) | ||
All-cause | |||||
Model 1 1 | 1.00 | 1.03 (0.82–1.30) | 1.29 (1.04–1.58) | 1.73 (1.39–2.15) | <0.0001 |
Model 2 2 | 1.00 | 1.00 (0.80–1.25) | 1.04 (0.81–1.34) | 1.25 (0.96–1.63) | 0.062 |
Cancer | |||||
Model 1 | 1.00 | 1.10 (0.63–1.91) | 2.01 (1.13–3.54) | 3.71 (2.24–6.14) | <0.0001 |
Model 3 3 | 1.00 | 0.86 (0.49–1.52) | 1.25 (0.66–2.36) | 1.79 (1.07–3.01) | <0.005 |
CVD | |||||
Model 1 | 1.00 | 1.01 (0.73–1.39) | 1.11 (0.81–1.52) | 1.17 (0.83–1.65) | 0.293 |
Model 4 4 | 1.00 | 0.92 (0.61–1.39) | 0.97 (0.65–1.47) | 0.96 (0.59–1.55) | 0.958 |
2nd tertile of dietary Zn intake | |||||
Q1 (n = 1293) | Q2 (n = 1292) | Q3 (n = 1294) | Q4 (n = 1293) | ||
(0.00–0.27) | (0.27–0.47) | (0.47–0.81) | (0.81–21.65) | ||
All-cause | |||||
Model 1 1 | 1.00 | 1.15 (0.91–1.46) | 1.33 (1.08–1.64) | 1.94 (1.55–2.44) | <0.0001 |
Model 2 2 | 1.00 | 0.98 (0.75–1.30) | 0.95 (0.75–1.20) | 1.25 (0.94–1.66) | 0.067 |
Cancer | |||||
Model 1 | 1.00 | 1.79 (1.07–2.98) | 2.41 (1.59–3.68) | 3.80 (2.34–6.17) | <0.0001 |
Model 3 3 | 1.00 | 1.47 (0.83–2.60) | 1.45 (0.96–2.21) | 1.79 (0.95–3.37) | 0.070 |
CVD | |||||
Model 1 | 1.00 | 1.10 (0.71–1.69) | 1.24 (0.79–1.96) | 1.73 (1.18–2.54) | <0.001 |
Model 4 4 | 1.00 | 1.18 (0.70–1.98) | 1.17 (0.70–1.94) | 1.49 (0.89–2.49) | 0.102 |
3rd tertile of dietary Zn intake | |||||
Q1 (n = 1312) | Q2 (n = 1315) | Q3 (n = 1314) | Q4 (n = 1314) | ||
(0–0.23) | (0.23–0.42) | (0.42–0.74) | (0.74–23.35) | ||
All-cause | |||||
Model 1 1 | 1.00 | 1.09 (0.83–1.43) | 1.62 (1.22–2.14) | 2.38 (1.89–3.04) | <0.0001 |
Model 2 2 | 1.00 | 0.94 (0.68–1.32) | 1.43 (1.01–2.04) | 1.71 (1.23–2.38) | <0.0001 |
Cancer | |||||
Model 1 | 1.00 | 0.71 (0.38–1.33) | 1.29 (0.75–2.23) | 2.22 (1.30–3.77) | <0.0005 |
Model 3 3 | 1.00 | 0.65 (0.29–1.42) | 1.23 (0.61–2.47) | 1.66 (0.80–3.41) | <0.05 |
CVD | |||||
Model 1 | 1.00 | 1.10 (0.62–1.94) | 1.48 (0.81–2.69) | 2.30 (1.31–4.02) | <0.0005 |
Model 4 4 | 1.00 | 0.75 (0.41–1.35) | 0.93 (0.51–1.67) | 1.32 (0.77–2.26) | 0.081 |
1988–2004 | p for Trend | ||||
---|---|---|---|---|---|
Cd/Zn Ratio (Range) | |||||
Q1 (n = 3910) | Q2 (n = 3910) | Q3 (n = 3911) | Q4 (n = 3910) | ||
(0–0.002) | (0.002–0.005) | (0.005–0.011) | (0.011–6.464) | ||
All-cause | |||||
Model 1 1 | 1.00 | 1.36 (1.16–1.60) | 1.68 (1.43–1.96) | 2.17 (1.86–2.52) | <0.0001 |
Model 2 2 | 1.00 | 1.27 (1.04–1.57) | 1.29 (1.05–1.59) | 1.54 (1.23–1.93) | <0.0005 |
Cancer | |||||
Model 1 | 1.00 | 1.43 (1.06–1.92) | 1.87 (1.36–2.59) | 2.86 (2.09–3.92) | <0.0001 |
Model 3 3 | 1.00 | 1.27 (0.91–1.76) | 1.33 (0.90–1.96) | 1.65 (1.11–2.47) | <0.05 |
CVD | |||||
Model 1 | 1.00 | 1.24 (0.95–1.62) | 1.71 (1.30–2.26) | 2.02 (1.60–2.55) | <0.0001 |
Model 4 4 | 1.00 | 1.17 (0.86–1.58) | 1.28 (0.99–1.67) | 1.49 (1.18–1.88) | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Melough, M.M.; Sakaki, J.R.; Ha, K.; Marmash, D.; Noh, H.; Chun, O.K. Association between Urinary Cadmium-to-Zinc Intake Ratio and Adult Mortality in a Follow-Up Study of NHANES 1988–1994 and 1999–2004. Nutrients 2020, 12, 56. https://doi.org/10.3390/nu12010056
Kim K, Melough MM, Sakaki JR, Ha K, Marmash D, Noh H, Chun OK. Association between Urinary Cadmium-to-Zinc Intake Ratio and Adult Mortality in a Follow-Up Study of NHANES 1988–1994 and 1999–2004. Nutrients. 2020; 12(1):56. https://doi.org/10.3390/nu12010056
Chicago/Turabian StyleKim, Kijoon, Melissa M. Melough, Junichi R. Sakaki, Kyungho Ha, Dalia Marmash, Hwayoung Noh, and Ock K. Chun. 2020. "Association between Urinary Cadmium-to-Zinc Intake Ratio and Adult Mortality in a Follow-Up Study of NHANES 1988–1994 and 1999–2004" Nutrients 12, no. 1: 56. https://doi.org/10.3390/nu12010056
APA StyleKim, K., Melough, M. M., Sakaki, J. R., Ha, K., Marmash, D., Noh, H., & Chun, O. K. (2020). Association between Urinary Cadmium-to-Zinc Intake Ratio and Adult Mortality in a Follow-Up Study of NHANES 1988–1994 and 1999–2004. Nutrients, 12(1), 56. https://doi.org/10.3390/nu12010056