Safeness of Diets Based on Gluten-Free Buckwheat Bread Enriched with Seeds and Nuts—Effect on Oxidative and Biochemical Parameters in Rat Serum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bread Preparation
2.2. Animals and Diets
2.3. Gastrointestinal Digestion In Vitro
2.4. Analysis of Blood Morphological and Biochemical Parameters
2.5. Total Phenolics Content
2.6. Antioxidant Capacity
2.6.1. Antiradical Activity (ABTS)
2.6.2. Ferric Reducing Power (FRAP)
2.6.3. Catalase Activity Assay (CAT)
2.6.4. Superoxide Dismutase Assay (SOD)
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Giménez-Bastida, J.A.; Piskuła, M.; Zieliński, H. Recent advances in development of gluten-free buckwheat products. Trends Food Sci. Technol. 2015, 44, 58–65. [Google Scholar] [CrossRef]
- Regula, J.; Smidowicz, A. Share of dietary supplements in nutrition of coeliac disease patients. Acta Sci. Pol. Technol. Aliment. 2014, 13, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Christa, K.; Soral-Śmietana, M. Buckwheat grains and buckwheat products - Nutritional and prophylactic value of their components—A review. Czech J. Food Sci. 2008, 26, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Swieca, M. Potentially bioaccessible phenolics, antioxidant activity and nutritional quality of young buckwheat sprouts affected by elicitation and elicitation supported by phenylpropanoid pathway precursor feeding. Food Chem. 2016, 192, 625–632. [Google Scholar] [CrossRef]
- Regula, J.; Cerba, A.; Suliburska, J.; Tinkov, A.A. In vitro bioavailability of calcium, magnesium, iron, zinc, and copper from gluten-free breads supplemented with natural additives. Biol. Trace Elem. Res. 2018, 182, 140–146. [Google Scholar] [CrossRef]
- Świeca, M. Elicitation and treatment with precursors of phenolics synthesis improve low-molecular antioxidants and antioxidant capacity of buckwheat sprouts. ACTA Sci. Pol. Technol. Aliment. 2016, 15, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-C.; Shen, S.-R.; Lai, Y.-J.; Wu, S.-C. Rutin and quercetin, bioactive compounds from tartary buckwheat, prevent liver inflammatory injury. Food Funct. 2013, 4, 794–802. [Google Scholar] [CrossRef]
- Dziki, D.; Różyło, R.; Gawlik-Dziki, U.; Świeca, M. Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 2014, 40, 48–61. [Google Scholar] [CrossRef]
- Reeves, P.G. Components of the AIN-93 Diets as Improvements in the AIN-76A Diet. J. Nutr. 1997, 127, 838S–841S. [Google Scholar] [CrossRef]
- Available online: https://ndb.nal.usda.gov/ (accessed on 17 October 2019).
- Dembinska-Kiec, A.; Nastalski, J.W. Laboratory Diagnostics with the Elements of Clinical Biochemistry; Urban & Partner: Wrocław, Poland, 2002. [Google Scholar]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction—Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Claiborne, A. Catalase activity. In Handbook of Methods for Oxygen Radical Research; CRC Press: Boca Raton, FL, USA, 1985; pp. 283–284. [Google Scholar]
- Swieca, M.; Reguła, J.; Suliburska, J.; Złotek, U.; Gawlik-Dziki, U. Effects of gluten-free breads, with varying functional supplements, on the biochemical parameters and antioxidant status of rat serum. Food Chem. 2015, 182, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.Y.; Prognon, P. Raw material enzymatic activity determination: A specific case for validation and comparison of analytical methods--the example of superoxide dismutase (SOD). J. Pharm. Biomed. Anal. 2006, 40, 1143–1148. [Google Scholar] [CrossRef] [PubMed]
- Nishi, S.K.; Kendall, C.W.C.; Bazinet, R.P.; Bashyam, B.; Ireland, C.A.; Augustin, L.S.A.; Blanco Mejia, S.; Sievenpiper, J.L.; Jenkins, D.J.A. Nut consumption, serum fatty acid profile and estimated coronary heart disease risk in type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 845–852. [Google Scholar] [CrossRef]
- Sakač, M.; Torbica, A.; Sedej, I.; Hadnađev, M. Influence of breadmaking on antioxidant capacity of gluten free breads based on rice and buckwheat flours. Food Res. Int. 2011, 44, 2806–2813. [Google Scholar] [CrossRef]
- Kayashita, J.; Shimaoka, I.; Nakajoh, M.; Kato, N. Feeding of buckwheat protein extract reduces hepatic triglyceride concentration, adipose tissue weight, and hepatic lipogenesis in rats. J. Nutr. Biochem. 1996, 7, 555–559. [Google Scholar] [CrossRef]
- Stokić, E.; Mandić, A.; Sakač, M.; Mišan, A.; Pestorić, M.; Šimurina, O.; Jambrec, D.; Jovanov, P.; Nedeljković, N.; Milovanović, I.; et al. Quality of buckwheat-enriched wheat bread and its antihyperlipidemic effect in statin treated patients. LWT Food Sci. Technol. 2015, 63, 556–561. [Google Scholar] [CrossRef]
- Swieca, M.; Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Czyż, J. The influence of protein-flavonoid interactions on protein digestibility in vitro and the antioxidant quality of breads enriched with onion skin. Food Chem. 2013, 141, 451–458. [Google Scholar] [CrossRef]
- Dziedzic, K.; Górecka, D.; Kucharska, M.; Przybylska, B. Influence of technological process during buckwheat groats production on dietary fibre content and sorption of bile acids. Food Res. Int. 2012, 47, 279–283. [Google Scholar] [CrossRef]
- Tomotake, H.; Yamamoto, N.; Yanaka, N.; Ohinata, H.; Yamazaki, R.; Kayashita, J.; Kato, N. High protein buckwheat flour suppresses hypercholesterolemia in rats and gallstone formation in mice by hypercholesterolemic diet and body fat in rats because of its low protein digestibility. Nutrition 2006, 22, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Pastoriza, S.; Roncero-Ramos, I.; Rufián-Henares, J.Á.; Delgado-Andrade, C. Antioxidant balance after long-term consumption of standard diets including bread crust glycated compounds by adult rats. Food Res. Int. 2014, 64, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Zduńczyk, Z.; Flis, M.; Zieliński, H.; Wróblewska, M.; Antoszkiewicz, Z.; Juśkiewicz, J. In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats. J. Agric. Food Chem. 2006, 54, 4168–4175. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Shin, J.H.; Lee, S.S. Cardioprotective effects of diet with different grains on lipid profiles and antioxidative system in obesity-induced rats. Int. J. Vitam. Nutr. Res. 2012, 82, 85–93. [Google Scholar] [CrossRef]
Ingredients (%) | Breads | ||||||
---|---|---|---|---|---|---|---|
BC | B1 | B2 | B3 | B4 | B5 | B6 | |
buckwheat flour | 20.7 | 19.7 | 17.2 | 17.7 | 17.2 | 17.4 | 16.6 |
corn and potato starch (% potato) | 31.1 (20.7) | 24.2 (14.3) | 19.4 (10.8) | 19.9 (11.1) | 19.4 (10.8) | 19.6 (10.9) | 18.7 (10.4) |
Saccharomyces cerevisiae | 2.6 | 2.5 | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 |
saccharose | 3.1 | 3.0 | 2.6 | 2.7 | 2.6 | 2.6 | 2.5 |
NaCl | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
rapeseed oil | 0.5 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
milk powder | - | 3.0 | - | - | 2.6 | - | 2.5 |
amaranth flour | - | - | 2.6 | 2.7 | 2.6 | 2.6 | 2.5 |
flax | - | - | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 |
sunflower seeds | - | - | 2.2 | 2.2 | 1.7 | 2.2 | 2.1 |
pumpkin seeds | - | - | 2.2 | 2.2 | 2.2 | 2.2 | 2.1 |
hazel nuts | - | - | 1.7 | 2.7 | 1.7 | 2.2 | 2.1 |
poppy | - | 7.4 | - | 2.2 | 2.6 | - | 4.1 |
egg yolk | - | - | 0.4 | - | - | 0.9 | 0.4 |
carum | - | - | 4.3 | - | - | 2.6 | 0.0 |
water | 41.5 | 39.4 | 42.2 | 42.5 | 42.2 | 42.6 | 41.5 |
Energy *(kcal) | Fiber * (%) | Fat * (%) | Unsaturated Fatty Acids * (%) | Body Mass Change (g) | |
---|---|---|---|---|---|
BC | 166.90 | 3.29 | 1.71 | 0.23 | –14.67 ± 2.58 a |
B1 | 191.16 | 4.47 | 3.40 | 2.33 | 3.67 ± 10.67 b |
B2 | 190.32 | 4.55 | 6.78 | 0.99 | 4.33 ± 5.16 b |
B3 | 197.00 | 4.26 | 6.82 | 1.42 | 5.67 ± 6.02 b |
B4 | 196.00 | 4.29 | 6.44 | 1.45 | 10.67 ± 8.02 b |
B5 | 187.31 | 4.22 | 6.58 | 0.95 | 9.50 ± 4.51 b |
B6 | 204.72 | 4.53 | 7.31 | 1.97 | 7.75 ± 7.58 b |
Diet | |||||||
---|---|---|---|---|---|---|---|
BC | B1 | B2 | B3 | B4 | B5 | B6 | |
GLU (mg dL−1) | 117.8 ± 21.7 | 139.5 ± 33.5 | 118.8 ± 26.1 | 111.0 ± 18.8 | 102.2 ± 23.5 | 130.8 ± 26.9 | 109.7 ± 12.3 |
ALB (g dL−1) | 3.37 ± 0.1 | 3.58 ± 0.1 | 3.60 ± 0.1 | 3.67 ± 0.1 | 3.63 ± 0.2 | 3.60 ± 0.2 | 3.53 ± 0.1 |
TCH (mg dL−1) | 83.5 ± 7.2 b | 69.3 ± 3.1 a | 90.1 ± 14.3 bc | 76.8 ± 9.5 ab | 90.0 ± 11.8 bc | 97.6 ± 5.8 c | 79.5 ± 11.8 ab |
HDL (mg dL−1) | 29.4 ± 3.6 ab | 24.8 ± 1.8 a | 31.0 ± 4.1 ab | 26.1 ± 2.7 ab | 29.9 ± 3.4 ab | 32.5 ± 3.2 b | 27.8±1.5 ab |
TAG (mg dL−1) | 42.5 ± 5.9 c | 27.8 ± 4.8 b | 22.0 ± 5.5 ab | 20.0 ± 4.5 ab | 18.3 ± 3.7 a | 28.1 ± 12.1 ab | 18.1 ± 5.8 ab |
AST (U L−1) | 93.3 ± 34.7 | 98.0 ± 41.1 | 74.5 ± 22.0 | 90.6 ± 39.3 | 83.5 ± 32.2 | 91.5 ± 45.4 | 86.3 ± 42.2 |
ALT (U L−1) | 27.6 ± 8.9 | 23.1 ± 7.4 | 21.1 ± 8.8 | 19.5 ± 8.3 | 16.1 ± 3.7 | 20.0 ± 6.3 | 21.8 ± 6.8 |
Breads | |||||||
---|---|---|---|---|---|---|---|
BC | B1 | B2 | B3 | B4 | B5 | B6 | |
WBC (×103 µL−1) | 2.45 ± 0.87 | 3.62 ± 0.76 | 3.92 ± 1.28 | 3.26 ± 0.63 | 3.32 ± 0.83 | 2.72 ± 0.99 | 3.35 ± 0.80 |
Erythrocytes (×106 µL−1) | 7.19 ± 0.37 | 7.34 ± 0.20 | 7.16 ± 0.23 | 7.33 ± 0.24 | 7.35 ± 0.20 | 7.41 ± 0.24 | 7.19 ± 0.40 |
Hemoglobin (g dL−1) | 14.15 ± 0.68 | 14.07 ± 0.53 | 14.07 ± 0.40 | 14.08 ± 0.42 | 14.32 ± 0.64 | 14.18 ± 0.33 | 13.92 ± 0.62 |
Hematocrit (%) | 41.87 ± 2.81 | 42.17 ± 1.42 | 41.62 ± 1.60 | 41.80 ± 0.83 | 42.52 ± 1.96 | 42.67 ± 1.24 | 41.50 ± 2.46 |
MCV (fl) | 58.28 ± 2.72 | 57.47 ± 1.18 | 58.08 ± 1.25 | 57.04 ± 1.99 | 57.82 ± 2.16 | 57.60 ± 1.31 | 57.70 ± 1.38 |
MCH (pg) | 19.70 ± 0.83 | 19.17 ± 0.51 | 19.63 ± 0.36 | 19.22 ± 0.80 | 19.47 ± 0.72 | 19.15 ± 0.19 | 19.35 ± 0.56 |
MCHC (g dL−1) | 33.83 ± 0.98 | 33.37 ± 0.45 | 33.85 ± 1.14 | 33.68 ± 0.37 | 33.68 ± 0.29 | 33.25 ± 0.63 | 33.57 ± 0.69 |
Thrombocytes (×103 µL−1) | 773 ± 62.1 a | 923 ± 71.5 b | 838 ± 54.5 ab | 859 ± 94.1 ab | 876 ± 64.4 ab | 826 ± 105.4 ab | 799 ± 98.0 ab |
LYM (%) | 93.88 ± 1.02 | 94.58 ± 0.95 | 89.35 ± 8.28 | 93.50 ± 1.17 | 94.73 ± 1.14 | 93.35 ± 1.53 | 93.50 ± 1.37 |
LYM (×103 µL−1) | 2.42 ± 0.93 | 3.43 ± 0.70 | 3.53 ± 1.28 | 3.02 ± 0.58 | 3.15 ± 0.80 | 2.53 ± 0.90 | 3.13 ± 0.77 |
Catalase Activity (kU dL−1) | SOD Activity (kU dL−1) | Antiradical Activity (mol TE dL−1) | Reducing Potential (molTE dL−1) | |
---|---|---|---|---|
BC | 67.67 ± 20.9 b | 16.24 ± 2.4 e | 273.8 ± 37.1 ab | 36.1 ± 0.83 |
B1 | 61.03 ± 7.7 b | 5.27 ± 1.6 bc | 299.5 ± 8.3 b | 36.3 ± 4.49 |
B2 | 25.92 ± 4.6 a | 16.11 ± 0.7 e | 298.1 ± 15.6 ab | 36.9 ± 0.73 |
B3 | 116.09 ± 13.3 cd | 10.63 ± 1.9 de | 306.0 ± 12.1 b | 35.8 ± 3.29 |
B4 | 111.49 ± 17.2 cd | 5.44 ± 0.9 bc | 307.8 ± 10.2 ab | 37.6 ± 3.70 |
B5 | 128.16 ± 20.1 d | 4.43 ± 1.1 abc | 298.4 ± 19.2 ab | 37.7 ± 0.42 |
B6 | 80.46 ± 18.9 bc | 4.71 ± 1.2 abc | 287.6 ± 4.2 a | 39.1 ± 2.66 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Świeca, M.; Regula, J.; Suliburska, J.; Zlotek, U.; Gawlik-Dziki, U.; Ferreira, I.M.P.L.V.O. Safeness of Diets Based on Gluten-Free Buckwheat Bread Enriched with Seeds and Nuts—Effect on Oxidative and Biochemical Parameters in Rat Serum. Nutrients 2020, 12, 41. https://doi.org/10.3390/nu12010041
Świeca M, Regula J, Suliburska J, Zlotek U, Gawlik-Dziki U, Ferreira IMPLVO. Safeness of Diets Based on Gluten-Free Buckwheat Bread Enriched with Seeds and Nuts—Effect on Oxidative and Biochemical Parameters in Rat Serum. Nutrients. 2020; 12(1):41. https://doi.org/10.3390/nu12010041
Chicago/Turabian StyleŚwieca, Michal, Julita Regula, Joanna Suliburska, Urszula Zlotek, Urszula Gawlik-Dziki, and Isabel M. P. L. V. O. Ferreira. 2020. "Safeness of Diets Based on Gluten-Free Buckwheat Bread Enriched with Seeds and Nuts—Effect on Oxidative and Biochemical Parameters in Rat Serum" Nutrients 12, no. 1: 41. https://doi.org/10.3390/nu12010041
APA StyleŚwieca, M., Regula, J., Suliburska, J., Zlotek, U., Gawlik-Dziki, U., & Ferreira, I. M. P. L. V. O. (2020). Safeness of Diets Based on Gluten-Free Buckwheat Bread Enriched with Seeds and Nuts—Effect on Oxidative and Biochemical Parameters in Rat Serum. Nutrients, 12(1), 41. https://doi.org/10.3390/nu12010041