Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Metabolic Syndrome Features Modulation by Mineral Water Consumption—Blood Pressure
3.2. Metabolic Syndrome Features Modulation by Mineral Water Consumption—Lipid Profile
3.3. Metabolic Syndrome Features Modulation by Mineral Water Consumption—Glucose
3.4. Metabolic Syndrome Features Modulation by Mineral Water Consumption—Waist Circumference
4. Discussion
4.1. Metabolic Syndrome Features—Blood Pressure
Metabolic Syndrome Features Modulation by Mineral Water Consumption—Blood Pressure
4.2. Metabolic Syndrome Features—Lipid Profile
Metabolic Syndrome Features Modulation by Mineral Water Consumption—Lipid Profile
4.3. Metabolic Syndrome Features—Glucose
Metabolic Syndrome Features Modulation by Mineral Water Consumption—Glucose
4.4. Metabolic Syndrome Features—Waist Circumference
Metabolic Syndrome Features Modulation by Mineral Water Consumption—Waist Circumference
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Alcala-Diaz, J.F.; Delgado-Lista, J.; Perez-Martinez, P.; Garcia-Rios, A.; Marin, C.; Quintana-Navarro, G.M.; Gomez-Luna, P.; Camargo, A.; Almaden, Y.; Caballero, J.; et al. Hypertriglyceridemia influences the degree of postprandial lipemic response in patients with metabolic syndrome and coronary artery disease: From the CORDIOPREV study. PLoS ONE 2014, 9, e96297. [Google Scholar] [CrossRef] [PubMed]
- Nolan, P.B.; Carrick-Ranson, G.; Stinear, J.W.; Reading, S.A.; Dalleck, L.C. Prevalence of metabolic syndrome and metabolic syndrome components in young adults: A pooled analysis. Prev. Med. Rep. 2017, 7, 211–215. [Google Scholar] [CrossRef]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014, 2014, 943162. [Google Scholar] [CrossRef]
- Perez-Martinez, P.; Mikhailidis, D.P.; Athyros, V.G.; Bullo, M.; Couture, P.; Covas, M.I.; de Koning, L.; Delgado-Lista, J.; Diaz-Lopez, A.; Drevon, C.A.; et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: An international panel recommendation. Nutr. Rev. 2017, 75, 307–326. [Google Scholar] [CrossRef]
- Mandecka, A.; Regulska-Ilow, B. Dietary interventions in the treatment of metabolic syndrome as a cardiovascular disease risk-inducing factor. A review. Rocz Panstw Zakl. Hig. 2018, 69, 227–233. [Google Scholar] [PubMed]
- Mazidi, M.; Pennathur, S.; Afshinnia, F. Link of dietary patterns with metabolic syndrome: Analysis of the National Health and Nutrition Examination Survey. Nutr. Diabetes 2017, 7, e255. [Google Scholar] [CrossRef]
- Pereira, C.; Monteiro, R.; Martins, M. Understanding the metabolic syndrome using a biomedical chemistry profile. In Biomedical Chemistry Current Trends and Developments, 1st ed.; Vale, N., Ed.; DeGruyter Open: Warsaw, Poland, 2015; pp. 132–147. [Google Scholar]
- Morelli, N.R.; Scavuzzi, B.M.; Miglioranza, L.; Lozovoy, M.A.B.; Simao, A.N.C.; Dichi, I. Metabolic syndrome components are associated with oxidative stress in overweight and obese patients. Arch. Endocrinol. Metab. 2018, 62, 309–318. [Google Scholar] [CrossRef]
- Carrier, A. Metabolic Syndrome and Oxidative Stress: A Complex Relationship. Antioxid. Redox Signal 2017, 26, 429–431. [Google Scholar] [CrossRef]
- Marseglia, L.; Manti, S.; D’Angelo, G.; Nicotera, A.; Parisi, E.; Di Rosa, G.; Gitto, E.; Arrigo, T. Oxidative stress in obesity: A critical component in human diseases. Int. J. Mol. Sci. 2014, 16, 378–400. [Google Scholar] [CrossRef]
- Pereira, C.D.; Passos, E.; Severo, M.; Vito, I.; Wen, X.; Carneiro, F.; Gomes, P.; Monteiro, R.; Martins, M.J. Ingestion of a natural mineral-rich water in an animal model of metabolic syndrome: Effects in insulin signalling and endoplasmic reticulum stress. Horm. Mol. Biol. Clin. Investig. 2016, 26, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Passos, E.; Ascensao, A.; Martins, M.J.; Magalhaes, J. Endoplasmic Reticulum Stress Response in Non-alcoholic Steatohepatitis: The Possible Role of Physical Exercise. Metabolism 2015, 64, 780–792. [Google Scholar] [CrossRef]
- Bjornstad, P.; Eckel, R.H. Pathogenesis of Lipid Disorders in Insulin Resistance: A Brief Review. Curr. Diab. Rep. 2018, 18, 127. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Foundation. IDF Consensus Worldwide Definition of the Metabolic Syndrome. Available online: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwide-definitionof-the-metabolic-syndrome (accessed on 1 December 2018).
- Park, Y.M.; Steck, S.E.; Fung, T.T.; Zhang, J.; Hazlett, L.J.; Han, K.; Lee, S.H.; Kwon, H.S.; Merchant, A.T. Mediterranean diet, Dietary Approaches to Stop Hypertension (DASH) style diet, and metabolic health in U.S. adults. Clin. Nutr. 2017, 36, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Krupp, D.; Esche, J.; Mensink, G.B.M.; Klenow, S.; Thamm, M.; Remer, T. Dietary Acid Load and Potassium Intake Associate with Blood Pressure and Hypertension Prevalence in a Representative Sample of the German Adult Population. Nutrients 2018, 10, 103. [Google Scholar] [CrossRef]
- Cai, X.; Li, X.; Fan, W.; Yu, W.; Wang, S.; Li, Z.; Scott, E.M.; Li, X. Potassium and Obesity/Metabolic Syndrome: A Systematic Review and Meta-Analysis of the Epidemiological Evidence. Nutrients 2016, 8, 183. [Google Scholar] [CrossRef]
- Akter, S.; Eguchi, M.; Kuwahara, K.; Kochi, T.; Ito, R.; Kurotani, K.; Tsuruoka, H.; Nanri, A.; Kabe, I.; Mizoue, T. High dietary acid load is associated with insulin resistance: The Furukawa Nutrition and Health Study. Clin. Nutr. 2016, 35, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Wong, V.W.; Chu, W.C.; Wong, G.L.; Li, L.S.; Leung, J.; Chim, A.M.; Yeung, D.K.; Sea, M.M.; Woo, J.; et al. Higher estimated net endogenous Acid production may be associated with increased prevalence of nonalcoholic Fatty liver disease in chinese adults in Hong Kong. PLoS ONE 2015, 10, e0122406. [Google Scholar] [CrossRef]
- Gaede, J.; Nielsen, T.; Madsen, M.L.; Toft, U.; Jorgensen, T.; Overvad, K.; Tjonneland, A.; Hansen, T.; Allin, K.H.; Pedersen, O. Population-based studies of relationships between dietary acidity load, insulin resistance and incident diabetes in Danes. Nutr. J. 2018, 17, 91. [Google Scholar] [CrossRef]
- Siddiqui, K.; Bawazeer, N.; Joy, S.S. Variation in macro and trace elements in progression of type 2 diabetes. Sci. World J. 2014, 2014, 461591. [Google Scholar] [CrossRef]
- Carnauba, R.A.; Baptistella, A.B.; Paschoal, V.; Hubscher, G.H. Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review. Nutrients 2017, 9, 538. [Google Scholar] [CrossRef] [PubMed]
- Adeva, M.M.; Souto, G. Diet-induced metabolic acidosis. Clin. Nutr. 2011, 30, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Fang, X.; Wei, X.; Liu, Y.; Jin, Z.; Chen, Q.; Fan, Z.; Aaseth, J.; Hiyoshi, A.; He, J.; Cao, Y. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: A systematic review and meta-analysis of prospective cohort studies. Nutr. J. 2017, 16, 26. [Google Scholar] [CrossRef]
- Ju, S.Y.; Choi, W.S.; Ock, S.M.; Kim, C.M.; Kim, D.H. Dietary magnesium intake and metabolic syndrome in the adult population: Dose-response meta-analysis and meta-regression. Nutrients 2014, 6, 6005–6019. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, F.H. Magnesium deficiency and increased inflammation: Current perspectives. J. Inflamm. Res. 2018, 11, 25–34. [Google Scholar] [CrossRef]
- Cormick, G.; Ciapponi, A.; Cafferata, M.L.; Belizan, J.M. Calcium supplementation for prevention of primary hypertension. Cochrane Datab. Syst. Rev. 2015, 6, CD010037. [Google Scholar] [CrossRef]
- World Health Organization. Calcium and Magnesium in Drinking-Water. Public Health Significance; WHO Press: Geneva, Switzerland, 2009. [Google Scholar]
- Maraver, F.; Vitoria, I.; Ferreira-Pego, C.; Armijo, F.; Salas-Salvado, J. Magnesium in tap and bottled mineral water in Spain and its contribution to nutritional recommendations. Nutr. Hosp. 2015, 31, 2297–2312. [Google Scholar]
- Vitoria, I.; Maraver, F.; Ferreira-Pego, C.; Armijo, F.; Moreno Aznar, L.; Salas-Salvado, J. The calcium concentration of public drinking waters and bottled mineral waters in Spain and its contribution to satisfying nutritional needs. Nutr. Hosp. 2014, 30, 188–199. [Google Scholar]
- Halpern, G.M.; Van de Water, J.; Delabroise, A.M.; Keen, C.L.; Gershwin, M.E. Comparative uptake of calcium from milk and a calcium-rich mineral water in lactose intolerant adults: Implications for treatment of osteoporosis. Am. J. Prev. Med. 1991, 7, 379–383. [Google Scholar] [CrossRef]
- Galan, P.; Arnaud, M.J.; Czernichow, S.; Delabroise, A.M.; Preziosi, P.; Bertrais, S.; Franchisseur, C.; Maurel, M.; Favier, A.; Hercberg, S. Contribution of mineral waters to dietary calcium and magnesium intake in a French adult population. J. Am. Diet. Assoc. 2002, 102, 1658–1662. [Google Scholar] [CrossRef]
- Drywien, M.E.; Nadolna, A. Assessment of mineral bottled water as a source of selected minerals among students. Rocz. Panstw. Zakl. Hig. 2012, 63, 347–352. [Google Scholar]
- Greupner, T.; Schneider, I.; Hahn, A. Calcium Bioavailability from Mineral Waters with Different Mineralization in Comparison to Milk and a Supplement. J. Am. Coll. Nutr. 2017, 36, 386–390. [Google Scholar] [CrossRef]
- Morr, S.; Cuartas, E.; Alwattar, B.; Lane, J.M. How much calcium is in your drinking water? A survey of calcium concentrations in bottled and tap water and their significance for medical treatment and drug administration. Hss. J. 2006, 2, 130–135. [Google Scholar] [CrossRef]
- Verhas, M.; de la Gueronniere, V.; Grognet, J.M.; Paternot, J.; Hermanne, A.; Van den Winkel, P.; Gheldof, R.; Martin, P.; Fantino, M.; Rayssiguier, Y. Magnesium bioavailability from mineral water. A study in adult men. Eur. J. Clin. Nutr. 2002, 56, 442–447. [Google Scholar] [CrossRef] [Green Version]
- Heaney, R.P. Absorbability and utility of calcium in mineral waters. Am. J. Clin. Nutr. 2006, 84, 371–374. [Google Scholar] [CrossRef]
- Casado, A.; Ramos, P.; Rodriguez, J.; Moreno, N.; Gil, P. Types and characteristics of drinking water for hydration in the elderly. Crit. Rev. Food Sci. Nutr. 2015, 55, 1633–1641. [Google Scholar] [CrossRef]
- Sabatier, M.; Arnaud, M.J.; Kastenmayer, P.; Rytz, A.; Barclay, D.V. Meal effect on magnesium bioavailability from mineral water in healthy women. Am. J. Clin. Nutr. 2002, 75, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Sabatier, M.; Grandvuillemin, A.; Kastenmayer, P.; Aeschliman, J.M.; Bouisset, F.; Arnaud, M.J.; Dumoulin, G.; Berthelot, A. Influence of the consumption pattern of magnesium from magnesium-rich mineral water on magnesium bioavailability. Br. J. Nutr. 2011, 106, 331–334. [Google Scholar] [CrossRef]
- Bacciottini, L.; Tanini, A.; Falchetti, A.; Masi, L.; Franceschelli, F.; Pampaloni, B.; Giorgi, G.; Brandi, M.L. Calcium bioavailability from a calcium-rich mineral water, with some observations on method. J. Clin. Gastroenterol. 2004, 38, 761–766. [Google Scholar] [CrossRef]
- Nakamura, E.; Tai, H.; Uozumi, Y.; Nakagawa, K.; Matsui, T. Magnesium absorption from mineral water decreases with increasing quantities of magnesium per serving in rats. Nutr. Res. 2012, 32, 59–65. [Google Scholar] [CrossRef]
- Bohmer, H.; Muller, H.; Resch, K.L. Calcium supplementation with calcium-rich mineral waters: A systematic review and meta-analysis of its bioavailability. Osteoporos. Int. 2000, 11, 938–943. [Google Scholar] [CrossRef]
- Petraccia, L.; Liberati, G.; Masciullo, S.G.; Grassi, M.; Fraioli, A. Water, mineral waters and health. Clin. Nutr. 2006, 25, 377–385. [Google Scholar] [CrossRef]
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef]
- Karagulle, O.; Kleczka, T.; Vidal, C.; Candir, F.; Gundermann, G.; Kulpmann, W.R.; Gehrke, A.; Gutenbrunner, C. Magnesium absorption from mineral waters of different magnesium content in healthy subjects. Forsch. Komplementmed. 2006, 13, 9–14. [Google Scholar] [CrossRef]
- Kiss, S.A.; Forster, T.; Dongo, A. Absorption and effect of the magnesium content of a mineral water in the human body. J. Am. Coll. Nutr. 2004, 23, 758s–762s. [Google Scholar] [CrossRef]
- Rylander, R. Drinking water constituents and disease. J. Nutr. 2008, 138, 423S–425S. [Google Scholar] [CrossRef]
- Albertini, M.; Dachà, M.; Teodori, L.; Conti, M. Drinking mineral waters: Biochemical effects and health implications—The state-of-the-art. Int. J. Environ. Health 2007, 1, 153–169. [Google Scholar] [CrossRef]
- Kessler, T.; Hesse, A. Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Br. J. Nutr. 2000, 84, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Carbajo, J.M.; Maraver, F. Sulphurous Mineral Waters: New Applications for Health. Evid. Based Complement. Alternat. Med. 2017, 2017, 8034084. [Google Scholar] [CrossRef]
- De Giglio, O.; Quaranta, A.; Lovero, G.; Caggiano, G.; Montagna, M.T. Mineral water or tap water? An endless debate. Ann. Ig. 2015, 27, 58–65. [Google Scholar]
- European Council. Directive 2009/54/EC of the European Parliament and of the Council of 18 June 2009 on the Exploitation and Marketing of Natural Mineral Waters; European Council: Brussels, Belgium, 2009. [Google Scholar]
- Luft, F.C.; Zemel, M.B.; Sowers, J.A.; Fineberg, N.S.; Weinberger, M.H. Sodium bicarbonate and sodium chloride: Effects on blood pressure and electrolyte homeostasis in normal and hypertensive man. J. Hypertens. 1990, 8, 663–670. [Google Scholar] [CrossRef]
- Pereira, C.D.; Severo, M.; Araujo, J.R.; Guimaraes, J.T.; Pestana, D.; Santos, A.; Ferreira, R.; Ascensao, A.; Magalhaes, J.; Azevedo, I.; et al. Relevance of a Hypersaline Sodium-Rich Naturally Sparkling Mineral Water to the Protection against Metabolic Syndrome Induction in Fructose-Fed Sprague-Dawley Rats: A Biochemical, Metabolic, and Redox Approach. Int. J. Endocrinol. 2014, 2014, 384583. [Google Scholar] [CrossRef]
- Perez-Granados, A.M.; Navas-Carretero, S.; Schoppen, S.; Vaquero, M.P. Reduction in cardiovascular risk by sodium-bicarbonated mineral water in moderately hypercholesterolemic young adults. J. Nutr. Biochem. 2010, 21, 948–953. [Google Scholar] [CrossRef] [Green Version]
- Rylander, R.; Arnaud, M.J. Mineral water intake reduces blood pressure among subjects with low urinary magnesium and calcium levels. BMC Public Health 2004, 4, 56. [Google Scholar] [CrossRef]
- Rylander, R.; Tallheden, T.; Vormann, J. Magnesium intervention and blood pressure—A study on risk groups. Open J. Prev. Med. 2012, 2, 23–26. [Google Scholar] [CrossRef]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Oubina, P.; Sanchez-Muniz, F.J.; Gomez-Gerique, J.A.; Vaquero, M.P. A sodium-rich carbonated mineral water reduces cardiovascular risk in postmenopausal women. J. Nutr. 2004, 134, 1058–1063. [Google Scholar] [CrossRef]
- Schorr, U.; Distler, A.; Sharma, A.M. Effect of sodium chloride- and sodium bicarbonate-rich mineral water on blood pressure and metabolic parameters in elderly normotensive individuals: A randomized double-blind crossover trial. J. Hypertens. 1996, 14, 131–135. [Google Scholar]
- Toxqui, L.; Vaquero, M.P. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults. Nutrients 2016, 8, 400. [Google Scholar] [CrossRef]
- Santos, A.; Martins, M.J.; Guimaraes, J.T.; Severo, M.; Azevedo, I. Sodium-rich carbonated natural mineral water ingestion and blood pressure. Rev. Port. Cardiol. 2010, 29, 159–172. [Google Scholar]
- Capurso, A.; Solfrizzi, V.; Panza, F.; Mastroianni, F.; Torres, F.; Del Parigi, A.; Colacicco, A.M.; Capurso, C.; Nicoletti, G.; Veneziani, B.; Cellamare, S.; Scalabrino, A. Increased bile acid excretion and reduction of serum cholesterol after crenotherapy with salt-rich mineral water. Aging 1999, 11, 273–276. [Google Scholar] [CrossRef]
- Zair, Y.; Kasbi-Chadli, F.; Housez, B.; Pichelin, M.; Cazaubiel, M.; Raoux, F.; Ouguerram, K. Effect of a high bicarbonate mineral water on fasting and postprandial lipemia in moderately hypercholesterolemic subjects: A pilot study. Lipids Health Dis. 2013, 12, 105. [Google Scholar] [CrossRef]
- Kanbara, A.; Miura, Y.; Hyogo, H.; Chayama, K.; Seyama, I. Effect of urine pH changed by dietary intervention on uric acid clearance mechanism of pH-dependent excretion of urinary uric acid. Nutr. J. 2012, 11, 39. [Google Scholar] [CrossRef]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Sarria, B.; Sanchez-Muniz, F.J.; Gomez-Gerique, J.A.; Pilar Vaquero, M. Sodium bicarbonated mineral water decreases postprandial lipaemia in postmenopausal women compared to a low mineral water. Br. J. Nutr. 2005, 94, 582–587. [Google Scholar] [CrossRef]
- Toxqui, L.; Perez-Granados, A.M.; Blanco-Rojo, R.; Vaquero, M.P. A sodium-bicarbonated mineral water reduces gallbladder emptying and postprandial lipaemia: A randomised four-way crossover study. Eur. J. Nutr. 2012, 51, 607–614. [Google Scholar] [CrossRef]
- Cantalamessa, F.; Nasuti, C. Hypocholesterolemic activity of calcic and magnesic-sulphate-sulphurous spring mineral water in the rat. Nutr. Res. 2003, 23, 775–789. [Google Scholar] [CrossRef]
- Murakami, S.; Goto, Y.; Ito, K.; Hayasaka, S.; Kurihara, S.; Soga, T.; Tomita, M.; Fukuda, S. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control. Evid. Based Complement. Alternat. Med. 2015, 2015, 824395. [Google Scholar] [CrossRef]
- Aslanabadi, N.; Habibi Asl, B.; Bakhshalizadeh, B.; Ghaderi, F.; Nemati, M. Hypolipidemic activity of a natural mineral water rich in calcium, magnesium, and bicarbonate in hyperlipidemic adults. Adv. Pharm. Bull. 2014, 4, 303–307. [Google Scholar]
- Corradini, S.G.; Ferri, F.; Mordenti, M.; Iuliano, L.; Siciliano, M.; Burza, M.A.; Sordi, B.; Caciotti, B.; Pacini, M.; Poli, E.; et al. Beneficial effect of sulphate-bicarbonate-calcium water on gallstone risk and weight control. World J. Gastroenterol. 2012, 18, 930–937. [Google Scholar] [CrossRef]
- El-Seweidy, M.M.; Sadik, N.A.; Shaker, O.G. Role of sulfurous mineral water and sodium hydrosulfide as potent inhibitors of fibrosis in the heart of diabetic rats. Arch. Biochem. Biophys. 2011, 506, 48–57. [Google Scholar] [CrossRef]
- Schoppen, S.; Sanchez-Muniz, F.J.; Perez-Granados, M.; Gomez-Gerique, J.A.; Sarria, B.; Navas-Carretero, S.; Pilar Vaquero, M. Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women? Nutr. Hosp. 2007, 22, 538–544. [Google Scholar]
- Bloch, M.J. Worldwide prevalence of hypertension exceeds 1.3 billion. J. Am. Soc. Hypertens. 2016, 10, 753–754. [Google Scholar] [CrossRef]
- Špinar, J. Hypertension and ischemic heart disease. Cor et Vasa 2012, 54, e433–e438. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Health Observatory (GHO) Data. Available online: http://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/ (accessed on 17 September 2018).
- World Health Organization. A Global Brief on Hypertension. Available online: http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/ (accessed on 17 September 2018).
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: http://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 17 September 2018).
- World Health Organization. The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 17 September 2018).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in blood pressure from 1975 to 2015: A pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet 2017, 389, 37–55. [Google Scholar] [CrossRef]
- Graudal, N.A.; Hubeck-Graudal, T.; Jurgens, G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Datab. Syst. Rev. 2017, 4, CD004022. [Google Scholar] [CrossRef]
- Boegehold, M.A.; Kotchen, T.A. Relative contributions of dietary Na+ and Cl− to salt-sensitive hypertension. Hypertension 1989, 14, 579–583. [Google Scholar] [CrossRef]
- Ziomber, A.; Machnik, A.; Dahlmann, A.; Dietsch, P.; Beck, F.X.; Wagner, H.; Hilgers, K.F.; Luft, F.C.; Eckardt, K.U.; Titze, J. Sodium-, potassium-, chloride-, and bicarbonate-related effects on blood pressure and electrolyte homeostasis in deoxycorticosterone acetate-treated rats. Am. J. Physiol. Renal Physiol. 2008, 295, F1752–F1763. [Google Scholar] [CrossRef] [Green Version]
- Kunes, J.; Zicha, J.; Jelinek, J. The role of chloride in deoxycorticosterone hypertension: Selective sodium loading by diet or drinking fluid. Physiol. Res. 2004, 53, 149–154. [Google Scholar] [PubMed]
- Pereira, C.D.; Severo, M.; Rafael, L.; Martins, M.J.; Neves, D. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome. As. J. Androl. 2014, 16, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Konukoglu, D.; Uzun, H. Endothelial Dysfunction and Hypertension. Adv. Exp. Med. Biol. 2017, 956, 511–540. [Google Scholar]
- Gkaliagkousi, E.; Gavriilaki, E.; Triantafyllou, A.; Douma, S. Clinical Significance of Endothelial Dysfunction in Essential Hypertension. Curr. Hypertens. Rep. 2015, 17, 85. [Google Scholar] [CrossRef]
- Siener, R. Can the manipulation of urinary pH by beverages assist with the prevention of stone recurrence? Urolithiasis 2016, 44, 51–56. [Google Scholar] [CrossRef]
- Rasic-Milutinovic, Z.; Perunicic-Pekovic, G.; Jovanovic, D.; Gluvic, Z.; Cankovic-Kadijevic, M. Association of blood pressure and metabolic syndrome components with magnesium levels in drinking water in some Serbian municipalities. J. Water Health 2012, 10, 161–169. [Google Scholar] [CrossRef]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Uenishi, K. Association between dietary acid-base load and cardiometabolic risk factors in young Japanese women. Br. J. Nutr. 2008, 100, 642–651. [Google Scholar] [CrossRef]
- Sebastian, A.; Harris, S.T.; Ottaway, J.H.; Todd, K.M.; Morris, R.C., Jr. Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. N. Engl. J. Med. 1994, 330, 1776–1781. [Google Scholar] [CrossRef]
- Hu, J.F.; Zhao, X.H.; Parpia, B.; Campbell, T.C. Dietary intakes and urinary excretion of calcium and acids: A cross-sectional study of women in China. Am. J. Clin. Nutr. 1993, 58, 398–406. [Google Scholar] [CrossRef]
- Ndrepepa, G. Uric acid and cardiovascular disease. Clin. Chim. Acta 2018, 484, 150–163. [Google Scholar] [CrossRef]
- Wang, J.; Qin, T.; Chen, J.; Li, Y.; Wang, L.; Huang, H.; Li, J. Hyperuricemia and risk of incident hypertension: A systematic review and meta-analysis of observational studies. PLoS ONE 2014, 9, e114259. [Google Scholar] [CrossRef]
- Pereira, C.D.; Severo, M.; Neves, D.; Ascensao, A.; Magalhaes, J.; Guimaraes, J.T.; Monteiro, R.; Martins, M.J. Natural mineral-rich water ingestion improves hepatic and fat glucocorticoid-signaling and increases sirtuin 1 in an animal model of metabolic syndrome. Horm. Mol. Biol. Clin. Investig. 2015, 21, 149–157. [Google Scholar] [CrossRef]
- Houston, M. The role of magnesium in hypertension and cardiovascular disease. J. Clin. Hypertens. 2011, 13, 843–847. [Google Scholar] [CrossRef]
- Brey, C.W.; Akbari-Alavijeh, S.; Ling, J.; Sheagley, J.; Shaikh, B.; Al-Mohanna, F.; Wang, Y.; Gaugler, R.; Hashmi, S. Salts and energy balance: A special role for dietary salts in metabolic syndrome. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Simonetti, G.; Mohaupt, M. Calcium and blood pressure. Ther. Umsch. 2007, 64, 249–252. [Google Scholar] [CrossRef]
- Corbetta, S.; Mantovani, G.; Spada, A. Metabolic Syndrome in Parathyroid Diseases. Front. Horm. Res. 2018, 49, 67–84. [Google Scholar]
- Carey, R.M.; Muntner, P.; Bosworth, H.B.; Whelton, P.K. Prevention and Control of Hypertension: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 1278–1293. [Google Scholar] [CrossRef]
- Musabayane, C.T.; Balment, R.J. Renal effects of aldosterone in the sodium bicarbonate infused rat. Ren. Fail. 1991, 13, 71–76. [Google Scholar] [CrossRef]
- Schweda, F. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch. 2015, 467, 565–576. [Google Scholar] [CrossRef]
- Rush, G.F.; Willis, L.R. Renal tubular effects of sodium fluoride. J. Pharmacol. Exp. Ther. 1982, 223, 275–279. [Google Scholar]
- Bastos, P.; Araujo, J.R.; Azevedo, I.; Martins, M.J.; Ribeiro, L. Effect of a natural mineral-rich water on catechol-O-methyltransferase function. Magnes. Res. 2014, 27, 131–141. [Google Scholar] [Green Version]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Sarria, B.; Navas-Carretero, S.; Pilar Vaquero, M. Sodium-bicarbonated mineral water decreases aldosterone levels without affecting urinary excretion of bone minerals. Int. J. Food Sci. Nutr. 2008, 59, 347–355. [Google Scholar] [CrossRef]
- Toxqui, L.; Vaquero, M.P. Aldosterone changes after consumption of a sodium-bicarbonated mineral water in humans. A four-way randomized controlled trial. J. Physiol. Biochem. 2016, 72, 635–641. [Google Scholar] [CrossRef]
- Perez, G.O.; Oster, J.R.; Katz, F.H.; Vaamonde, C.A. The effect of acute metabolic acidosis on plasma cortisol, renin activity and aldosterone. Horm. Res. 1979, 11, 12–21. [Google Scholar] [CrossRef]
- Lee, J.S.; Chang, P.Y.; Zhang, Y.; Kizer, J.R.; Best, L.G.; Howard, B.V. Triglyceride and HDL-C Dyslipidemia and Risks of Coronary Heart Disease and Ischemic Stroke by Glycemic Dysregulation Status: The Strong Heart Study. Diabetes Care 2017, 40, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Halcox, J.P.; Banegas, J.R.; Roy, C.; Dallongeville, J.; De Backer, G.; Guallar, E.; Perk, J.; Hajage, D.; Henriksson, K.M.; Borghi, C. Prevalence and treatment of atherogenic dyslipidemia in the primary prevention of cardiovascular disease in Europe: EURIKA, a cross-sectional observational study. BMC Cardiovasc. Disord. 2017, 17, 160. [Google Scholar] [CrossRef]
- Rodriguez-Artalejo, F.; Guallar, E.; Borghi, C.; Dallongeville, J.; De Backer, G.; Halcox, J.P.; Hernandez-Vecino, R.; Jimenez, F.J.; Masso-Gonzalez, E.L.; Perk, J.; et al. Rationale and methods of the European Study on Cardiovascular Risk Prevention and Management in Daily Practice (EURIKA). BMC Public Health 2010, 10, 382. [Google Scholar] [CrossRef]
- Ponte-Negretti, C.I.; Isea-Pérez, J.; Lanas, F.; Medina, J.; Gómez-Mancebo, J.; Morales, E.; Acevedo, M.; Pirskorz, D.; Machado, L.; Lozada, A.; et al. Atherogenic dyslipidemia in Latin America: Prevalence, causes and treatment. Consensus. Rev. Mex. Cardiol. 2017, 28, 54–85. [Google Scholar] [CrossRef]
- Rubinstein, A.L.; Irazola, V.E.; Calandrelli, M.; Elorriaga, N.; Gutierrez, L.; Lanas, F.; Manfredi, J.A.; Mores, N.; Olivera, H.; Poggio, R.; et al. Multiple cardiometabolic risk factors in the Southern Cone of Latin America: A population-based study in Argentina, Chile, and Uruguay. Int. J. Cardiol. 2015, 183, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Miranda, J.J.; Herrera, V.M.; Chirinos, J.A.; Gomez, L.F.; Perel, P.; Pichardo, R.; Gonzalez, A.; Sanchez, J.R.; Ferreccio, C.; Aguilera, X.; et al. Major cardiovascular risk factors in Latin America: A comparison with the United States. The Latin American Consortium of Studies in Obesity (LASO). PLoS ONE 2013, 8, e54056. [Google Scholar] [CrossRef]
- Toxqui, L.; Pérez-Granados, A.M.; Blanco-Rojo, R.; Vaquero, M.P. Sodium-bicarbonated mineral water reduces postprandial lipaemia in moderately hypercholesterolaemic young adults. Proc. Nutr. Soc. 2011, 70, E245. [Google Scholar] [CrossRef]
- Kindel, T.; Lee, D.M.; Tso, P. The mechanism of the formation and secretion of chylomicrons. Atheroscler. Suppl. 2010, 11, 11–16. [Google Scholar] [CrossRef]
- Woollett, L.A.; Wang, Y.; Buckley, D.D.; Yao, L.; Chin, S.; Granholm, N.; Jones, P.J.; Setchell, K.D.; Tso, P.; Heubi, J.E. Micellar solubilisation of cholesterol is essential for absorption in humans. Gut 2006, 55, 197–204. [Google Scholar] [CrossRef]
- Brownlee, I.A.; Forster, D.J.; Wilcox, M.D.; Dettmar, P.W.; Seal, C.J.; Pearson, J.P. Physiological parameters governing the action of pancreatic lipase. Nutr. Res. Rev. 2010, 23, 146–154. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, M. Interaction among fat, lipase, CCK, and gastric emptying. J. Gastroenterol. 1999, 34, 542–544. [Google Scholar] [CrossRef]
- Aloulou, A.; Carriere, F. Gastric lipase: An extremophilic interfacial enzyme with medical applications. Cell Mol. Life Sci. 2008, 65, 851–854. [Google Scholar] [CrossRef]
- Embleton, J.K.; Pouton, C.W. Structure and function of gastro-intestinal lipases. Adv. Drug Deliv. Rev. 1997, 25, 15–32. [Google Scholar] [CrossRef]
- Watanabe, S.; Lee, K.Y.; Chang, T.M.; Berger-Ornstein, L.; Chey, W.Y. Role of pancreatic enzymes on release of cholecystokinin-pancreozymin in response to fat. Am. J. Physiol. 1988, 254, G837–G842. [Google Scholar] [CrossRef]
- Hildebrand, P.; Petrig, C.; Burckhardt, B.; Ketterer, S.; Lengsfeld, H.; Fleury, A.; Hadvary, P.; Beglinger, C. Hydrolysis of dietary fat by pancreatic lipase stimulates cholecystokinin release. Gastroenterology 1998, 114, 123–129. [Google Scholar] [CrossRef]
- Konturek, J.W.; Konturek, S.J.; Domschke, W. Cholecystokinin in the control of gastric acid secretion and gastrin release in response to a meal at low and high pH in healthy subjects and duodenal ulcer patients. Scand. J. Gastroenterol. 1995, 30, 738–744. [Google Scholar] [CrossRef]
- Cortner, J.A.; Le, N.A.; Coates, P.M.; Bennett, M.J.; Cryer, D.R. Determinants of fasting plasma triglyceride levels: Metabolism of hepatic and intestinal lipoproteins. Eur. J. Clin. Invest. 1992, 22, 158–165. [Google Scholar] [CrossRef]
- Kolovou, G.D.; Anagnostopoulou, K.K.; Pilatis, N.; Kafaltis, N.; Sorodila, K.; Psarros, E.; Cokkinos, D.V. Low fasting low high-density lipoprotein and postprandial lipemia. Lipids Health Dis. 2004, 3, 18. [Google Scholar] [CrossRef]
- Hardman, A.E.; Herd, S.L. Exercise and postprandial lipid metabolism. Proc. Nutr. Soc. 1998, 57, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Cuomo, R.; Grasso, R.; Sarnelli, G.; Capuano, G.; Nicolai, E.; Nardone, G.; Pomponi, D.; Budillon, G.; Ierardi, E. Effects of carbonated water on functional dyspepsia and constipation. Eur. J. Gastroenterol. Hepatol. 2002, 14, 991–999. [Google Scholar] [CrossRef]
- Coiro, V.; Volpi, R.; Vescovi, P.P. Choleretic and cholagogic effect of sulphuric sulfate water from the springs of Tobiano in cholestasis in alcohol related liver diseases. Clin. Ter. 1997, 148, 15–22. [Google Scholar] [PubMed]
- Marchi, S.; Polloni, A.; Bellini, M.; Orsitto, E.; Costa, F.; Spataro, M.; Tumino, E.; Cipparrone, G.; Maltinti, G. Evaluation of the efficacy of bicarbonate-alkaline water action on gallbladder motility. Minerva Med. 1992, 83, 69–72. [Google Scholar]
- Foschi, M.; Arena, U. Effects of drinking Tettuccio di Montecatini mineral waters on gallbladder emptying and functioning hepatic mass. Clin. Ter. 1990, 135, 115–120. [Google Scholar]
- Fiorucci, S.; Bosso, R.; Morelli, A. Duodenal osmolality drives gallbladder emptying in humans. Dig. Dis. Sci. 1990, 35, 698–704. [Google Scholar] [CrossRef]
- Eberhardt, G.; Dersidan, A.; Nustede, R.; Schafmayer, A. Neurotensin liberation during the consumption of mineral water from Bad Mergentheimer Karlsquelle. Leber. Magen. Darm. 1991, 21, 220–223. [Google Scholar]
- Bellini, M.; Spataro, M.; Costa, F.; Tumino, E.; Ciapparrone, G.; Flandoli, F.; Rucco, M.; Maltinti, G.; Marchi, S. Gallbladder motility following intake of mineral bicarbonate-alkaline water. Ultrasonographic assessment. Minerva Med. 1995, 86, 75–80. [Google Scholar]
- Grossi, F.; Fontana, M.; Conti, R.; Mastroianni, S.; Lazzari, S.; Messini, F.; Piccarreta, U.; Grassi, M. Motility of the gastric antrum and the gallbladder following oral administration of sulfate-bicarbonate. Clin. Ter. 1996, 147, 321–326. [Google Scholar]
- Fornai, M.; Colucci, R.; Antonioli, L.; Ghisu, N.; Tuccori, M.; Gori, G.; Blandizzi, C.; Del Tacca, M. Effects of a bicarbonate-alkaline mineral water on digestive motility in experimental models of functional and inflammatory gastrointestinal disorders. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 261–269. [Google Scholar] [CrossRef]
- Anti, M.; Pignataro, G.; Armuzzi, A.; Valenti, A.; Iascone, E.; Marmo, R.; Lamazza, A.; Pretaroli, A.R.; Pace, V.; Leo, P.; Castelli, A.; Gasbarrini, G. Water supplementation enhances the effect of high-fiber diet on stool frequency and laxative consumption in adult patients with functional constipation. Hepatogastroenterology 1998, 45, 727–732. [Google Scholar]
- Luoma, H.; Jauhiainen, M.; Alakuijala, P.; Nevalainen, T. Seven weeks feeding of magnesium and fluoride modifies plasma lipids of hypercholesterolaemic rats in late growth phase. Magnes. Res. 1998, 11, 271–282. [Google Scholar]
- Afolabi, O.K.; Oyewo, E.B.; Adekunle, A.S.; Adedosu, O.T.; Adedeji, A.L. Oxidative indices correlate with dyslipidemia and pro-inflammatory cytokine levels in fluoride-exposed rats. Arh. Hig. Rada. Toksikol. 2013, 64, 521–529. [Google Scholar] [CrossRef]
- Eades, C.E.; France, E.F.; Evans, J.M. Prevalence of impaired glucose regulation in Europe: A meta-analysis. Eur. J. Public Health 2016, 26, 699–706. [Google Scholar] [CrossRef]
- World Health Organization. Diabetes mellitus. Fact sheet N°138 2014 [16.10.2014].
- World Health Organization. Global Report on Diabetes. Available online: http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf;jsessionid=F4879A6350D64CE544A1BED8C580FC27?sequence=1 (accessed on 15 December 2018).
- World Health Organization. Diabetes. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 15 December 2018).
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef]
- Pereira, A.G.; Chiba, F.Y.; de Lima Coutinho Mattera, M.S.; Pereira, R.F.; de Cassia Alves Nunes, R.; Tsosura, T.V.S.; Okamoto, R.; Sumida, D.H. Effects of fluoride on insulin signaling and bone metabolism in ovariectomized rats. J. Trace Elem. Med. Biol. 2017, 39, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Iwaoka, T.; Umeda, T.; Ohno, M.; Inoue, J.; Naomi, S.; Sato, T.; Kawakami, I. The effect of low and high NaCl diets on oral glucose tolerance. Klin. Wochenschr. 1988, 66, 724–728. [Google Scholar] [CrossRef]
- Iwaoka, T.; Umeda, T.; Inoue, J.; Naomi, S.; Sasaki, M.; Fujimoto, Y.; Gui, C.; Ideguchi, Y.; Sato, T. Dietary NaCl restriction deteriorates oral glucose tolerance in hypertensive patients with impairment of glucose tolerance. Am. J. Hypertens. 1994, 7, 460–463. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, P.; Sun, F.; Li, Q.; Chen, J.; Yu, H.; Li, L.; Wei, X.; He, H.; Lu, Z.; et al. Sodium Intake Regulates Glucose Homeostasis through the PPARdelta/Adiponectin-Mediated SGLT2 Pathway. Cell Metab. 2016, 23, 699–711. [Google Scholar] [CrossRef]
- Takagi, Y.; Sugimoto, T.; Kobayashi, M.; Shirai, M.; Asai, F. High-Salt Intake Ameliorates Hyperglycemia and Insulin Resistance in WBN/Kob-Lepr(fa/fa) Rats: A New Model of Type 2 Diabetes Mellitus. J. Diabetes Res. 2018, 2018, 3671892. [Google Scholar] [CrossRef]
- Pereira, C.D.; Azevedo, I.; Monteiro, R.; Martins, M.J. 11beta-Hydroxysteroid dehydrogenase type 1: Relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus. Diabetes Obes. Metab. 2012, 14, 869–881. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef]
- Wang, F.; Han, L.; Hu, D. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis. Clin. Chim. Acta 2017, 464, 57–63. [Google Scholar] [CrossRef]
- Pushpakumar, S.; Kundu, S.; Sen, U. Endothelial dysfunction: The link between homocysteine and hydrogen sulfide. Curr. Med. Chem. 2014, 21, 3662–3672. [Google Scholar] [CrossRef]
- Cheng, Y.; Ndisang, J.F.; Tang, G.; Cao, K.; Wang, R. Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am. J. Physiol. Heart Circ. Physiol. 2004, 287, H2316–H2323. [Google Scholar] [CrossRef]
- Prandelli, C.; Parola, C.; Buizza, L.; Delbarba, A.; Marziano, M.; Salvi, V.; Zacchi, V.; Memo, M.; Sozzani, S.; Calza, S.; et al. Sulphurous thermal water increases the release of the anti-inflammatory cytokine IL-10 and modulates antioxidant enzyme activity. Int. J. Immunopathol. Pharmacol. 2013, 26, 633–646. [Google Scholar] [CrossRef]
- Benedetti, S.; Benvenuti, F.; Nappi, G.; Fortunati, N.A.; Marino, L.; Aureli, T.; De Luca, S.; Pagliarani, S.; Canestrari, F. Antioxidative effects of sulfurous mineral water: Protection against lipid and protein oxidation. Eur. J. Clin. Nutr. 2009, 63, 106–112. [Google Scholar] [CrossRef]
- Costantino, M.; Giuberti, G.; Caraglia, M.; Lombardi, A.; Misso, G.; Abbruzzese, A.; Ciani, F.; Lampa, E. Possible antioxidant role of SPA therapy with chlorine-sulphur-bicarbonate mineral water. Amino Acids 2009, 36, 161–165. [Google Scholar] [CrossRef]
- Gommers, L.M.; Hoenderop, J.G.; Bindels, R.J.; de Baaij, J.H. Hypomagnesemia in Type 2 Diabetes: A Vicious Circle? Diabetes 2016, 65, 3–13. [Google Scholar] [CrossRef]
- Guerrero-Romero, F.; Rodriguez-Moran, M. Magnesium improves the beta-cell function to compensate variation of insulin sensitivity: Double-blind, randomized clinical trial. Eur. J. Clin. Invest. 2011, 41, 405–410. [Google Scholar] [CrossRef]
- Voma, C.; Etwebi, Z.; Soltani, D.A.; Croniger, C.; Romani, A. Low Hepatic Mg2+ Content promotes Liver dysmetabolism: Implications for the Metabolic Syndrome. J. Metab. Syndr. 2014, 3, 165. [Google Scholar] [CrossRef]
- Naumann, J.; Biehler, D.; Luty, T.; Sadaghiani, C. Prevention and Therapy of Type 2 Diabetes-What Is the Potential of Daily Water Intake and Its Mineral Nutrients? Nutrients 2017, 9, 914. [Google Scholar] [CrossRef]
- Pham, P.C.; Pham, P.M.; Pham, S.V.; Miller, J.M.; Pham, P.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2007, 2, 366–373. [Google Scholar] [CrossRef]
- Zemel, M.B. Role of dietary calcium and dairy products in modulating adiposity. Lipids 2003, 38, 139–146. [Google Scholar] [CrossRef]
- World Health Organization. 10 Facts on Obesity. Available online: https://www.who.int/features/factfiles/obesity/en/ (accessed on 3 January 2019).
- World Health Organization. Obesity and overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 3 January 2019).
- Zemel, M.; Shi, H.; Zemel, P.; Zemel, M.; Shi, H.; Zemel, P. Methods of Promoting Calcium Consumption for Weight Loss. U.S. Patent No. US20040197382A1, 9 January 2000. [Google Scholar]
- Zanato, V.; Lombardi, A.M.; Busetto, L.; Prà, C.D.; Foletto, M.; Prevedello, L.; De Marinis, G.B.; Fabris, F.; Vettor, R.; Fabris, R. Weight loss reduces anti-ADAMTS13 autoantibodies and improves inflammatory and coagulative parameters in obese patients. Endocrine 2017, 56, 521–527. [Google Scholar] [CrossRef]
- Costello, R.B.; Elin, R.J.; Rosanoff, A.; Wallace, T.C.; Guerrero-Romero, F.; Hruby, A.; Lutsey, P.L.; Nielsen, F.H.; Rodriguez-Moran, M.; Song, Y.; Van Horn, L.V. Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Adv. Nutr. 2016, 7, 977–993. [Google Scholar] [CrossRef]
- Rosanoff, A.; Weaver, C.M.; Rude, R.K. Suboptimal magnesium status in the United States: Are the health consequences underestimated? Nutr. Rev. 2012, 70, 153–164. [Google Scholar] [CrossRef]
- Watts, N.B. Postmenopausal Osteoporosis: A Clinical Review. J. Womens Health 2018, 27, 1093–1096. [Google Scholar] [CrossRef]
- Itoh, A.; Akagi, Y.; Shimomura, H.; Aoyama, T. Interaction between Bisphosphonates and Mineral Water: Study of Oral Risedronate Absorption in Rats. Biol. Pharm. Bull. 2016, 39, 323–328. [Google Scholar] [CrossRef] [Green Version]
Ref | Population and Study Type; Water Classification | Aim and Intervention | Results |
---|---|---|---|
Studies in animal models. | |||
[57] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich and sodium-rich. | |||
Studies in humans. | |||
[61] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich, chloride-rich and fluorurate. | |||
[58] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich and chloride-rich. | |||
[66] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich and chloride-rich. | |||
[63] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich and chloride-rich. | |||
[56] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich and magnesiac. | |||
[64] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich and sodium-rich. | |||
[62] |
|
|
|
⊗ a Water classified as mineral-rich, bicarbonate-rich, sodium-rich, chloride-rich and sulphate-rich. ⊗ b Water classified as mineral-rich, bicarbonate-rich, sodium-rich and magnesiac. | |||
[65] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich, chloride-rich, sulphate-rich and magnesiac. | |||
[59] |
|
|
|
⊗ Water classified as mineral-rich, sulphate-rich, calcic and magnesiac. | |||
[60] |
|
|
|
⊗ Water classified as magnesiac. | |||
[49] |
|
|
|
⊗ Water classified as magnesiac. |
Ref | Population and Study Type; Water Classification | Aim and Intervention | Results |
---|---|---|---|
Studies in animal models. | |||
[57] |
|
|
|
[70] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich, chloride-rich, sulphate-rich, sulphurous, calcic, magnesiac and fluorurate. | |||
Studies in humans. | |||
[61] |
|
|
|
[58] |
|
|
|
[66] |
|
|
|
[63] |
|
|
|
[62] |
|
|
|
[65] |
|
|
|
[71] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich, sulphate-rich, magnesiac and calcic. | |||
[69] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich, sodium-rich and chloride-rich. | |||
[72] |
|
|
|
⊗ Water classified as mineral-rich, bicarbonate-rich and calcic. | |||
[68] |
|
|
|
⊗ Both waters classified as mineral-rich, bicarbonate-rich, sodium-rich, chloride-rich and fluorurate. | |||
[73] |
|
|
|
⊗ Water classified as mineral-rich, sulphate-rich, bicarbonate-rich, magnesiac, calcic and fluorurate. |
Ref | Population and Study Type; Water Classification | Aim and Intervention | Results |
---|---|---|---|
Studies in animal models. | |||
[57] |
|
|
|
[74] |
|
|
|
⊗ Mineral-rich water, chloride-rich, sodium-rich, sulphate-rich, sulphurous, calcic and fluorurate. | |||
Studies in humans. | |||
[61] |
|
|
|
[58] |
|
|
|
[66] |
|
|
|
[63] |
|
|
|
[62] |
|
|
|
[71] |
|
|
|
[69] |
|
|
|
[75] |
|
|
|
⊗ Both waters classified as mineral-rich, bicarbonate-rich, sodium-rich, chloride-rich and fluorurate. |
Ref | Population and Study Type | Aim and Intervention | Results |
---|---|---|---|
Studies in animal models. | |||
[57] |
|
|
|
[70] |
|
|
|
[74] |
|
|
|
Studies in humans. | |||
[61] |
|
|
|
[58] |
|
|
|
[63] |
|
|
|
[56] |
|
|
|
[64] |
|
|
|
[73] |
|
|
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa-Vieira, D.; Monteiro, R.; Martins, M.J. Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review. Nutrients 2019, 11, 1141. https://doi.org/10.3390/nu11051141
Costa-Vieira D, Monteiro R, Martins MJ. Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review. Nutrients. 2019; 11(5):1141. https://doi.org/10.3390/nu11051141
Chicago/Turabian StyleCosta-Vieira, Daniela, Rosário Monteiro, and Maria João Martins. 2019. "Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review" Nutrients 11, no. 5: 1141. https://doi.org/10.3390/nu11051141
APA StyleCosta-Vieira, D., Monteiro, R., & Martins, M. J. (2019). Metabolic Syndrome Features: Is There a Modulation Role by Mineral Water Consumption? A Review. Nutrients, 11(5), 1141. https://doi.org/10.3390/nu11051141