Next Article in Journal
Impact of Nutrition on Enhanced Recovery After Surgery (ERAS) in Gynecologic Oncology
Previous Article in Journal
Can Serum Iron Concentrations in Early Healthy Pregnancy Be Risk Marker of Pregnancy-Induced Hypertension?
Article Menu

Export Article

Open AccessArticle

Natural Isotope Abundances of Carbon and Nitrogen in Tissue Proteins and Amino Acids as Biomarkers of the Decreased Carbohydrate Oxidation and Increased Amino Acid Oxidation Induced by Caloric Restriction under a Maintained Protein Intake in Obese Rats

UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
*
Author to whom correspondence should be addressed.
Both authors contributed equally to this study.
Nutrients 2019, 11(5), 1087; https://doi.org/10.3390/nu11051087
Received: 25 March 2019 / Revised: 10 May 2019 / Accepted: 14 May 2019 / Published: 16 May 2019
  |  
PDF [1774 KB, uploaded 16 May 2019]
  |  

Abstract

A growing body of evidence supports a role for tissue-to-diet 15N and 13C discrimination factors (Δ15N and Δ13C), as biomarkers of metabolic adaptations to nutritional stress, but the underlying mechanisms remain poorly understood. In obese rats fed ad libitum or subjected to gradual caloric restriction (CR), under a maintained protein intake, we measured Δ15N and Δ13C levels in tissue proteins and their constitutive amino acids (AA) and the expression of enzymes involved in the AA metabolism. CR was found to lower protein mass in the intestine, liver, heart and, to a lesser extent, some skeletal muscles. This was accompanied by Δ15N increases in urine and the protein of the liver and plasma, but Δ15N decreases in the proteins of the heart and the skeletal muscles, alongside Δ13C decreases in all tissue proteins. In Lys, Δ15N levels rose in the plasma, intestine, and some muscles, but fell in the heart, while in Ala, and to a lesser extent Glx and Asx, Δ13C levels fell in all these tissues. In the liver, CR was associated with an increase in the expression of genes involved in AA oxidation. During CR, the parallel rises of Δ15N in urine, liver, and plasma proteins reflected an increased AA catabolism occurring at the level of the liver metabolic branch point, while Δ15N decreases in cardiac and skeletal muscle proteins indicated increased protein and AA catabolism in these tissues. Thus, an increased protein and AA catabolism results in opposite Δ15N effects in splanchnic and muscular tissues. In addition, the Δ13C decrease in all tissue proteins, reflects a reduction in carbohydrate (CHO) oxidation and routing towards non-indispensable AA, to achieve fuel economy. View Full-Text
Keywords: caloric restriction; obesity; amino acid oxidation; dietary nutrient routing; 13C and 15N natural isotope abundance caloric restriction; obesity; amino acid oxidation; dietary nutrient routing; 13C and 15N natural isotope abundance
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Huneau, J.-F.; Mantha, O.L.; Hermier, D.; Mathé, V.; Galmiche, G.; Mariotti, F.; Fouillet, H. Natural Isotope Abundances of Carbon and Nitrogen in Tissue Proteins and Amino Acids as Biomarkers of the Decreased Carbohydrate Oxidation and Increased Amino Acid Oxidation Induced by Caloric Restriction under a Maintained Protein Intake in Obese Rats. Nutrients 2019, 11, 1087.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nutrients EISSN 2072-6643 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top