Olive Oil Consumption and Bone Microarchitecture in Spanish Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometry and Densitometric Study
2.3. Dietary Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martínez-González, M.Á.; Sánchez-Villegas, A. The Emerging Role of Mediterranean Diets in Cardiovascular Epidemiology: Monounsaturated Fats, Olive Oil, Red Wine or the Whole Pattern? Eur. J. Epidemiol. 2004, 19, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.; Konstantinidou, V.; Fitó, M. Olive Oil and Cardiovascular Health. J. Cardiovasc. Pharmacol. 2009, 54, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Buckland, G.; Mayén, A.L.; Agudo, A.; Travier, N.; Navarro, C.; Huerta, J.M.; Chirlaque, M.D.; Barricarte, A.; Ardanaz, E.; Moreno-Iribas, C.; et al. Olive Oil Intake and Mortality within the Spanish Population (EPIC-Spain). Am. J. Clin. Nutr. 2012, 96, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Mundy, G.R. Nutritional Modulators of Bone Remodeling during Aging. Am. J. Clin. Nutr. 2006, 83, 427S–430S. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Real, J.M.; Bulló, M.; Moreno-Navarrete, J.M.; Ricart, W.; Ros, E.; Estruch, R.; Salas-Salvadó, J. A Mediterranean Diet Enriched with Olive Oil is Associated with Higher Serum Total Osteocalcin Levels in Elderly Men at High Cardiovascular Risk. J. Clin. Endocrinol. Metab. 2012, 97, 3792–3798. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, H.; Li, B.; Wu, D.; Wang, F.; Zheng, X.H.; Chen, Q.; Wu, B.; Fan, X. Olive Oil in the Prevention and Treatment of Osteoporosis After Artificial Menopause. Clin. Interv. Aging. 2014, 9, 2087–2095. [Google Scholar] [CrossRef] [PubMed]
- Savanelli, M.C.; Barrea, L.; Macchia, P.E.; Savastano, S.; Falco, A.; Renzullo, A.; Scarano, E.; Nettore, I.C.; Colao, A.; Di Somma, C. Preliminary Results Demonstrating the Impact of Mediterranean Diet on Bone Health. J. Transl. Med. 2017, 15, 81. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, M.D.; Melistas, L.; Yannakoulia, M.; Malagaris, I.; Panagiotakos, D.B.; Yiannakouris, N. Association between Dietary Patterns and Indices of Bone Mass in a Sample of Mediterranean Women. Nutrition 2009, 25, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Byberg, L.; Bellavia, A.; Larsson, S.C.; Orsini, N.; Wolk, A.; Michaëlsson, K. Mediterranean Diet and Hip Fracture in Swedish Men and Women. J. Bone Miner. Res. 2016, 31, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Martinez, O.; Ruiz, C.; Gutierrez-Ibanez, A.; Illescas-Montes, R.; Melguizo-Rodriguez, L. Benefits of Olive Oil Phenolic Compounds in Disease Prevention. Endocr. Metab. Immune Disord. Drug Targets 2018, 18, 333–340. [Google Scholar] [CrossRef] [PubMed]
- García-Martínez, O.; Rivas, A.; Ramos-Torrecillas, J.; De Luna-Bertos, E.; Ruiz, C. The Effect of Olive Oil on Osteoporosis Prevention. Int. J. Food Sci. Nutr. 2014, 65, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic Compounds in Olive Oil: Antioxidant, Health and Organoleptic Activities According to their Chemical Structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.; Ima-Nirwana, S. Olives and Bone: A Green Osteoporosis Prevention Option. Int. J. Environ. Res. Public Health 2016, 13, 755. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.C.; Gilsanz, V.; Wren, T.A.L. Limitations of Peripheral Quantitative Computed Tomography Metaphyseal Bone Density Measurements. J. Clin. Endocrinol. Metab. 2007, 92, 4248–4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavado-García, J.; Roncero-Martin, R.; Moran, J.M.; Pedrera-Canal, M.; Aliaga, I.; Leal-Hernandez, O.; Rico-Martin, S.; Canal-Macias, M.L. Long-Chain Omega-3 Polyunsaturated Fatty Acid Dietary Intake is Positively Associated with Bone Mineral Density in Normal and Osteopenic Spanish Women. PloS ONE 2018, 13, e0190539. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Garcia, J.F.; Lavado-Garcia, J.M.; Martin, R.R.; Moran, J.M.; Canal-Macias, M.L.; Pedrera-Zamorano, J.D. Bone Ultrasound and Physical Activity in Postmenopausal Spanish Women. Biol. Res. Nurs. 2013, 15, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.M.; Leal-Hernandez, O.; Canal-Macias, M.L.; Lavado-Garcia, J.; Roncero-Martin, R.; Aliaga, I.; Pedrera-Zamorano, J.D. Calcium Intake, Abdominal Fat, Bone Microarchitecture and Bone Mineral Density in Spanish Men with Hypertension. Osteoporos. Int. 2016, 27, S462. [Google Scholar]
- Moreiras, O.; Carbajal, A.; Vives, C.C. Tablas De Composición De Alimentos: Guía De Prácticas, 16th ed.; Ediciones Pirámide: Madrid, Spain, 2013; p. 455. [Google Scholar]
- Templeton, G.F. A Two-Step Approach for Transforming Continuous Variables to Normal: Implications and Recommendations for IS Research. CAIS 2011, 28, 41–58. [Google Scholar]
- Lavado-Garcia, J.M.; Calderon-Garcia, J.F.; Moran, J.M.; Canal-Macias, M.L.; Rodriguez-Dominguez, T.; Pedrera-Zamorano, J.D. Bone Mass of Spanish School Children: Impact of Anthropometric, Dietary and Body Composition Factors. J. Bone. Miner. Metab. 2012, 30, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Avanzato, I.; Nichetti, M.; D’Antona, G.; Negro, M.; Rondanelli, M. Association between Dietary Patterns of Meat and Fish Consumption with Bone Mineral Density or Fracture Risk: A Systematic Literature. Nutrients 2017, 9, 1029. [Google Scholar] [CrossRef] [PubMed]
- Pedone, C.; Napoli, N.; Pozzilli, P.; Rossi, F.F.; Lauretani, F.; Bandinelli, S.; Ferrucci, L.; Antonelli-Incalzi, R. Dietary Pattern and Bone Density Changes in Elderly Women: A Longitudinal Study. J. Am. Coll. Nutr. 2011, 30, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Saleh, N.K.; Saleh, H.A. Olive Oil Effectively Mitigates Ovariectomy-Induced Osteoporosis in Rats. BMC Complement. Altern. Med. 2011, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Kasem, M.A.; Khedr, E.G.; Abdel-Aleem, A.M.; Said, A.S. Histological Effect of Bisphosphonate, Vitamin D and Olive Oil on Glucocorticoid Induced Osteoporosis (GIO) in Albino Rat. Egypt. J. Hosp. Med. 2016, 31, 1–10. [Google Scholar] [CrossRef]
- Escudero, C.; Virga, C.; Aguzzi, A.; De-Leonardi, A. Análisis Histomorfométrico De La Asociación De Aceite De Oliva Y Bisfosfonatos En La Remodelación Ósea Periimplantaria. Int. J. Odontostomatol. 2017, 11, 481–485. [Google Scholar] [CrossRef]
- Hagiwara, K.; Goto, T.; Araki, M.; Miyazaki, H.; Hagiwara, H. Olive Polyphenol Hydroxytyrosol Prevents Bone Loss. Eur. J. Pharmacol. 2011, 662, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferri, C.; Davicco, M.-J.; Lebecque, P.; Georgé, S.; Amiot, M.J.; Mercier, S.; Dhaussy, A.; Huertas, A.; Walrand, S.; Wittrant, Y.; et al. Olive Oil and Vitamin D Synergistically Prevent Bone Loss in Mice. PLoS ONE 2014, 9, e115817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.; Jung, J.W.; Ha, B.G.; Hong, J.M.; Park, E.K.; Kim, H.; Kim, S. The Effects of Luteolin on Osteoclast Differentiation, Function in Vitro and Ovariectomy-Induced Bone Loss. J. Nutr. Biochem. 2011, 22, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; von Bergen, V.; Chyu, M.; Jenkins, M.R.; Mo, H.; Chen, C.; Kwun, I. Fruits and Dietary Phytochemicals in Bone Protection. Nutr. Res. 2012, 32, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Stagi, S.; Cavalli, L.; Cavalli, T.; de Martino, M.; Brandi, M.L. Peripheral Quantitative Computed Tomography (pQCT) for the Assessment of Bone Strength in most of Bone Affecting Conditions in Developmental Age: A Review. Ital. J. Pediatr. 2016, 42, 88. [Google Scholar] [CrossRef] [PubMed]
Total Sample | Low (≤18.32 g/day) | High (>18.32 g/day) | p-Value | |
---|---|---|---|---|
(n = 523) | (n = 294) | (n = 229) | ||
Age (years) | 50 (9) (23–81) | 50 (8) (23–74) | 50 (8) (26–81) | 0.34 |
Menarche age (years) | 13 (1) (8–19) | 13 (1) (8–19) | 13 (1)(10–16) | 0.897 |
Gravidity | 2 (1) (0–8) | 2 (1) (0–8) | 2 (1) (0–7) | 0.737 |
Births | 2 (1) (0–7) | 2 (1) (0–7) | 2 (1) (0–6) | 0.709 |
BMI (kg/m2) | 26.4 (3.8) (19.45–39.60) | 26.7 (3.6) (19.45–34.81) | 26.1 (3.9) (19.95–39.60) | 0.078 |
Gonadal status | ||||
Premenopausal | 284 (54.3%) | 163 (55.4%) | 121 (52.8%) | 0.553 |
Postmenopausal | 239 (45.7%) | 131 (44.6%) | 108 (47.2%) | |
Smoking | ||||
No | 394 (75.3%) | 216 (73.5%) | 178 (77.7%) | 0.262 |
Yes | 129 (24.7%) | 78 (26.5%) | 51 (22.3%) | |
Physical Activity | ||||
Sedentary | 163 (31.4%) | 96 (32.7%) | 67 (29.8%) | 0.584 |
Moderate | 118 (22.7%) | 69 (23.5%) | 49 (21.8%) | |
Active | 238 (45.9%) | 129 (43.9) | 109 (48.4%) | |
Ca (mg/day) | 1053.7 (471.7) (175–2834) | 961.6 (494.4) (175–2648) | 1171.9 (412.6) (244–2834) | <0.001 |
Vitamin D (μg/day) | 7.2 (5.7) (0.34–54.30) | 6.5 (5.7) (0.34–54.30) | 8.1 (5.6) (0.40–37.88) | 0.001 |
Kcal/day | 2181.5 (27.9) (650–4044.7) | 2051.7 (583.9) (650–4006.5) | 2348.1 (528.2) (992.1–4044.7) | <0.001 |
Proteins (g/day) | 90.1 (30.5) (28.9–227.7) | 83.4 (28.7) (31.3–227.7) | 98.7 (30.7) (28.9–196.5) | <0.001 |
Carbohydrates (g/day) | 277.7 (91.6) (65.7–639.3) | 269.8 (93.7) (65.7–618.6) | 287.8 (88.0) (77.8–639.3) | 0.026 |
Fats (g/day) | 78.2 (27.9) (27.0–229.9) | 71.2 (26.0) (27.0–229.9) | 87.2 (27.7) (27.3–223.2) | <0.001 |
Olive oil (g/day) | 20.8 (5.5) (1.83–54.9) | 14.8 (2.3) (1.83–18.32) | 28.1 (7.4) (20.15–54.96) | N/A |
Areal bone mineral density (BMD) (g/cm2) | ||||
BMD femoral neck | 0.866 (0.098) | 0.869 (0.091) | 0.861 (0.861) | 0.334 |
BMD femoral trochanter | 0.674 (0.087) | 0.676 (0.082) | 0.671 (0.671) | 0.473 |
BMD Ward’s triangle | 0.648 (0.105) | 0.651 (0.100) | 0.644 (0.644) | 0.428 |
BMD L2 | 1.055 (0.115) | 1.067 (0.106) | 1.037 (1.037) | 0.002 |
BMD L3 | 1.074 (0.116) | 1.088 (0.105) | 1.055 (1.055) | 0.001 |
BMD L4 | 1.037 (0.118) | 1.053 (0.112) | 1.015 (1.015) | <0.001 |
BMD lumbar spine | 1.054 (0.108) | 1.068 (0.099) | 1.035 (1.035) | 0.001 |
Volumetric BMD (mg/cm3) | ||||
Total density | 334.278 (37.255) | 328.488 (35.006) | 341.711 (38.784) | <0.001 |
Trabecular density | 173.171 (27.803) | 169.453 (24.642) | 177.943 (30.801) | 0.003 |
Cortical density | 465.730 (56.283) | 459.234 (54.790) | 474.068 (57.188) | <0.001 |
Bone morphometry (mm2) | ||||
Total area | 303.886 (39.810) | 305.823 (39.437) | 301.400 (40.233) | 0.297 |
Trabecular area | 136.870 (17.901) | 137.592 (17.888) | 135.943 (17.914) | 0.09 |
Cortical area | 166.993 (21.166) | 168.376 (20.947) | 165.217 (21.360) | 0.208 |
Osteoporotic diagnosis | ||||
Normal | 451 (86.2%) | 271 (92.2%) | 180 (78.6%) | <0.001 |
Osteopenia | 67 (12.8%) | 23 (7.8%) | 44 (19.2%) | |
Osteoporosis | 5 (1%) | 0 (0%) | 5 (2.2%) |
Low (≤18.32 g/day) | High (>18.32 g/day) | p-Value | |
---|---|---|---|
(n = 294) | (n = 229) | ||
Adjusted BMD (g/cm2) | |||
BMD L2 | 1.058 (0.006) | 1.051 (0.007) | 0.413 |
BMD L3 | 1.078 (0.006) | 1.069 (0.007) | 0.893 |
BMD L4 | 1.043 (0.006) | 1.029 (0.007) | 0.152 |
BMD lumbar spine | 1.059 (0.005) | 1.049 (0.006) | 0.228 |
Adjusted volumetric BMD (mg/cm3) | |||
Total density | 327.912 (2.165) | 342.414 (2.468) | <0.001 |
Trabecular density | 168.203 (1.631) | 179.523 (1.859) | <0.001 |
Cortical density | 459.164 (3.288) | 474.117 (3.748) | 0.004 |
Total Density (mg/cm3) | |||
Optimal model | R2 | Adjusted R2 | |
0.065 | 0.06 | ||
Selected independent variable | Standardized β | t | p-value |
Olive oil intake (g/day) | 0.185 | 4.312 | <0.001 |
Age (years) | −0.206 | −4.509 | <0.001 |
BMI (kg/m2) | 0.128 | 2.781 | 0.006 |
Trabecular Density (mg/cm3) | |||
Optimal model | R2 | Adjusted R2 | |
0.043 | 0.039 | ||
Selected independent variable | Standardized β | t | p-value |
Olive oil intake (g/day) | 0.186 | −4.291 | <0.001 |
BMI (kg/m2) | 0.118 | 2.724 | 0.007 |
Cortical Density (mg/cm3) | |||
Optimal model | R2 | Adjusted R2 | |
0.051 | 0.047 | ||
Selected independent variable | Standardized β | t | p-value |
Age (years) | −0.198 | −4.636 | <0.001 |
Olive oil intake (g/day) | 0.114 | 2.673 | 0.008 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roncero-Martín, R.; Aliaga Vera, I.; Moreno-Corral, L.J.; Moran, J.M.; Lavado-Garcia, J.M.; Pedrera-Zamorano, J.D.; Pedrera-Canal, M. Olive Oil Consumption and Bone Microarchitecture in Spanish Women. Nutrients 2018, 10, 968. https://doi.org/10.3390/nu10080968
Roncero-Martín R, Aliaga Vera I, Moreno-Corral LJ, Moran JM, Lavado-Garcia JM, Pedrera-Zamorano JD, Pedrera-Canal M. Olive Oil Consumption and Bone Microarchitecture in Spanish Women. Nutrients. 2018; 10(8):968. https://doi.org/10.3390/nu10080968
Chicago/Turabian StyleRoncero-Martín, Raul, Ignacio Aliaga Vera, Luis J. Moreno-Corral, Jose M. Moran, Jesus M. Lavado-Garcia, Juan D. Pedrera-Zamorano, and Maria Pedrera-Canal. 2018. "Olive Oil Consumption and Bone Microarchitecture in Spanish Women" Nutrients 10, no. 8: 968. https://doi.org/10.3390/nu10080968
APA StyleRoncero-Martín, R., Aliaga Vera, I., Moreno-Corral, L. J., Moran, J. M., Lavado-Garcia, J. M., Pedrera-Zamorano, J. D., & Pedrera-Canal, M. (2018). Olive Oil Consumption and Bone Microarchitecture in Spanish Women. Nutrients, 10(8), 968. https://doi.org/10.3390/nu10080968