Relationships between Maternal Obesity and Maternal and Neonatal Iron Status
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Data and Sample Collection
2.3. Biochemical Measurements
2.4. Statistical Analysis
3. Results
3.1. Maternal Inflammatory and Iron Status
3.2. Neonatal Inflammatory and Iron Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr. 2017, 106, 1567s–1574s. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Taylor, C.L.; Merkel, J.; Brannon, P.M. Iron status in pregnant women and women of reproductive age in Europe. Am. J. Clin. Nutr. 2017, 106, 1655s–1662s. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.A.; Bardsley, A.; De-Regil, L.M.; Moore, S.E.; Oken, E.; Poston, L.; Ma, R.C.; McAuliffe, F.M.; Maleta, K.; Purandare, C.N.; et al. The International Federation of Gynecology and Obstetrics (FIGO) recommendations on adolescent, preconception, and maternal nutrition: “Think Nutrition First”. Int. J. Gynaecol. Obstet. 2015, 131, S213. [Google Scholar] [CrossRef]
- Rao, R.; Georgieff, M.K. Iron in fetal and neonatal nutrition. Semin. Fetal Neonatal Med. 2007, 12, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwan, N.A.; Hamamy, H. Maternal iron status in pregnancy and long-term health outcomes in the offspring. J. Pediatr. Genet. 2015, 4, 111–123. [Google Scholar] [PubMed]
- Alwan, N.A.; Cade, J.E.; McArdle, H.J.; Greenwood, D.C.; Hayes, H.E.; Simpson, N.A. Maternal iron status in early pregnancy and birth outcomes: Insights from the Baby’s Vascular health and Iron in Pregnancy study. Br. J. Nutr. 2015, 113, 1985–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breymann, C. Iron Deficiency Anemia in Pregnancy. Semin. Hematol. 2015, 52, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Berglund, S.K.; Torres-Espinola, F.J.; Garcia-Valdes, L.; Segura, M.T.; Martinez-Zaldivar, C.; Padilla, C.; Rueda, R.; Perez Garcia, M.; McArdle, H.J.; Campoy, C. The impacts of maternal iron deficiency and being overweight during pregnancy on neurodevelopment of the offspring. Br. J. Nutr. 2017, 118, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Lozoff, B.; Beard, J.; Connor, J.; Barbara, F.; Georgieff, M.; Schallert, T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006, 64, 34–43. [Google Scholar] [CrossRef]
- Devlieger, R.; Benhalima, K.; Damm, P.; Van Assche, A.; Mathieu, C.; Mahmood, T.; Dunne, F.; Bogaerts, A. Maternal obesity in Europe: Where do we stand and how to move forward? Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 201, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Caleyachetty, R.; Cnattingius, S.; Corvalan, C.; Uauy, R.; Herring, S.; Gillman, M.W. Preconceptional and maternal obesity: Epidemiology and health consequences. Lancet Diabetes Endoc. 2016, 4, 1025–1036. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Shen, Y.; Fang, X.; Wang, Y.; Wang, F. Obesity and iron deficiency: A quantitative meta-analysis. Obes. Rev. 2015, 16, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Valore, E.V.; Territo, M.; Schiller, G.; Lichtenstein, A.; Ganz, T. Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood 2003, 101, 2461–2463. [Google Scholar] [CrossRef] [PubMed]
- Ganz, T.; Nemeth, E. Iron imports. IV. Hepcidin and regulation of body iron metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Tussing-Humphreys, L.; Pusatcioglu, C.; Nemeth, E.; Braunschweig, C. Rethinking iron regulation and assessment in iron deficiency, anemia of chronic disease, and obesity: Introducing hepcidin. J. Acad. Nutr. Diet. 2012, 112, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Sen, S.; Iyer, C.; Klebenov, D.; Meydani, S.N. Obesity during pregnancy and fetal iron status: Is Hepcidin the link? J. Perinatol. 2013, 33, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.D.; Zhao, G.; Jiang, Y.P.; Zhou, M.; Xu, G.; Kaciroti, N.; Zhang, Z.; Lozoff, B. Maternal obesity during pregnancy is negatively associated with maternal and neonatal iron status. Eur. J. Clin. Nutr. 2016, 70, 918–924. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Pressman, E.K.; Cooper, E.M.; Guillet, R.; Westerman, M.; O’Brien, K.O. Prepregnancy body mass index and gestational weight gain have no negative impact on maternal or neonatal iron status. Reprod. Sci. 2016, 23, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Flores-Quijano, M.E.; Montalvo-Velarde, I.; Vital-Reyes, V.S.; Rodriguez-Cruz, M.; Rendon-Macias, M.E.; Lopez-Alarcon, M. Longitudinal Analysis of the Interaction between Obesity and Pregnancy on Iron Homeostasis: Role of Hepcidin. Arch. Med. Res. 2016, 47, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Valdes, L.; Campoy, C.; Hayes, H.; Florido, J.; Rusanova, I.; Miranda, M.T.; McArdle, H.J. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int. J. Obes. 2015, 39, 571–578. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, E.K.; Kenny, L.C.; Hourihane, J.O.B.; Irvine, A.D.; Murray, D.M.; Kiely, M.E. Impact of maternal, antenatal and birth-associated factors on iron stores at birth: Data from a prospective maternal-infant birth cohort. Eur. J. Clin. Nutr. 2017, 71, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Dosch, N.C.; Guslits, E.F.; Weber, M.B.; Murray, S.E.; Ha, B.; Coe, C.L.; Auger, A.P.; Kling, P.J. Maternal obesity affects inflammatory and iron indices in umbilical cord blood. J. Pediatr. 2016, 172, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.K.; Roy, S.C.; Lundberg, R.; Guilbert, T.W.; Auger, A.P.; Blohowiak, S.E.; Coe, C.L.; Kling, P.J. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J. Perinatol. 2014, 34, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poston, L.; Bell, R.; Croker, H.; Flynn, A.C.; Godfrey, K.M.; Goff, L.; Hayes, L.; Khazaezadeh, N.; Nelson, S.M.; Oteng-Ntim, E.; et al. Effect of a behavioural intervention in obese pregnant women (the UPBEAT study): A multicentre, randomised controlled trial. Lancet Diabetes Endoc. 2015, 3, 767–777. [Google Scholar] [CrossRef]
- Kenny, L.C.; Black, M.A.; Poston, L.; Taylor, R.; Myers, J.E.; Baker, P.N.; McCowan, L.M.; Simpson, N.A.; Dekker, G.A.; Roberts, C.T.; et al. Early pregnancy prediction of preeclampsia in nulliparous women, combining clinical risk and biomarkers: The Screening for Pregnancy Endpoints (SCOPE) international cohort study. Hypertension 2014, 64, 644–652. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, S.M.; Murray, D.M.; Hourihane, J.O.; Kenny, L.C.; Irvine, A.D.; Kiely, M. Cohort profile: The Cork BASELINE Birth Cohort Study: Babies after SCOPE: Evaluating the Longitudinal Impact on Neurological and Nutritional Endpoints. Int. J. Epidemiol. 2015, 44, 764–775. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Body Mass Index—BMI. Available online: www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 6 June 2018).
- World Health Organization. Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Tamura, T.; Goldenberg, R.L.; Hou, J.; Johnston, K.E.; Cliver, S.P.; Ramey, S.L.; Nelson, K.G. Cord serum ferritin concentrations and mental and psychomotor development of children at five years of age. J. Pediatr. 2002, 140, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Punnonen, K.; Irjala, K.; Rajamaki, A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood 1997, 89, 1052–1057. [Google Scholar] [PubMed]
- Gupta, P.M.; Hamner, H.C.; Suchdev, P.S.; Flores-Ayala, R.; Mei, Z. Iron status of toddlers, nonpregnant females, and pregnant females in the United States. Am. J. Clin. Nutr. 2017, 106, 1640s–1646s. [Google Scholar] [CrossRef] [PubMed]
- Gordeuk, V.R.; Brannon, P.M. Ethnic and genetic factors of iron status in women of reproductive age. Am. J. Clin. Nutr. 2017, 106, 1594s–1599s. [Google Scholar] [CrossRef] [PubMed]
- Myles, M.; Gennaro, S.; Dubois, N.; O’Connor, C.; Roberts, K. Nutrition of black women during pregnancy. J. Obstet. Gynecol. Neonatal Nurs. 2017, 46, e83–e94. [Google Scholar] [CrossRef] [PubMed]
- Brooten, D.; Youngblut, J.M.; Golembeski, S.; Magnus, M.H.; Hannan, J. Perceived weight gain, risk, and nutrition in pregnancy in five racial groups. J. Am. Acad. Nurse Pract. 2012, 24, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Cepeda-Lopez, A.C.; Aeberli, I.; Zimmermann, M.B. Does obesity increase risk for iron deficiency? A review of the literature and the potential mechanisms. Int. J. Vitam. Nutr. Res. 2010, 80, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; O’Brien, K.O. Pregnancy and iron homeostasis: An update. Nutr. Rev. 2013, 71, 35–51. [Google Scholar] [CrossRef] [PubMed]
Obese (n = 245) | Normal Weight (n = 245) | P# | |
---|---|---|---|
Maternal characteristics | |||
Age (years) | 30 (4.2) | 30 (4.2) | 1.00 |
BMI (kg/m2) | 34.7 (32.8–38) | 22.4 (21–23.6) | <0.001 |
Ethnicity | <0.001 | ||
Black | 38 (15.5) | 0 | |
White | 181 (73.9) | 245 (100) | |
Other ethnic group | 26 (10.6) | 0 | |
Booking haemoglobin | 127.5 (9.9) | 128.1 (8.2) | 0.4 |
Parity | <0.001 | ||
Nulliparous | 122 (49.8) | 245 (100) | |
Smoking | 0.07 | ||
Smoking at 1st visit | 21 (8.6) | 14 (5.7) | |
Ex-smoker | 59 (24.1) | 43 (17.6) | |
Never | 165 (67.4) | 188 (76.7) | |
Educational level (<12 years) | 27 (11.0) | 9 (3.7) | 0.002 |
Gestational Diabetes | 75 (31.0) | - * | |
Pre-eclampsia | 9 (3.7) | 5 (2.0) | 0.3 |
Caesarean section | 92 (37.6) | 60 (24.5) | 0.002 |
Infant characteristics | |||
Gestational age at delivery | 39.7 (38.7–40.9) | 40.3 (39.3–41) | 0.01 |
Male | 128 (52.2) | 128 (52.2) | 1.00 |
Preterm birth < 37 weeks | 10 (4.1) | 7 (2.9) | 0.5 |
Birthweight (g) | 3595 (3240–3855) | 3480 (3150–3760) | 0.07 |
Large for gestational age + | 22 (9.0) | 33 (13.5) | 0.1 |
Small for gestational age | 22 (9.0) | 17 (6.9) | 0.4 |
Indicator | Obese (n = 245) | Normal Weight (n = 245) | Unadjusted Analysis P Value | Adjusted Analysis P Value # |
---|---|---|---|---|
Ferritin (ug/L) | 31.6 (17.9–55.9) | 34.2 (20–54.9) | 0.2 | 0.8 |
Ferritin < 15 ug/L (%) | 51 (20.82) | 34 (13.88) | 0.04 | 0.7 |
Soluble transferrin receptor (nmol/L) | 18.37 (5.65) | 13.15 (2.33) | <0.001 | <0.001 |
sTfR:log10sF | 1.03 (0.56) | 0.69 (0.23) | <0.001 | <0.001 |
Hepcidin (ng/mL) | 8.93 (8.69) | 8.95 (7.43) | 0.97 | 0.96 |
CRP > 5mg/L (%) | 164 (66.94) | 70 (28.57) | <0.001 | <0.001 |
IL-6 > 1 pg/mL (%) | 237 (96.73) | 130 (53.06) | <0.001 | <0.001 |
Indicator | Obese (n = 245) | Normal Weight (n = 245) | Unadjusted Analysis P value | Adjusted Analysis P value # |
---|---|---|---|---|
Ferritin (μg/L) | 130.7 (80.5–199.1) | 162.8 (119.5–226.6) | <0.001 | 0.08 |
Ferritin < 76 ug/L (%) | 54 (22.04) | 29 (11.84) | 0.003 | 0.3 |
CRP > 5 mg/L (%) | 5 (2.04) | 0 (0) | 0.06 | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flynn, A.C.; Begum, S.; White, S.L.; Dalrymple, K.; Gill, C.; Alwan, N.A.; Kiely, M.; Latunde-Dada, G.; Bell, R.; Briley, A.L.; et al. Relationships between Maternal Obesity and Maternal and Neonatal Iron Status. Nutrients 2018, 10, 1000. https://doi.org/10.3390/nu10081000
Flynn AC, Begum S, White SL, Dalrymple K, Gill C, Alwan NA, Kiely M, Latunde-Dada G, Bell R, Briley AL, et al. Relationships between Maternal Obesity and Maternal and Neonatal Iron Status. Nutrients. 2018; 10(8):1000. https://doi.org/10.3390/nu10081000
Chicago/Turabian StyleFlynn, Angela C., Shahina Begum, Sara L. White, Kathryn Dalrymple, Carolyn Gill, Nisreen A. Alwan, Mairead Kiely, Gladys Latunde-Dada, Ruth Bell, Annette L. Briley, and et al. 2018. "Relationships between Maternal Obesity and Maternal and Neonatal Iron Status" Nutrients 10, no. 8: 1000. https://doi.org/10.3390/nu10081000