Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Methodology
2.2. Fibre Intake and Targets
2.3. Demographic and Anthropometric Characteristics
2.4. Underreporting
2.5. Statistical Analyses
3. Results
Fibre Intakes
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Dahl, W.J.; Stewart, M.L. Position of the Academy of Nutrition and Dietetics: Health implications of dietary fiber. J. Acad. Nutr. Diet. 2015, 115, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y. Dietary fiber intake and total mortality: A meta-analysis of prospective cohort studies. Am. J. Epidemiol. 2014, 180, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y. Dietary fibre intake and mortality from cardiovascular disease and all cancers: A meta-analysis of prospective cohort studies. Arch. Cardiovasc. Dis. 2016, 109, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Threapleton, D.E.; Greenwood, D.C.; Evans, C.E.; Cleghorn, C.L.; Nykjaer, C.; Woodhead, C.; Cade, J.E.; Gale, C.P.; Burley, V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ 2013, 347, f6879. [Google Scholar] [CrossRef] [PubMed]
- InterAct Consortium. Dietary fibre and incidence of type 2 diabetes in eight European countries: The EPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 2015, 58, 1394–1408. [Google Scholar] [CrossRef]
- Aune, D.; Chan, D.S.; Lau, R.; Vieira, R.; Greenwood, D.C.; Kampman, E.; Norat, T. Dietary fibre, whole grains, and risk of colorectal cancer: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2011, 343, d6617. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare (AIHW). Australia’s Health 2014. Australia’s Health Series No. 14. Cat. No. AUS 178; AIHW: Canberra, Australia, 2014.
- Fayet-Moore, F.; George, A.; Cassettari, T.; Yulin, L.; Tuck, K.; Pezzullo, L. Healthcare expenditure and productivity cost savings from reductions in cardiovascular disease and Type 2 Diabetes associated with increased intake of cereal fibre among Australian Adults: A Cost of Illness Analysis. Nutrients 2018, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council Australian Government Department of Health and Ageing New Zealand Ministry of Health. Nutrient Reference Values for Australia and New Zealand; NHMRC: Canberra, Australia, 2006.
- Australian Bureau of Statistics (ABS). Australian Health Survey: Nutrition First Results—Foods and Nutrients, 2011-12. ABS Cat. No. 4364.0.55.007; ABS: Canberra, Australia, 2014.
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef] [PubMed]
- Jamison, J.R. Australian Dietary Targets in 1995: Their feasibility and Pertinence to Dietary Goals for 2000. Aust. J. Public Health 1995, 19, 522–524. Available online: https://www.ncbi.nlm.nih.gov/pubmed/8713205 (accessed on 21 August 2017). [CrossRef] [PubMed]
- Zhou, S.J.; Gibson, R.A.; Gibson, R.S.; Makrides, M. Nutrient intakes and status of preschool children in Adelaide, South Australia. Med. J. Aust. 2012, 196, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Barrett, E.; Beck, E.; Probst, Y.; Williams, R. Cereal fibre intake in Australia: Secondary analysis of the 2011-12 National Nutrition and Physical Activity Survey. Nutr. Diet. 2017, 74, 9–49. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.; Booth, H.; Cashel, K. Sociodemographic determinants of energy, fat and dietary fibre intake in Australian adults. Public Health Nutr. 2000, 3, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Cobiac, L. Comparison of dietary intakes according to breakfast choice in Australian boys. Eur. J. Clin. Nutr. 2012, 66, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Grieger, J.A.; Kim, S.; Cobiac, L. Where do Australian children get their dietary fibre? A focus on breakfast food choices. Nutr. Diet. 2012, 70, 132–138. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. AUSNUT 2011-13—Australian Food, Supplement and Nutrient Database for Estimation of Population Nutrient Intakes. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/ausnut/ausnutdatafiles/Pages/foodnutrient.aspx (accessed on 22 January 2017).
- Australian Bureau of Statistics (ABS). Australian Health Survey: Users’ Guide, 2011–13. ABS Cat. No. 4363.0.55.001; ABS: Canberra, Australia, 2014. Available online: http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4363.0.55.001Chapter651512011-13 (accessed on 22 January 2018).
- Australian Bureau of Statistics (ABS). Perspectives on education and training: Social Inclusion 2009, ABS Cat. No. 4250.0.55.001. Canberra, 2011. Available online: http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/4250.0.55.001Main%20Features32009?opendocument&tabname=Summary&prodno=4250.0.55.001&issue=2009&num=&view= (accessed on 22 January 2018).
- World Health Organization. Growth Reference 5–19 Years. Available online: http://www.who.int/growthref/who2007_bmi_for_age/en/ (accessed on 19 February 2018).
- Weili, Y.; He, B.; Yao, H.; Dai, J.; Cui, J.; Ge, D.; Zheng, Y.; Li, L.; Guo, Y.; Xiao, K.; et al. Waist-to-height ratio is an accurate and easier index for evaluating obesity in children and adolescents. Obesity (Silver Spring) 2007, 15, 748–752. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Obesity: Preventing and Managing the Global Epidemic. (Technical Report Series 894). Report of a WHO Consultation; WHO: Geneva, Switzerland, 2000; Available online: http://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/ (accessed on 21 August 2017).
- World Health Organization. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation. Geneva, 8–11 December 2008; WHO: Geneva, Switzerland, 2011; Available online: http://www.who.int/nutrition/publications/obesity/WHO_report_waistcircumference_and_waisthip_ratio/en/ (accessed on 21 August 2017).
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- U.S. Department of Agriculture—Agricultural Research Service. Dietary Fiber: Usual Intakes from Food and Water, 2003–2006, Compared to Adequate Intakes. Available online: www.ars.usda.gov/Services/docs.htm?docid=22659 (accessed on 22 January 2018).
- Australian Bureau of Statistics (ABS). National Nutrition Survey: Nutrient Intakes and Physical Measurements; ABS: Canberra, Australia, 1998. Available online: http://www.ausstats.abs.gov.au/ausstats/subscriber.nsf/0/CA25687100069892CA25688900268A6D/$File/48050_1995.pdf (accessed on 22 January 2017).
- University of Otago and Ministry of Health. A Focus on Nutrition: Key findings of the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, NZ, USA, 2011. Available online: https://www.health.govt.nz/system/files/documents/publications/a-focus-on-nutrition-v2.pdf (accessed on 30 April 2018).
- Alexy, U.; Kersting, M.; Sichert-Hellert, W. Evaluation of dietary fibre intake from infancy to adolescence against various references—Results of the DONALD Study. Eur. J. Clin. Nutr. 2006, 60, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Brauchla, M.; Juan, W.; Story, J.; Kranz, S. Sources of dietary fiber and the association of fiber intake with childhood obesity risk (in 2–18 year olds) and diabetes risk of adolescents 12–18 year olds: NHANES 2003-2006. J. Nutr. Metab. 2012, 2012, 736258. [Google Scholar] [CrossRef] [PubMed]
- Galvin, M.A.; Kiely, M.; Harrington, K.E.; Robson, P.J.; Moore, R.; Flynn, A. The North/South Ireland Food Consumption Survey: The dietary fibre intake of Irish adults. Public Health Nutr. 2001, 4, 1061–1068. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Rodriguez, L.G.; Perea Sanchez, J.M.; Aranceta-Bartrina, J.; Gil, A.; Gonzalez-Gross, M.; Serra-Majem, L.; Varela-Moreiras, G.; Ortega, R.M. Intake and dietary food sources of fibre in Spain: Differences with regard to the prevalence of excess body weight and abdominal obesity in Adults of the ANIBES Study. Nutrients 2017, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Sette, S.; Le Donne, C.; Piccinelli, R.; Arcella, D.; Turrini, A.; Leclercq, C.; Group, I.-S.S. The third Italian National Food Consumption Survey, INRAN-SCAI 2005-06—Part 1: Nutrient intakes in Italy. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 922–932. [Google Scholar] [CrossRef] [PubMed]
- Pietinen, P.; Paturi, M.; Reinivuo, H.; Tapanainen, H.; Valsta, L.M. FINDIET 2007 Survey: Energy and nutrient intakes. Public Health Nutr. 2010, 13, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Galea, L.M.; Beck, E.J.; Probst, Y.C.; Cashman, C.J. Whole grain intake of Australians estimated from a cross-sectional analysis of dietary intake data from the 2011-13 Australian Health Survey. Public Health Nutr. 2017, 20, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Nour, M.; Sui, Z.; Grech, A.; Rangan, A.; McGeechan, K.; Allman-Farinelli, M. The fruit and vegetable intake of young Australian adults: A population perspective. Public Health Nutr. 2017, 20, 2499–2512. [Google Scholar] [CrossRef] [PubMed]
- Sui, Z.; Wong, W.K.; Louie, J.C.; Rangan, A. Discretionary food and beverage consumption and its association with demographic characteristics, weight status, and fruit and vegetable intakes in Australian adults. Public Health Nutr. 2017, 20, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Grech, A.; Sui, Z.; Siu, H.Y.; Zheng, M.; Allman-Farinelli, M.; Rangan, A. Socio-demographic determinants of diet quality in Australian adults using the validated Healthy Eating Index for Australian Adults (HEIFA-2013). Healthcare (Basel) 2017, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Worsley, A.; Wang, W.C.; Byrne, S.; Yeatman, H. Different patterns of Australian adults’ knowledge of foods and nutrients related to metabolic disease risk. J. Nutr. Sci. 2014, 3, e14. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.G.; Wills, J.M.; Fernandez-Celemin, L. Nutrition knowledge, and use and understanding of nutrition information on food labels among consumers in the UK. Appetite 2010, 55, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Fagerli, R.A.; Wandel, M. Gender differences in opinions and practices with regard to a “healthy diet”. Appetite 1999, 32, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Von Bothmer, M.I.; Fridlund, B. Gender differences in health habits and in motivation for a healthy lifestyle among Swedish university students. Nurs. Health Sci. 2005, 7, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.J.; McNaughton, S.A.; Gall, S.L.; Blizzard, L.; Dwyer, T.; Venn, A.J. Involvement of young Australian adults in meal preparation: Cross-sectional associations with sociodemographic factors and diet quality. J. Am. Diet. Assoc. 2010, 110, 1363–1367. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.I.; Neumark-Sztainer, D.R.; Story, M.T.; Wall, M.M.; Harnack, L.J.; Eisenberg, M.E. Fast food intake: Longitudinal trends during the transition to young adulthood and correlates of intake. J. Adolesc. Health 2008, 43, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, L.M.; Haynie, D.L.; Liu, D.; Chaurasia, A.; Gee, B.; Li, K.; Iannotti, R.J.; Simons-Morton, B. Trajectories of eating behaviors in a nationally representative cohort of U.S. adolescents during the transition to young adulthood. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 138. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, T.P.; Holstein, B.E.; Flachs, E.M.; Rasmussen, M. Meal frequencies in early adolescence predict meal frequencies in late adolescence and early adulthood. BMC Public Health 2013, 13, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawyer, S.M.; Afifi, R.A.; Bearinger, L.H.; Blakemore, S.J.; Dick, B.; Ezeh, A.C.; Patton, G.C. Adolescence: A foundation for future health. Lancet 2012, 379, 1630–1640. [Google Scholar] [CrossRef]
- Shepherd, J.; Harden, A.; Rees, R.; Brunton, G.; Garcia, J.; Oliver, S.; Oakley, A. Young people and healthy eating: A systematic review of research on barriers and facilitators. Health Educ. Res. 2006, 21, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Traill, W.B.; Chambers, S.A.; Butler, L. Attitudinal and demographic determinants of diet quality and implications for policy targeting. J. Hum. Nutr. Diet. 2012, 25, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Mullie, P.; Clarys, P.; Hulens, M.; Vansant, G. Dietary patterns and socioeconomic position. Eur. J. Clin. Nutr. 2010, 64, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Vlismas, K.; Stavrinos, V.; Panagiotakos, D.B. Socio-economic status, dietary habits and health-related outcomes in various parts of the world: A review. Cent. Eur. J. Public Health 2009, 17, 55–63. [Google Scholar] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Giskes, K.; Turrell, G.; Patterson, C.; Newman, B. Socio-economic differences in fruit and vegetable consumption among Australian adolescents and adults. Public Health Nutr. 2002, 5, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Turrell, G.; Hewitt, B.; Patterson, C.; Oldenburg, B. Measuring socio-economic position in dietary research: Is choice of socio-economic indicator important? Public Health Nutr. 2003, 6, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Krusinska, B.; Kowalkowska, J.; Wadolowska, L.; Wuenstel, J.W.; Slowinska, M.A.; Niedzwiedzka, E. Fibre-related dietary patterns: Socioeconomic barriers to adequate fibre intake in Polish adolescents. A Short Report. Nutrients 2017, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Bolca, S.; Vandevijvere, S.; De Keyzer, W.; Van Oyen, H.; Van Camp, J.; De Backer, G.; De Henauw, S.; Huybrechts, I. Dietary sources of fiber intake and its association with socio-economic factors among Flemish preschool children. Int. J. Mol. Sci. 2011, 12, 1836–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neutzling, M.B.; Araujo, C.L.; Vieira Mde, F.; Hallal, P.C.; Menezes, A.M.; Victora, C.G. Intake of fat and fiber-rich foods according to socioeconomic status: The 11-year follow-up of the 1993 Pelotas (Brazil) birth cohort study. Cad. Saude Publica 2010, 26, 1904–1911. [Google Scholar] [CrossRef] [PubMed]
- Bowman, S. Low economic status is associated with suboptimal intakes of nutritious foods by adults in the National Health and Nutrition Examination Survey 1999–2002. Nutr. Res. 2007, 27, 515–523. [Google Scholar] [CrossRef]
- Dubois, L.; Girard, M. Social position and nutrition: A gradient relationship in Canada and the USA. Eur. J. Clin. Nutr. 2001, 55, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Storey, M.; Anderson, P. Income and race/ethnicity influence dietary fiber intake and vegetable consumption. Nutr. Res. 2014, 34, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Monsivais, P.; Cook, A.J.; Drewnowski, A. Does diet cost mediate the relation between socioeconomic position and diet quality? Eur. J. Clin. Nutr. 2011, 65, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Barosh, L.; Friel, S.; Engelhardt, K.; Chan, L. The cost of a healthy and sustainable diet—Who can afford it? Aust. N. Z. J. Public Health 2014, 38, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Ward, P.R.; Verity, F.; Carter, P.; Tsourtos, G.; Coveney, J.; Wong, K.C. Food stress in Adelaide: The relationship between low income and the affordability of healthy food. J. Environ. Public Health 2013, 2013, 968078. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.J.; Kane, S.; Ramsey, R.; Good, E.; Dick, M. Testing the price and affordability of healthy and current (unhealthy) diets and the potential impacts of policy change in Australia. BMC Public Health 2016, 16, 315. [Google Scholar] [CrossRef] [PubMed]
- Turrell, G.; Kavanagh, A.M. Socio-economic pathways to diet: Modelling the association between socio-economic position and food purchasing behaviour. Public Health Nutr. 2006, 9, 375–383. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, L.; Giskes, K.; Turrell, G. The contribution of three components of nutrition knowledge to socio-economic differences in food purchasing choices. Public Health Nutr. 2014, 17, 1814–1824. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, I.A.; Moore, C.; Chatfield, M.; Richardson, D.P.; Ashby, P.; Kuznesof, S.A.; Jebb, S.A.; Seal, C.J. Markers of cardiovascular risk are not changed by increased whole-grain intake: The WHOLEheart study, a randomised, controlled dietary intervention. Br. J. Nutr. 2010, 104, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Burton-Freeman, B. Dietary fiber and energy regulation. J. Nutr. 2000, 130, 272S–275S. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.J.; Slavin, J.L. The effect of fiber on satiety and food intake: A systematic review. J. Am. Coll. Nutr. 2013, 32, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Wanders, A.J.; van den Borne, J.J.; de Graaf, C.; Hulshof, T.; Jonathan, M.C.; Kristensen, M.; Mars, M.; Schols, H.A.; Feskens, E.J. Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trials. Obes. Rev. 2011, 12, 724–739. [Google Scholar] [CrossRef] [PubMed]
- Kranz, S.; Brauchla, M.; Slavin, J.L.; Miller, K.B. What do we know about dietary fiber intake in children and health? The effects of fiber intake on constipation, obesity, and diabetes in children. Adv. Nutr. 2012, 3, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L. Dietary fiber and body weight. Nutrition 2005, 21, 411–418. [Google Scholar] [CrossRef] [PubMed]
- King, D.E.; Mainous, A.G., III; Lambourne, C.A. Trends in dietary fiber intake in the United States, 1999-2008. J. Acad. Nutr. Diet. 2012, 112, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Mander, A.P.; Jones, L.R.; Emmett, P.M.; Jebb, S.A. Energy-dense, low-fiber, high-fat dietary pattern is associated with increased fatness in childhood. Am. J. Clin. Nutr. 2008, 87, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Wuenstel, J.W.; Wadolowska, L.; Slowinska, M.A.; Niedzwiedzka, E.; Kowalkowska, J.; Kurp, L. Intake of dietary fibre and its sources related to adolescents’ age and gender, but not to their weight. Cent. Eur. J. Public Health 2016, 24, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Karaolis-Danckert, N.; Libuda, L.; Bolzenius, K.; Remer, T.; Buyken, A.E. Relation of dietary glycemic index, glycemic load, and fiber and whole-grain intakes during puberty to the concurrent development of percent body fat and body mass index. Am. J. Epidemiol. 2009, 169, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.N.; Alexander, K.E.; Ventura, E.E.; Kelly, L.A.; Lane, C.J.; Byrd-Williams, C.E.; Toledo-Corral, C.M.; Roberts, C.K.; Spruijt-Metz, D.; Weigensberg, M.J.; et al. Associations of dietary sugar and glycemic index with adiposity and insulin dynamics in overweight Latino youth. Am. J. Clin. Nutr. 2007, 86, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; van der, A.D.; Boshuizen, H.C.; Forouhi, N.G.; Wareham, N.J.; Halkjaer, J.; Tjonneland, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 2010, 91, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Schulz, M.; Heidemann, C.; Schienkiewitz, A.; Hoffmann, K.; Boeing, H. Fiber and magnesium intake and incidence of type 2 diabetes: A prospective study and meta-analysis. Arch. Intern. Med. 2007, 167, 956–965. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health benefits of fruits and vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A. New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre? Nutr. Res. Rev. 2010, 23, 65–134. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.B. Whole grains beyond fibre: What can metabolomics tell us about mechanisms? Proc. Nutr. Soc. 2015, 74, 320–327. [Google Scholar] [CrossRef] [PubMed]
Fibre Intake (grams) | Proportion that Met the Fibre AI * | |||
---|---|---|---|---|
Adjusted † Mean ± SE | Median [IQR] | % [95% CI] | ||
All Children | 2–18 Years | 19.9 ± 0.2 | 18.2 [13.2, 25.0] | 42.3 [40.5, 44.1] |
All children | 2–3 years | 20.1 ± 0.6 a,b | 15.3 [10.5, 20.0] | 58.4 [53.1, 63.7] |
4–8 years | 20.8 ± 0.3 a | 17.8 [13.2, 23.0] | 48.0 [44.6, 51.5] | |
9–13 years | 19.8 ± 0.3 a,b | 19.5 [14.1, 26.4] | 42.3 [39.1, 45.6] | |
14–18 years | 18.8 ± 0.3 b | 18.9 [13.3, 26.0] | 29.4 [26.2, 32.7] | |
p value | <0.001 | <0.001 | ||
All children | Boys | 20.0 ± 0.3 | 19.4 [14.0, 26.5] | 44.1 [41.5, 46.7] |
Girls | 19.8 ± 0.3 | 17.0 [12.4, 22.8] | 40.5 [37.9, 43.1] | |
p value | 0.091 | <0.001 | ||
Boys | 2–3 years | 20.6 ± 0.7 | 16.6 [9.8, 22.9] | 62.0 [54.8, 69.3] |
4–8 years | 20.7 ± 0.5 | 19.4 [13.4, 24.5] | 54.9 [50.1, 59.6] | |
9–13 years | 20.4 ± 0.4 | 21.1 [15.3, 28.3] | 41.5 [37.0, 46.1] | |
14–18 years | 18.4 ± 0.5 | 19.8 [13.6, 28.4] | 27.6 [23.1, 32.0] | |
Girls | 2–3 years | 19.7 ± 0.7 | 15.1 [10.9, 18.7] | 54.5 [46.7, 62.2] |
4–8 years | 20.8 ± 0.5 | 16.3 [11.7, 21.6] | 40.7 [35.8, 45.6] | |
9–13 years | 19.3 ± 0.4 | 18.1 [12.9, 25.3] | 43.2 [38.6, 47.8] | |
14–18 years | 19.3 ± 0.5 | 17.9 [12.9, 23.9] | 31.3 [26.7, 36.0] | |
p value | 0.091 | <0.001 | ||
zBMI group ‡ | Normal weight | 19.6 ± 0.2 | 18.8 [13.6, 25.1] | 41.3 [38.9, 43.8] |
At risk of overweight | 20.0 ± 0.5 | 16.7 [12.3, 23.6] | 41.1 [35.5, 46.7] | |
Overweight | 20.0 ± 0.4 | 18.1 [12.4, 25.3] | 45.4 [40.8, 50.1] | |
p value | 0.697 | 0.286 | ||
Risk of metabolic complications § | Not at risk | 20.2 ± 0.3 | 19.0 [14.0, 25.7] | 40.9 [38.4, 43.3] |
Increased risk | 19.6 ± 0.3 | 16.8 [12.0, 23.3] | 44.6 [41.0, 48.2] | |
p value | 0.170 | 0.049 | ||
SES || quintile | Lowest | 18.8 ± 0.4 a | 15.9 [11.4, 23.1] | 33.3 [29.1, 37.5] |
2nd | 19.6 ± 0.4 a,b | 18.2 [13.3, 24.0] | 41.3 [37.1, 45.5] | |
3rd | 19.4 ± 0.4 a,b | 17.0 [12.1, 23.8] | 38.9 [35.0, 42.8] | |
4th | 20.2 ± 0.4 a,b | 18.6 [13.7, 25.6] | 44.3 [40.0, 48.6] | |
Highest | 21.3 ± 0.4 b | 20.3 [14.5, 26.4] | 51.1 [47.3, 54.8] | |
p value | <0.001 | <0.001 |
Predictor | Β (SE) | OR [95% CI] | p Value |
---|---|---|---|
Energy (MJ) | 0.403 (0.022) | 1.496 [1.432, 1.562] | <0.001 |
Age group | <0.001 | ||
4–8 y | −0.958 (0.244) | 0.384 [0.238, 0.619] | <0.001 |
9–13 y | −2.393 (0.259) | 0.091 [0.055, 0.152] | <0.001 |
14–18 y | −3.666 (0.293) | 0.026 [0.014, 0.045] | <0.001 |
(Ref = 2–3 y) | |||
Sex | −0.277 (0.279) | 0.758 [0.439, 1.309] | 0.320 |
(Ref = M) | |||
Age group * sex | <0.001 | ||
4–8 y * M | 0.129 (0.331) | 1.137 [0.594, 2.177] | 0.698 |
9–13 y * M | 0.936 (0.326) | 2.550 [1.345, 4.835] | 0.004 |
14–18 y * M | 1.647 (0.353) | 5.191 [2.600, 10.361] | <0.001 |
(Ref = 2–3 y * M) | |||
zBMI | 0.129 (0.057) | 1.138 [1.016, 1.273] | 0.025 |
Waist: height ratio | −0.676 (1.212) | 0.508 [0.047, 5.474] | 0.577 |
SES † | 0.180 (0.035) | 1.198 [1.118, 1.282] | <0.001 |
Constant | −2.167 (0.692) | 0.115 | 0.002 |
Fibre Intake (grams) | Proportion that Met the Fibre AI * | Proportion that Met the Fibre SDT † | |||
---|---|---|---|---|---|
Adjusted ‡ Mean ± SE | Median [IQR] | % [95% CI] | % [95% CI] | ||
All Adults | 19+ Years | 23.8 ± 0.3 | 20.7 [14.3, 28.7] | 28.2 [27.3, 29.1] | 17.0 [16.2, 17.8] |
All adults | 19–30 years | 21.1 ± 0.3 a | 20.1 [13.7, 28.3] | 25.8 [24.0, 27.7] | 14.9 [13.4, 16.4] |
31–50 years | 22.7 ± 0.3 b | 20.7 [14.5, 28.4] | 27.6 [26.1, 29.1] | 16.3 [15.0, 17.5] | |
51–70 years | 24.8 ± 0.3 c | 21.1 [14.9, 29.9] | 30.7 [29.0, 32.5] | 19.2 [17.8, 20.7] | |
71+ years | 26.5 ± 0.4 c | 20.5 [14.4, 28.3] | 28.7 [25.9, 31.5] | 18.1 [15.7, 20.5] | |
p value | <0.001 | 0.002 | <0.001 | ||
All adults | Males | 23.6 ± 0.3 | 22.4 [15.7, 31.5] | 28.5 [27.2, 29.8] | 14.0 [13.0, 15.0] |
Females | 24.0 ± 0.3 | 19.1 [13.3, 26.1] | 27.9 [26.6, 29.2] | 19.9 [18.8, 21.1] | |
p value | 0.196 | 0.255 | <0.001 | ||
Males | 19–30 years | 20.2 ± 0.4 | 22.8 [15.5, 30.8] | 26.4 [23.8, 29.0] | 11.3 [9.5, 13.2] |
31–50 years | 22.6 ± 0.4 | 22.4 [16.2, 31.8] | 28.7 [26.6, 30.8] | 14.0 [12.4, 15.7] | |
51–70 years | 24.4 ± 0.4 | 22.1 [15.2, 32.1] | 30.2 [27.7, 32.6] | 15.7 [13.7, 17.6] | |
71+ years | 27.2 ± 0.6 | 22.4 [16.2, 32.1] | 28.2 [24.0, 32.3] | 15.7 [12.3, 19.0] | |
Females | 19–30 years | 22.1 ± 0.4 | 18.0 [12.2, 25.1] | 25.3 [22.6, 27.9] | 18.6 [16.3, 20.9] |
31–50 years | 22.8 ± 0.4 | 19.0 [13.2, 25.5] | 26.5 [24.4, 28.6] | 18.5 [16.7, 20.3] | |
51–70 years | 25.2 ± 0.4 | 20.1 [14.3, 27.4] | 31.2 [28.8, 33.7] | 22.7 [20.5, 24.9] | |
71+ years | 25.9 ± 0.6 | 19.4 [13.5, 26.2] | 29.1 [25.3, 32.9] | 20.1 [16.8, 23.5] | |
p value | 0.002 | 0.012 | <0.001 | ||
BMI group § | Underweight | 24.5 ± 0.9 | 18.1 [13.1, 28.9] | 29.4 [22.0, 36.9] | 18.9 [12.5, 25.3] |
Normal weight | 24.3 ± 0.3 | 21.8 [15.0, 30.6] | 32.6 [30.9, 34.4] | 21.7 [20.2, 23.2] | |
Overweight | 23.8 ± 0.2 | 21.6 [15.1, 30.0] | 30.0 [28.3, 31.6] | 16.9 [15.5, 18.3] | |
Obese | 22.6 ± 0.3 | 19.2 [13.5, 26.4] | 21.9 [20.1, 23.7] | 12.0 [10.6, 13.4] | |
p value | 0.002 | <0.001 | <0.001 | ||
Risk of metabolic complications || | Not at risk | 24.4 ± 0.3 | 22.0 [15.2, 31.3] | 32.3 [30.6, 33.9] | 19.5 [18.1, 21.0] |
Increased risk | 23.5 ± 0.4 | 21.4 [14.7, 29.4] | 28.8 [26.7, 30.9] | 17.0 [15.3, 18.8] | |
Substantially increased risk | 23.5 ± 0.4 | 19.8 [14.1, 27.4] | 25.6 [24.1, 27.1] | 15.6 [14.4, 16.9] | |
p value | 0.031 | <0.001 | <0.001 | ||
SES ¶ quintile | Lowest | 23.1 ± 0.4 a | 19.0 [13.2, 27.4] | 24.2 [22.2, 26.3] | 15.3 [13.6, 17.0] |
2nd | 23.5 ± 0.3 a,b | 20.2 [14.1, 27.7] | 25.7 [23.7, 27.6] | 14.0 [12.4, 15.5] | |
3rd | 23.7 ± 0.3 a,b | 20.8 [14.4, 28.8] | 29.3 [27.3, 31.3] | 16.7 [15.0, 18.4] | |
4th | 24.0 ± 0.4 a,b | 21.5 [15.2, 28.9] | 28.2 [26.1, 30.3] | 17.9 [16.1, 19.7] | |
Highest | 24.9 ± 0.3 b | 21.9 [15.1, 30.4] | 32.7 [30.7, 34.8] | 20.6 [18.9, 22.4] | |
p value | <0.001 | <0.001 | <0.001 |
Predictor | Β (SE) | OR [95% CI] | p Value |
---|---|---|---|
Energy (MJ) | 0.296 (0.009) | 1.345 [1.321, 1.370] | <0.001 |
Age group | <0.001 | ||
31–50 y | 0.467 (0.105) | 1.596 [1.300, 1.959] | <0.001 |
51–70 y | 0.854 (0.113) | 2.348 [1.880, 2.932] | <0.001 |
71+ y | 1.315 (0.154) | 3.724 [2.751, 5.042] | <0.001 |
(Ref = 19–30 y) | |||
Sex | 0.772 (0.124) | 2.164 [1.698, 2.758] | <0.001 |
(Ref = M) | |||
Age group * sex | 0.168 | ||
31–50 y * M | −0.246 (0.149) | 0.782 [0.584, 1.047] | 0.098 |
51–70 y * M | −0.157 (0.154) | 0.855 [0.632, 1.156] | 0.308 |
71+ y * M | −0.423 (0.204) | 0.655 [0.439, 0.976] | 0.038 |
(Ref = 19–30 y * M) | |||
BMI (kg/m2) | −0.004 (0.011) | 0.996 [0.975, 1.017] | 0.724 |
Waist circumference (cm) | −0.011 (0.004) | 0.989 [0.980, 0.997] | 0.009 |
SES † | 0.086 (0.020) | 1.090 [1.049, 1.133] | <0.001 |
Constant | −3.643 (0.254) | 0.026 | <0.001 |
Predictor | Β (SE) | OR [95% CI] | p Value |
---|---|---|---|
Energy (MJ) | 0.283 (0.010) | 1.327 [1.301, 1.354] | <0.001 |
Age group | <0.001 | ||
31–50 y | 0.629 (0.138) | 1.875 [1.430, 2.460] | <0.001 |
51–70 y | 1.122 (0.147) | 3.072 [2.302, 4.099] | <0.001 |
71+ y | 1.721 (0.192) | 5.589 [3.834, 8.147] | <0.001 |
(Ref = 19–30 y) | |||
Sex | 1.673 (0.154) | 5.329 [3.941, 7.206] | <0.001 |
(Ref = M) | |||
Age group * sex | <0.001 | ||
31–50 y * M | −0.498 (0.180) | 0.608 [0.427, 0.865] | 0.006 |
51–70 y * M | −0.547 (0.185) | 0.579 [0.402, 0.832] | 0.003 |
71+ y * M | −0.980 (0.241) | 0.375 [0.234, 0.602] | <0.001 |
(Ref = 19–30 y * M) | |||
BMI (kg/m2) | −0.028 (0.013) | 0.972 [0.948, 0.997] | 0.028 |
Waist circumference (cm) | −0.005 (0.005) | 0.995 [0.985, 1.005] | 0.332 |
SES † | 0.092 (0.023) | 1.096 [1.047, 1.147] | <0.001 |
Constant | −4.753 (0.308) | 0.009 | <0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayet-Moore, F.; Cassettari, T.; Tuck, K.; McConnell, A.; Petocz, P. Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors. Nutrients 2018, 10, 599. https://doi.org/10.3390/nu10050599
Fayet-Moore F, Cassettari T, Tuck K, McConnell A, Petocz P. Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors. Nutrients. 2018; 10(5):599. https://doi.org/10.3390/nu10050599
Chicago/Turabian StyleFayet-Moore, Flavia, Tim Cassettari, Kate Tuck, Andrew McConnell, and Peter Petocz. 2018. "Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors" Nutrients 10, no. 5: 599. https://doi.org/10.3390/nu10050599
APA StyleFayet-Moore, F., Cassettari, T., Tuck, K., McConnell, A., & Petocz, P. (2018). Dietary Fibre Intake in Australia. Paper I: Associations with Demographic, Socio-Economic, and Anthropometric Factors. Nutrients, 10(5), 599. https://doi.org/10.3390/nu10050599