The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Dietary Assessment
2.3. Anthropometric Parameters
2.4. Biochemical Measurements
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Farmer, B. Nutritional adequacy of plant-based diets for weight management: Observations from the NHANES. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 365S–368S. [Google Scholar] [CrossRef] [PubMed]
- Reid, M.A.; Marsh, K.A.; Zeuschner, C.L.; Saunders, A.V.; Baines, S.K. Meeting the nutrient reference values on a vegetarian diet. Med. J. Aust. 2013, 199 (Suppl. 4), S33–S40. [Google Scholar] [CrossRef] [PubMed]
- Sobiecki, J.G.; Appleby, P.N.; Bradbury, K.E.; Key, T.J. High compliance with dietary recommendations in a cohort of meat eaters, fish eaters, vegetarians, and vegans: Results from the European Prospective Investigation into Cancer and nutrition-Oxford study. Nutr. Res. 2016, 36, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.J. Nutrition concerns and health effects of vegetarian diets. Nutr. Clin. Pract. 2010, 25, 613–620. [Google Scholar] [CrossRef] [PubMed]
- American Dietetic Association; Dietitians of Canada. Position of the American Dietetic Association and Dietitians of Canada: Vegetarian diets. J. Am. Diet. Assoc. 2003, 103, 748–765. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R. Position of the American Dietetic Association: Vegetarian diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [PubMed]
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, P. The role of low acid load in vegetarian diet on bone health: A narrative review. Swiss Med. Wkly. 2016, 146, w14277. [Google Scholar] [CrossRef] [PubMed]
- Palmer, S. Protecting bone health among vegans. Today’s Diet. 2016, 18, e24. [Google Scholar]
- Tucker, K.L. Vegetarian diets and bone status. Am. J. Clin. Nutr. 2014, 100, 329S–335S. [Google Scholar] [CrossRef] [PubMed]
- Mangels, A.R. Bone nutrients for vegetarians. Am. J. Clin. Nutr. 2014, 100 (Suppl. 1), 469S–475S. [Google Scholar] [CrossRef] [PubMed]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Findlay, D.M.; Atkins, G.J. Relationship between serum RANKL and RANKL in bone. Osteoporos. Int. 2011, 22, 2597–2602. [Google Scholar] [CrossRef] [PubMed]
- Colaianni, G.; Brunetti, G.; Faienza, M.F.; Colucci, S.; Grano, M. Osteoporosis and obesity: Role of Wnt pathway in human and murine models. World J. Orthop. 2014, 5, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Gifre, L.; Ruiz-Gaspa, S.; Monegal, A.; Nomdedeu, B.; Filella, X.; Guanabens, N.; Peris, P. Effect of glucocorticoid treatment on Wnt signaling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone 2013, 57, 272–276. [Google Scholar] [CrossRef] [PubMed]
- Silverman, S.L. Sclerostin. J. Osteoporos. 2010, 2010, 941419. [Google Scholar] [CrossRef] [PubMed]
- Rachner, T.D.; Gobel, A.; Benad-Mehner, P.; Hofbauer, L.C.; Rauner, M. Dickkopf-1 as a mediator and novel target in malignant bone disease. Cancer Lett. 2014, 346, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Van Lierop, A.H.; Moester, J.C.; Hamdy, N.A.T.; Papapoulos, S.E. Serum Dickkopf levels in sclerostin deficiency. J. Clin. Endocrinol. Metab. 2014, 99, E252–E256. [Google Scholar] [CrossRef] [PubMed]
- Kirmani, S.; Amin, S.; McCready, L.K.; Atkinson, E.J.; Melton, L.J., III; Muller, R.; Khosla, S. Sclerostin levels during growth in children. Osteoporos. Int. 2012, 23, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Moester, M.J.C.; Papapoulus, S.E.; Lowik, C.W.G.M.; van Bezooijen, R.L. Sclerostin: Current knowledge and future perspectives. Calcif. Tissue Int. 2010, 87, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Park, J.R.; Jung, J.W.; Lee, Y.S.; Kang, K.S. The roles of Wnt antagonists Dkk-1 and sFRP4 during adipogenesis of human adipose tissue-derived mesenchymal stem cells. Cell Prolif. 2008, 41, 859–874. [Google Scholar] [CrossRef] [PubMed]
- Appleby, P.; Roddam, A.; Allen, N.; Key, T. Comparative fracture risk in vegetarians and nonvegetarians in EPIC-Oxford. Eur. J. Clin. Nutr. 2007, 61, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Chiu, J.S.; Chua, M.H.; Chiu, J.E.; Lin, C.L. Bone mineral density of vegetarian and non-vegetarian adults in Taiwan. Asia Pac. J. Clin. Nutr. 2008, 17, 101–106. [Google Scholar] [PubMed]
- Ho-Pham, L.T.; Nguyen, N.D.; Nguyen, T.V. Effect of vegetarian diets on bone mineral density: A Bayesian meta-analysis. Am. J. Clin. Nutr. 2009, 90, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Shew, J.L.; Holloszy, J.O.; Villareal, D.T. Low bone mass in subjects on a long-term raw vegetarian diet. Arch. Intern. Med. 2005, 165, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Krivosikova, Z.; Krajcovicova-Kudlackova, M.; Spustova, V.; Steficova, K.; Valachovicova, M.; Blazicek, P.; Nemcova, T. The association between high plasma homocysteine levels and lower bone mineral density in Slovak women: The impact of vegetarian diet. Eur. J. Nutr. 2010, 49, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ambroszkiewicz, J.; Klemarczyk, W.; Gajewska, J.; Chełchowska, M.; Laskowska-Klita, T. Serum concentration of biochemical bone turnover markers in vegetarian children. Adv. Med. Sci. 2007, 52, 279–282. [Google Scholar] [PubMed]
- Siani, V.; Mohamed, E.I.; Maiolo, C.; Di Daniele, N.; Ratiu, A.; Leonardi, A.; De Lorenzo, A. Body composition analysis for healthy Italian vegetarians. Acta Diabetol. 2003, 40 (Suppl. 1), 297–298. [Google Scholar] [CrossRef] [PubMed]
- Ambroszkiewicz, J.; Klemarczyk, W.; Gajewska, J.; Chełchowska, M.; Franek, E.; Laskowska-Klita, T. The influence of vegan diet on bone mineral density and biochemical bone turnover markers. Pediatr. Endocrinol. Diabetes Metab. 2010, 16, 201–204. [Google Scholar] [PubMed]
- Ambroszkiewicz, J.; Klemarczyk, W.; Mazur, J.; Gajewska, J.; Rowicka, G.; Strucińska, M.; Chełchowska, M. Serum hepcidin and soluble transferrin receptor in the assessment of iron metabolism in children on a vegetarian diet. Biol. Trace Elem. Res. 2017, 180, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Jarosz, M.; Traczyk, I.; Rychlik, E. Energia. In Normy Żywienia dla Populacji Polskiej–Nowelizacja; Jarosz, M., Ed.; National Food and Nutrition Institute: Warsaw, Poland, 2012; pp. 18–32. [Google Scholar]
- Kambas, A.; Leontsini, D.; Avloniti, A.; Chatzinikolaou, A.; Stampoulis, T.; Makris, K.; Draganidis, D.; Jumartas, A.Z.; Tournis, S.; Fatouros, I.G. Physical activity may be a potent regulator of bone turnover biomarkers in healthy girls during preadolescence. J. Bone Miner. Metab. 2017, 35, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, H.S.; Winther, S.; Bottcher, M.; Hauge, E.M.; Rejnmark, L.; Svensson, M.; Ivarsen, P. Bone turnover markers are associated with bone density, but not with fracture in end stage kidney disease: A cross-sectional study. BMC Nephrol. 2017, 18, 284. [Google Scholar] [CrossRef] [PubMed]
- Parson, T.J.; van Dusseldorp, M.; Seibel, M.J.; van Staveren, W.A. Are levels of bone turnover related to lower bone mass of adolescents previously fed a macrobiotic diet? Exp. Clin. Endocrinol. Diabetes 2001, 109, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, G.; Papadia, F.; Tummolo, A.; Fischetto, R.; Nicastro, F.; Piacente, L.; Ventura, A.; Mori, G.; Oranger, A.; Gigante, I.; et al. Impaired bone remodeling in children with osteogenesis imperfecta treated and untreated with bisphosphonates: The role of DKK1, RANKL, and TNF-α. Osteoporos. Int. 2016, 27, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zeng, H.; Fu, S.; Shi, P.; Wang, M.; Gou, L.I. Changes in the Dickkopf-1 and tartrate-resistant acid phosphatase 5b serum levels in preschool children with nephrotic syndrome. Biomed. Rep. 2016, 4, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M. Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases. Ther. Adv. Musculoskelet. Dis. 2014, 6, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Kemp, J.P.; Sayers, A.; Paternoster, L.; Evans, D.M.; Deere, K.; Pourcain, B.; Timpson, N.J.; Ring, S.M.; Lorentzon, M.; Lehtimaki, T.; et al. Does bone resorption stimulate periosteal expansion? A cross-sectional analysis of β-C-telopeptides of type I collagen (CTX), genetic markers of the RANKL pathway, and periosteal circumference as measured by pQCT. J. Bone Miner. Res. 2014, 29, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.E.; Yen, C.H.; Huang, M.C.; Cheng, C.H.; Huang, Y.C. Dietary intake and nutritional status of vegetarian and omnivorous preschool children and their parents in Taiwan. Nutr. Res. 2008, 28, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Leboff, M.S.; Narweker, R.; LaCroix, A.; Wu, L.; Jackson, R.; Lee, J.; Bauer, D.C.; Cauley, J.; Kooperberg, C.; Lewis, C.; et al. Homocysteine levels and risk of hip fracture in postmenopausal women. J. Clin. Endocrinol. Metab. 2009, 94, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Gerdhem, P.; Ivaska, K.K.; Isaksson, A.; Petterson, K.; Vaananen, H.K.; Obrant, K.J.; Akesson, K. Association between homocysteine, bone turnover, BMD, mortality and fracture risk in elderly women. J. Bone Miner. Res. 2007, 22, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Elshorbagy, A.K.; Gjesdal, C.G.; Nurk, E.; Tell, G.S.; Ueland, P.M.; Nygard, O.; Tverdal, A.; Vollset, S.E.; Smith, A.D.; Refsum, H. Cysteine, homocysteine and bone mineral density: A role for body composition? Bone 2009, 44, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, M.; Widmann, T.; Colaianna, G.; Colucci, S.; Zallone, A.; Herrmann, W. Increased osteoclast activity in the presence of increased homocysteine concentrations. Clin. Chem. 2005, 51, 2348–2353. [Google Scholar] [CrossRef] [PubMed]
- Saito, M. Elevated plasma concentration of homocysteine, low level of vitamin B6, pyridoxal, and vitamin D insufficiency in patients with hip fracture: A possible explanation for detrimental cross-link in bone collagen. Clin. Calcium 2006, 16, 1974–1984. [Google Scholar] [PubMed]
- Hermann, W.; Schorr, H.; Obeid, R.; Geisel, J. Vitamin B-12 status, particularly holotranscobalamin II and methylmalonic acid concentrations, and hyperhomocysteinemia in vegetarians. Am. J. Clin. Nutr. 2003, 78, 131–136. [Google Scholar] [CrossRef]
- Ambroszkiewicz, J.; Klemarczyk, W.; Chelchowska, M.; Gajewska, J.; Laskowska-klita, T. Serum homocysteine, folate, vitamin B12 and total oxidant status in vegetarian children. Adv. Med. Sci. 2006, 51, 265–268. [Google Scholar] [PubMed]
Vegetarian Children (n = 70) | Omnivorous Children (n = 60) | p | |
---|---|---|---|
Age (years) a | 6.56 ± 1.8 | 6.88 ± 1.5 | 0.287 |
Weight (kg) a | 22.16 ± 5.53 | 23.26 ± 5.79 | 0.275 |
Height (cm) a | 119.2 ± 11.5 | 122.3 ± 10.8 | 0.114 |
BMI (kg/m2) a | 15.4 ± 1.4 | 15.5 ± 1.6 | 0.760 |
BMI z-score a | −0.352 ± 0.645 | −0.302 ± 0.616 | 0.674 |
Fat (kg) b | 3.34 (2.79–4.79) | 3.76 (3.05–5.86) | 0.126 |
Lean (kg) b | 16.57 (13.97–18.08) | 16.99 (13.58–20.66) | 0.501 |
Fat/lean b | 0.24 (0.18–0.29) | 0.28 (0.20–0.33) | 0.098 |
Total BMC (g) a | 729 ± 226 | 768 ± 237 | 0.341 |
Spine BMC (g) a | 57.5 ± 18.7 | 63.0 ± 18.1 | 0.093 |
Total BMD (g/cm2) a | 0.784 ± 0.068 | 0.799 ± 0.080 | 0.700 |
Total BMD z-score a | −0.26 ± 1.20 | −0.11 ± 0.89 | 0.433 |
Lumbar spine BMD L1–L4 (g/cm2) a | 0.617 ± 0.083 | 0.645 ± 0.083 | 0.060 |
Lumbar spine BMD L1–L4 z-score a | −0.73 ± 0.91 | −0.51 ± 0.75 | 0.114 |
Vegetarian Children (n = 70) | Omnivorous Children (n = 60) | p | |
---|---|---|---|
BALP (U/L) a | 130.7 ± 39.9 | 108.4 ± 37.1 | 0.002 |
CTX-I (ng/mL) a | 1.976 ± 0.538 | 1.749 ± 0.526 | 0.027 |
OPG (pmol/L) a | 4.27 ± 1.08 | 4.29 ± 1.19 | 0.918 |
RANKL (pmol/L) b | 1635 (619–3726) | 1418 (716–3184) | 0.790 |
OPG/RANKL ratio b | 0.22 (0.10–0.67) | 0.23 (0.12–0.65) | 0.996 |
Sclerostin (ng/mL) a | 0.436 ± 0.133 | 0.457 ± 0.110 | 0.346 |
Dkk-1 (ng/mL) a | 2.694 ± 0.950 | 2.661 ± 0.896 | 0.848 |
tBMC | Spine BMC | tBMD | BMD L1–L4 | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Vegetarians | ||||||||
BALP | 0.218 | 0.070 | 0.138 | 0.256 | 0.270 | 0.024 | 0.230 | 0.056 |
CTX-I | 0.282 | 0.018 | 0.375 | 0.001 | 0.272 | 0.023 | 0.343 | 0.004 |
OPG | −0.263 | 0.028 | −0.257 | 0.031 | −0.049 | 0.687 | −0.224 | 0.062 |
RANKL | 0.013 | 0.913 | 0.065 | 0.594 | 0.007 | 0.955 | 0.150 | 0.215 |
OPG/sRANKL ratio | 0.010 | 0.938 | −0.068 | 0.589 | 0.009 | 0.943 | −0.125 | 0.320 |
Sclerostin | 0.027 | 0.823 | −0.002 | 0.990 | −0.064 | 0.596 | 0.092 | 0.450 |
Dkk-1 | −0.085 | 0.484 | −0.059 | 0.630 | 0.069 | 0.571 | −0.052 | 0.668 |
Weight | 0.881 | <0.001 | 0.783 | <0.001 | 0.529 | <0.001 | 0.635 | <0.001 |
Height | 0.884 | <0.001 | 0.750 | <0.001 | 0.508 | <0.001 | 0.628 | <0.001 |
BMI | 0.423 | <0.001 | 0.438 | <0.001 | 0.306 | 0.010 | 0.315 | 0.008 |
Fat mass | 0.358 | 0.002 | 0.425 | <0.001 | 0.111 | 0.359 | 0.419 | <0.001 |
Lean mass | 0.902 | <0.001 | 0.809 | <0.001 | 0.737 | <0.001 | 0.552 | <0.001 |
Omnivores | ||||||||
BALP | 0.067 | 0.610 | 0.090 | 0.496 | 0.040 | 0.760 | 0.009 | 0.944 |
CTX-I | 0.174 | 0.183 | 0.066 | 0.616 | 0.066 | 0.615 | 0.099 | 0.452 |
OPG | 0.087 | 0.507 | 0.080 | 0.541 | 0.092 | 0.484 | 0.071 | 0.592 |
RANKL | −0.255 | 0.049 | −0.200 | 0.125 | −0.144 | 0.388 | 0.003 | 0.984 |
OPG/sRANKL ratio | 0.221 | 0.095 | 0.179 | 0.178 | 0.099 | 0.461 | −0.013 | 0.925 |
Sclerostin | 0.080 | 0.545 | 0.118 | 0.369 | 0.107 | 0.414 | 0.222 | 0.088 |
Dkk-1 | 0.035 | 0.813 | 0.061 | 0.681 | 0.178 | 0.227 | −0.070 | 0.636 |
Weight | 0.881 | <0.001 | 0.882 | <0.001 | 0.651 | <0.001 | 0.676 | <0.001 |
Height | 0.840 | <0.001 | 0.823 | <0.001 | 0.630 | <0.001 | 0.689 | <0.001 |
BMI | 0.633 | <0.0001 | 0.647 | <0.001 | 0.479 | <0.001 | 0.438 | <0.001 |
Fat mass | 0.524 | <0.001 | 0.635 | <0.001 | 0.380 | 0.003 | 0.577 | <0.001 |
Lean mass | 0.929 | <0.001 | 0.828 | <0.001 | 0.813 | <0.001 | 0.650 | <0.001 |
Vegetarian Children | Omnivorous Children | |||||
---|---|---|---|---|---|---|
B | 95% CI | p | B | 95% CI | p | |
Dependent variable: total BMD | ||||||
CTX-I | 0.032 | 0.004–0.059 | 0.024 | −0.016 | −0.049–0.017 | 0.347 |
Dependent variable: lumbar spine BMD | ||||||
CTX-I | 0.049 | 0.019–0.079 | 0.002 | −0.006 | −0.039–0.026 | 0.699 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambroszkiewicz, J.; Chełchowska, M.; Szamotulska, K.; Rowicka, G.; Klemarczyk, W.; Strucińska, M.; Gajewska, J. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children. Nutrients 2018, 10, 183. https://doi.org/10.3390/nu10020183
Ambroszkiewicz J, Chełchowska M, Szamotulska K, Rowicka G, Klemarczyk W, Strucińska M, Gajewska J. The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children. Nutrients. 2018; 10(2):183. https://doi.org/10.3390/nu10020183
Chicago/Turabian StyleAmbroszkiewicz, Jadwiga, Magdalena Chełchowska, Katarzyna Szamotulska, Grażyna Rowicka, Witold Klemarczyk, Małgorzata Strucińska, and Joanna Gajewska. 2018. "The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children" Nutrients 10, no. 2: 183. https://doi.org/10.3390/nu10020183
APA StyleAmbroszkiewicz, J., Chełchowska, M., Szamotulska, K., Rowicka, G., Klemarczyk, W., Strucińska, M., & Gajewska, J. (2018). The Assessment of Bone Regulatory Pathways, Bone Turnover, and Bone Mineral Density in Vegetarian and Omnivorous Children. Nutrients, 10(2), 183. https://doi.org/10.3390/nu10020183