Comparison of Measurements of Bone Mineral Density in Young and Middle-Aged Adult Women in Relation to Dietary, Anthropometric and Reproductive Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Recruitment
2.2. Questionnaires
2.3. Anthropometric Evaluation
2.4. Dietary Evaluation
2.5. Physical Activity
2.6. Evaluation of Bone Mineral Density
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, C.T.; Karasik, D.; Zhou, Y.; Hsu, Y.H.; Genant, H.K.; Broe, K.E.; Lang, T.F.; Samelson, E.J.; Demissie, S.; Bouxsein, L.B.; et al. Heritability of prevalent vertebral fracture and volumetric bone mineral density and geometry at the lumbar spine in three generations of the Framingham study. J. Bone Miner. Res. 2012, 27, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Diogenes, M.E.L.; Bezerra, F.F.; Rezende, E.P.; Taveira, M.F.; Pinal, I.; Donangelo, C.M. Effect of Calcium Plus Vitamin D Supplementation During Pregnancy in Brazilian Adolescent Mothers: A Randomized, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2013, 98, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Duckham, R.L.; Baxter, A.D.G.; Johnston, J.D.; Vatanparast, H.; Cooper, D.; Kontulainen, S. Does Physical Activity in Adolescence Have Site-Specific and Sex-Specific Benefits on Young Adult Bone Size, Content, and Estimated Strength? J. Bone Miner. Res. 2014, 29, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.Y.; Jung, H.W.; Hong, H.; Kim, J.H.; Shin, C.H.; Yang, S.W.; Lee, Y.A. The role of overweight and obesity on bone health in Korean adolescents with a focus on lean and fat mass. J. Korean Med. Sci. 2017, 32, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Youngyun, S.; Miao-Shan, Y.; Shumei, S.S. Peak bone mass and patterns of change in total bone mineral density contents from childhood into young adulthood. J. Clin. Densitom. 2016, 19, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Bharathi, R. Influence of Age at Menarche on Bone Mineral Density of Rural Women. Indian J. Appl. Res. 2015, 5, 149–151. [Google Scholar]
- Cho, G.J.; Shin, J.H.; Park, H.T.; Kim, T.; Hur, J.Y.; Kim, S.H. Adolescent pregnancy is associated with osteoporosis in postmenopausal women. Menopause 2012, 19, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Yüce, T.; Kalafat, E.; Koc, A. Adolescent Pregnancy: A Determinant of Bone Mineral Density in Peri-Menopausal Women? Maturitas 2015, 82, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Lebel, E.; Mishukov, Y.; Babchenko, L.; Samueloff, A.; Zimran, A.; Elstein, D. Bone Mineral Density in Gravida: Effect of Pregnancies and Breast-Feeding in Women of Differing Ages and Parity. J. Osteoporos. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stieglitz, J.; Beheim, B.A.; Trumble, B.C.; Madimenos, F.C.; Kaplan, H.; Gurven, M. Low Mineral Density of a Weight-Bearing Bone Among Adult Women in a High Fertility Population. Am. J. Phys. Anthropol. 2015, 156, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Méndez, R.O.; Gallegos, A.C.; Cabrera, R.M.; Quihui, L.; Zozaya, R.; Morales, G.G.; Valencia, M.E.; Méndez, M. Bone Mineral Density Changes in Lactating Adolescent Mothers During the First Postpartum Year. Am. J. Hum. Biol. 2013, 25, 222–224. [Google Scholar]
- Dirección General de Comunicación Social. Available online: http://www.dgcs.unam.mx/boletin/bdboletin/2015_457.html (accessed on 31 January 2017).
- Estrategia Nacional Para la Prevención del Embarazo en Adolescentes. Available online: http://www.conapo.gob.mx/work/models/CONAPO/Resource/2441/1/images/ENAPEA_V10.pdf (accessed on 31 January 2017).
- AMAI. Available online: http://www.amai.org/ (accessed on 31 January 2017).
- World Health Organization. BMI Classification. Available online: http://apps.who.int/bmi/index.jsp?introPage=intro_3.html (accessed on 31 January 2017).
- Hernández, M.; Romieu, I.; Parra, S.; Hernández, A.; Willet, W. Validity and reproducibility of a food questionnaire to asses dietary intake of women living in Mexico City. Salud Publica Mex 1998, 40, 133–140. [Google Scholar] [CrossRef]
- Hernández, J.E.; González, l.; Rosales, E. Manual de Usuario. SNUT Sistema de Hábitos Nutricionales y Consumo de Nutrimentos; Instituto Nacional de Salud Pública: Cuernavaca, Mexico, 2003; Volume 40, pp. 133–140. [Google Scholar]
- FAO. Energy Requirements of Adults. Available online: http://www.fao.org/docrep/007/Y5686E/y5686e07.htm (accessed on 31 January 2017).
- Dietary Reference Intakes (DRIs) Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t4/?report=objectonly (accessed on 16 March 2017).
- Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Elements. Available online: https://www.ncbi.nlm.nih.gov/books/NBK56068/table/summarytables.t3/?report=objectonly (accessed on 16 March 2017).
- May, H.; Murphy, S.; Khaw, K.T. Age-associated bone loss in men and women and its relationship to weight. Age Ageing 1994, 23, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Morin, S.; Tsang, J.F.; Leslie, W.D. Weight body mass index predict bone mineral density and fractures in women aged 40 to 59 years. Osteporos Int. 2009, 20, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.K.; Chang, D.G.; Myong, J.P.; Kim, J.H.; Lee, S.J.; Lee, H.N.; Park, D.C.; Kim, C.J.; Hur, S.Y.; Park, J.S.; et al. Bone mineral density among Korean females aged 20–50 years: Influence of age at menarche (The Korea National Health and Nutrition Examination Survey 2008–2011). Osteoporos. Int. 2016, 28, 2129–2136. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Ali, M.; Al-Hadban, I.; Al-Mulhim, A.A.; El-Hassan, A.Y. Effect of parity on bone mineral denisty among postmenopausal Saudi Arabian women. Saudi Med. J. 2005, 26, 1588–1590. [Google Scholar] [PubMed]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.F.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Wlodarek, D.; Gląbska, D.; Kolota, A.; Adamczyk, P.; Czekajlo, A.; Grzeszczak, W.; Drozdzowska, B.; Pluskiewicz, W. Calcium intake and osteoporosis: The influence of calcium intake from dairy products on hip bone mineral density and fracture incidence-a population-based study in women over 55 years of age. Public Health Nutr. 2014, 17, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Sahni, S.; Broe, K.E.; Tucker, K.L.; McLean, R.R.; Kiel, D.P.; Cupples, L.A.; Hannan, M.T. Association of total protein intake with bone mineral density and bone loss in men and women from the Framingham offspring study. Public Health Nutr. 2014, 17, 2570–2576. [Google Scholar] [CrossRef] [PubMed]
- Itkonen, S.T.; Rita, H.J.; Saarnio, E.M.; Kemi, V.E.; Karp, H.J.; Kärkkäinen, U.M.; Pekkinen, M.H.; Laitinen, E.K.; Risteli, J.; Koivula, M.K.; et al. Dietary phosphorus intake is negatively associated with bone formation among women and positively associated with somen bone traits among men—A cross-sectional study in middle-aged Caucasians. Nutr. Res. 2017, 37, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Popp, K.L.; Hughes, J.M.; Martinez-Betancourt, A.; Scott, M.; Turkington, V.; Caksa, S.; Guerriere, K.L.; Ackerman, K.E.; Xu, C.; Unnikrishnan, G.; et al. Bone mass, microarchitecture and strength are influenced by/race ethnicity in young adult men and women. Bone 2017, 103, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Abrams, S.; Dawson-Hughes, B.; Looker, A.; Marcus, R.; Matkovic, V.; Weaver, C. Peak bone mass. Osteoporos. Int. 2000, 11, 985–1009. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzoni, M.; Girasole, G.; Bertoldo, F.; Bianchi, G.; Cepollaro, C.; Del Puente, A.; Giannini, S.; Gonelli, S.; Maggio, D.; Marcocci, C.; et al. Definition of a population-specific DXA reference standard in Italian women: The densitometric Italian normative study (DINS). Osteoporos. Int. 2003, 14, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Sosa, M.; Hernández, D.; Estévez, S.; Rodríguez, M.; Limiñana, J.M.; Saavedra, P.; Láinez, P.; Diáz, P.; Betancor, P. The range of bone mineral density in healthy Canarian women by dual X-ray absorptiometry radiography and quantitative computer tomography. J. Clin. Densitom. 1998, 1, 385–393. [Google Scholar] [CrossRef]
- Berger, C.; Goltzman, D.; Langstetmo, L.; Joseph, L.; Jackson, S.; Kreiger, N.; Tenenhouse, A.; Davison, K.; Josse, R.; Prior, J.; et al. Peak bone mass from longitudinal data: Implications for the prevalence, pathophysiology, and diagnosis of osteoporosis. J. Bone Miner. Res. 2010, 25, 1948–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho-Pam, L.T.; Nguyen, D.T.; Pham, H.N.; Nguyen, N.D.; Nguyen, T.V. Reference ranges for bone mineral density and prevalence of osteoporosis in Vietnamese men and women. BMC Musculoskelet. Disord. 2011, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Yamada, M.; Hayashi, K.; Uetani, M.; Nakamura, T. Relation of early menarche to high bone mineral density. Calcif. Tissue Int. 1995, 57, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.E.; Troisi, R.; Wise, L.A.; Palmer, J.R.; Titus-Ernstoff, L.; Strohsnitter, W.C.; Hatch, E.E. Menarche, menopause, years of menstruation, and the incidence of osteoporosis: The influence of prenatal exposure to Diethylstilbestrol. J. Clin. Endocrinol. Metab. 2014, 99, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Méndez, R.O.; Valencia, M.E.; Meléndez-Torres, J.M. Edad de la menarquia en adolescentes del Noroeste de México. Arch. Latinoam. Nutr. 2011, 56, 160–164. [Google Scholar]
- Marván, M.L.; Castillo-López, L.; Alcalá-Herrera, V.; del Callejo, D. The decreasing age at menarche in Mexico. J. Pediatr. Adolesc. Gynecol. 2016, 26, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Tryniszewski, W.; Gadzicki, M.; Rysz, J.; Banach, M.; Maziarz, Z. The behavior of bone mineral density and bone metabolism index in young and menopausal women with the consideration of body mass index. Med. Sci. Monit. 2010, 16, CR342–CR347. [Google Scholar] [PubMed]
- Leonard, M.B.; Shults, J.; Wilson, B.A.; Tershakovec, A.M.; Zemel, B.S. Obesity during childhood and adolescence augments bone mass and bone dimensions. Am. J. Clin. Nutr. 2004, 80, 514–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonny, A.E.; Secic, M.; Cromer, B.A. Relationship between weight and bone mineral density in adolescents on hormonal contraception. J. Pediatr. Adolesc. Gynecol. 2011, 24, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cabello, A.; Ara, I.; González, A.; Casajús, J.A.; Vicente, G. Fat mass influence on bone mass is mediated by the independent association between lean mass and bone mass among elderly women: A cross-sectional study. Maturitas 2013, 74, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Kuroda, T.; Saito, M.; Shiraki, M. Overweight/obesity and underweight are both risk factors for osteporosic fractures at different sites in Japanese postmenopausal women. Osteoporos. Int. 2013, 24, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Caluley, J.A.; Greendale, G.A.; Nielsen, C.; Karvonen-Gutierrez, C.; Ruppert, K.; Karlamangla, A.S. Pleitropic effects of obesity on fracture risk: The study of women’s health across the nation. J. Bone Miner. Res. 2014, 29, 2561–2570. [Google Scholar] [CrossRef] [PubMed]
- Gunn, C.A.; Weber, J.L.; Kruger, M.C. Diet, weight, cytokines and bone health in postmenopausal women. J. Nutr. Health Aging 2014, 18, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C. Role of cytokines in bone resorption. Bone 1995, 17, 63s–67s. [Google Scholar] [CrossRef]
- Neville, C.E.; Murray, L.J.; Boreham, C.A.G.; Gallagher, A.M.; Twisk, J.; Robson, P.J.; Savage, J.M.; Kemper, H.C.G.; Ralston, S.H.; Smith, D. Relationship between physical activity and bone mineral status in Young adults: The Northern Ireland Young hearts Project. Bone 2002, 30, 792–798. [Google Scholar] [CrossRef]
- Callréus, M.; McGuigan, F.; Ringsberg, K.; Ǻkesson, K. Self-reported recreational exercise combining regularity and impact is necessary to maximize bone mineral density in young adult women. Osteoporos. Int. 2012, 23, 2517–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chastin, S.F.M.; Mandrichenko, O.; Helbostadt, J.L.; Skelton, D.A. Associations between objectively-measured sedentary behaviour and physical activity with bone mineral density in adults and older adults, the NHANES study. Bone 2014, 64, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Muir, J.M.; Ye, C.; Bhandari, M.; Adachi, J.D.; Thabane, L. The effect of regular physical activity on bone mineral density in post-menopausal women aged 75 and over: A retrospective analysis from the Canadian multicentre osteoporosis study. BMC Musculoskelet. Disord. 2013, 14, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Choi, S.H.; Lim, S.; Moon, J.H.; Kim, J.H.; Kim, S.W.; Jang, H.C.; Shin, C.S. Interactions between dietary calcium intake and bone mineral density or bone geometry in a low calcium intake population (KNHANES IV 2008–2010). J. Clin. Endocrinol. Metab. 2014, 99, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Kemi, V.E.; Kärkkäinen, U.M.; Lamberg, J.E. High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy Young females. Br. J. Nutr. 2006, 96, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Cho, S.S. Association between phosphorus intake and bone health in the NHANES population. Nutr. J. 2015, 14, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Recker, R.R.; Davies, K.M.; Hinders, S.M.; Heaney, R.P.; Stegman, M.R.; Kimmel, D.B. Bone gain in young adult women. JAMA 1992, 268, 2403–2408. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-M.; Kim, G.W.; Yim, H.W.; Paek, Y.J.; Lee, K.-S. Association between dietary fat intake and bone mineral density in Korean adults: Data from Korea National Health and Nutrition Examination Survey IV (2008–2009). Osteoporos. Int. 2015, 26, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Parhami, F.; Jackson, S.M.; Tintut, Y.; Le, V.; Balucan, J.P.; Territo, M.; Demer, L.L. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J. Bone Miner. Res. 1999, 14, 2067–2078. [Google Scholar] [CrossRef] [PubMed]
- McTiernan, A.; Wactawski-Wende, J.; Wu, L.; Rodabough, R.J.; Watts, N.B.; Tylavsky, F.; Freeman, R.; Hendrix, S.; Jackson, R. Low-fat, increased fruit, vegetable, and grain dietary pattern, fractures, and bone mineral density: The women’s health initiative dietary modification trial1-3. Am. J. Clin. Nutr. 2009, 89, 1864–1876. [Google Scholar] [CrossRef] [PubMed]
Variable | G1 (n = 9) | G2 (n = 15) | G3 (n = 16) | |||
---|---|---|---|---|---|---|
Initial | Current | Initial | Current | Initial | Current | |
Age (years) | 18 ± 4.7 | 29 ± 4.6 | 19 ± 3.4 | 30 ± 3.5 | 22 ± 5.4 | 33 ± 5.3 |
Age at menarche (years) | 11.7 ± 1.3 | 11.7 ± 1.3 | 13.1 ± 0.8 | 13.1 ± 0.8 | 12.1 ± 1.1 | 12.1 ± 1.1 |
Number of children | - | - | 1 | 1–4 | - | 1–4 |
BMI | 20.4 ± 1.7 | 23.1 ± 3.8 * | 22.6 ± 2.1 | 25.9 ± 4.02 *,† | 21.5 ± 2.4 | 25.9 ± 5.2 *,† |
Low weight | 11.2% | 0% | 7.1% | 7.1% | 18.7% | 0% |
Normal | 88.8% | 77.7% | 78.5% | 28.5% | 75% | 56.2% |
Overweight | 0% | 22.3% | 14.4% | 50% | 6.3% | 31.2% |
Obesity I | 0% | 0% | 0% | 14.4% | 0% | 0% |
Obesity II | 0% | 0% | 0% | 0% | 0% | 12.6% |
Breastfeeding (months) | - | - | 6.3 ± 5.12 | 6.3 ± 3.7 | - | 6.5 ± 4.7 |
Protein (g/day) | 90.41 ± 22.7 | 83.78 ± 43.7 | 92.1 ± 40.9 | 81.3 ± 31.1 | 79 ± 25.7 | 77.9 ± 37.7 |
Phosphorus (mg/day) | 1394.8 ± 392 | 1320.3 ± 765 | 1423.3 ± 656 | 1114.2 ± 364 | 1237.4 ± 423 | 1162.9 ± 160 |
Calcium (mg/day) | 927.16 ± 435 | 608.5 ± 284 * | 947.75 ± 511 | 572.76 ± 220 * | 781.3 ± 309 | 554.8 ± 64.1 * |
Fat (mg/day) | 105.07 ± 14.64 | 67.56 ± 20.71 * | 103.33 ± 50.99 | 75.65 ± 35.87 | 91.10 ± 30.92 | 86 ± 51.58 |
Variable | Initial | Current | ||||||
---|---|---|---|---|---|---|---|---|
G1 | G2 | G3 | p1 | G1 | G2 | G3 | p2 | |
LS BMD | 1.10 ± 0.03 | 1.12 ± 0.02 | 1.08 ± 0.02 | 0.58 | 1.15 ± 0.04 b | 1.27 ± 0.03 a | 1.13 ± 0.03 b | 0.006 |
FN BMD | 1.04 ± 0.03 | 1.02 ± 0.03 | 0.99 ± 0.02 | 0.55 | 1.03 ± 0.03 a,b | 1.07 ± 0.02 a | 0.96 ± 0.02 b | 0.02 |
TF BMD | 1.02 ±0.03 | 1.00 ± 0.02 | 1.00 ± 0.02 | 0.81 | 1.03 ± 0.04 a,b | 1.07 ± 0.03 a | 0.96 ± 0.03 b | 0.03 |
Variable | Bone Region | G1 | G2 | G3 | |||
---|---|---|---|---|---|---|---|
r | p | r | p | r | p | ||
Age at menarche | FN | −0.8 | 0.001 * | −0.1 | 0.5 | −0.3 | 0.1 † |
Age at menarche | TF | −0.8 | 0.006 * | −0.3 | 0.2 | −0.1 | 0.4 † |
BMI | LS | −0.2 | 0.50 | 0.6 | 0.01 * | 0.1 | 0.4 † |
BMI | FN | −0.3 | 0.40 | 0.6 | 0.008 * | 0.1 | 0.5 † |
BMI | TF | −0.02 | 0.91 | 0.7 | 0.004 * | 0.4 | 0.1 † |
Group (n) | Region Measured | Variable | β Crude | p | β Adjusted | p |
---|---|---|---|---|---|---|
G1 (9) | FN | Age at menarche (years) | −0.0755 a | 0.0016 * | ||
Total (39) | FN | Age at menarche (years) | −0.0307 | 0.0568 | −0.0346 b | 0.0145 * |
BMI (kg/m2) | 0.0050 | 0.2439 | 0.0098 c | 0.0125 * | ||
Years of age | −0.0091 | 0.0218 * | −0.0126 d | 0.0011 * |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Méndez-Gallegos, E.; Caire-Juvera, G.; Astiazarán-García, H.; Méndez-Estrada, R.O. Comparison of Measurements of Bone Mineral Density in Young and Middle-Aged Adult Women in Relation to Dietary, Anthropometric and Reproductive Variables. Nutrients 2018, 10, 1669. https://doi.org/10.3390/nu10111669
Méndez-Gallegos E, Caire-Juvera G, Astiazarán-García H, Méndez-Estrada RO. Comparison of Measurements of Bone Mineral Density in Young and Middle-Aged Adult Women in Relation to Dietary, Anthropometric and Reproductive Variables. Nutrients. 2018; 10(11):1669. https://doi.org/10.3390/nu10111669
Chicago/Turabian StyleMéndez-Gallegos, Eloy, Graciela Caire-Juvera, Humberto Astiazarán-García, and Rosa O. Méndez-Estrada. 2018. "Comparison of Measurements of Bone Mineral Density in Young and Middle-Aged Adult Women in Relation to Dietary, Anthropometric and Reproductive Variables" Nutrients 10, no. 11: 1669. https://doi.org/10.3390/nu10111669
APA StyleMéndez-Gallegos, E., Caire-Juvera, G., Astiazarán-García, H., & Méndez-Estrada, R. O. (2018). Comparison of Measurements of Bone Mineral Density in Young and Middle-Aged Adult Women in Relation to Dietary, Anthropometric and Reproductive Variables. Nutrients, 10(11), 1669. https://doi.org/10.3390/nu10111669