Does a High Sugar High Fat Dietary Pattern Explain the Unequal Burden in Prevalence of Type 2 Diabetes in a Multi-Ethnic Population in The Netherlands? The HELIUS Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measures and Definitions
2.2.1. The HSHF Dietary Pattern
2.2.2. Reduced Rank Regression
2.2.3. Type 2 Diabetes
2.2.4. Ethnicity
2.2.5. Covariates
2.2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Key Findings
4.2. Discussion of Key Findings
4.3. Strengths and Limitations
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Factor 1 | Load |
---|---|
HSHF Dietary Pattern | |
Chocolates, sweets and pastries | 0.29 |
Red meat | 0.26 |
Sugar, honey and jam * | 0.23 |
High-fat dairy products | 0.23 |
Fried potatoes | 0.2 |
Creamy sauces | 0.2 |
Savory snacks ** | 0.19 |
Potatoes | 0.19 |
Sugar sweetened beverages * | 0.18 |
Fast foods | 0.18 |
Pasta | 0.18 |
Nuts and seeds | 0.18 |
Processed meat | 0.17 |
Natural fruit juices | 0.17 |
High-fiber bread products | 0.17 |
Butter (spread and for cooking) | 0.16 |
Low-fat dairy products | 0.16 |
Chicken | 0.16 |
Low-fiber bread products | 0.15 |
Oil fat (not olive oil) | 0.14 |
Eggs | 0.13 |
High-fat margarine | 0.13 |
Legumes | 0.13 |
Soups | 0.13 |
Other sauces | 0.13 |
Coffee and tea | 0.13 |
Olive oil | 0.12 |
Peanut butter | 0.12 |
Savory tomato sauces | 0.11 |
Low-fat margarine | 0.11 |
Vegetables | 0.1 |
Rice and noodles | 0.1 |
Organ meat | 0.1 |
Fruit | 0.1 |
Breakfast drinks | 0.09 |
Lean fish and crustaceans | 0.08 |
Alcoholic beverages | 0.08 |
Fatty fish | 0.08 |
Ayran | 0.07 |
Olives | 0.07 |
Borek and pogaca | 0.07 |
Filled grape leaves | 0.06 |
Roti | 0.05 |
Pom | 0.05 |
Light beverages | 0.04 |
Vegetarian products | 0.04 |
Avocado | 0.03 |
Couscous | 0.03 |
Moroccan pancakes | 0.02 |
Soy dairy products | 0.01 |
Water | −0.01 |
Appendix B
Cases of T2D | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | |
---|---|---|---|---|---|---|
PR (95% CI) | PR (95% CI) | PR (95% CI) | PR (95% CI) | PR (95% CI) | ||
Stratified subgroup analyses (total population) | ||||||
Dutch (high vs. low score) | 70 | 1.26 (0.74, 2.13) | 1.33 (0.78, 2.26) | 1.38 (0.81, 2.37) | 1.28 (0.75, 2.17) | 1.42 (0.71, 2.84) |
SA Surinamese (high vs. low score) | 222 | 1.20 (0.90, 1.60) | 1.18 (0.88, 1.58) | 1.15 (0.86, 1.54) | 1.18 (0.88, 1.59) | 1.07 (0.70, 1.62) |
African Surinamese (high vs. low score) | 153 | 0.91 (0.65, 1.29) | 0.95 (0.68, 1.35) | 0.94 (0.67, 1.34) | 0.94 (0.66, 1.34) | 0.91 (0.53, 1.56) |
Turkish (high vs. low score) | 60 | 0.95 (0.57, 1.60) | 0.96 (0.57, 1.62) | 0.96 (0.57, 1.63) | 1.04 (0.61, 1.78) | 1.03 (0.41, 2.58) |
Moroccan (high vs. low score) | 89 | 0.71 (0.45, 1.10) | 0.70 (0.45, 1.09) | 0.69 (0.44, 1.07) | 0.70 (0.44, 1.09) | 0.77 (0.39, 1.54) |
Stratified subgroup analyses (only newly diagnosed) | ||||||
Dutch (high vs. low score) | 24 | 1.79 (0.69, 4.62) | 1.85 (0.71, 4.82) | 1.86 (0.70, 4.91) | 1.64 (0.62, 4.32) | 2.48 (0.72, 8.57) |
SA Surinamese (high vs. low score) | 44 | 1.79 (0.96, 3.36) | 1.72 (0.91, 3.23) | 1.61 (0.85, 3.05) | 1.66 (0.88, 3.16) | 1.37 (0.55, 3.45) |
African Surinamese (high vs. low score) | 46 | 1.27 (0.69, 2.36) | 1.20 (0.64, 2.24) | 1.18 (0.63, 2.22) | 1.11 (0.58, 2.12) | 0.62 (0.23, 1.65) |
Turkish (high vs. low score) | 21 | 0.98 (0.41, 2.32) | 0.95 (0.40, 2.27) | ** | ** | ** |
Moroccan (high vs. low score) | 15 | 0.73 (0.25, 2.08) | 0.64 (0.23, 1.83 | 0.60 (0.21, 1.74) | 0.62 (0.21, 1.80) | 0.52 (0.10, 2.79) |
References
- Internation Diabetes Fedaration. Idf Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015; Available online: http://www.diabetesatlas.org (accessed on 20 November 2017).
- Meeks, K.A.C.; Freitas-Da-Silva, D.; Adeyemo, A.; Beune, E.J.A.J.; Modesti, P.A.; Stronks, K.; Zafarmand, M.H.; Agyemang, C. Disparities in type 2 diabetes prevalence among ethnic minority groups resident in Europe: A systematic review and meta-analysis. Intern. Emerg. Med. 2016, 11, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Snijder, M.B.; Agyemang, C.; Peters, R.J.; Stronks, K.; Ujcic-Voortman, J.K.; van Valkengoed, I.G.M. Case finding and medical treatment of type 2 diabetes among different ethnic minority groups: The helius study. J. Diabetes Res. 2017, 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Research, Information, Statistics, Municipality of Amsterdam. Population to Migrationbackground. Available online: https://www.ois.amsterdam.nl/pdf/2017%20jaarboek%20amsterdam%20in%20cijfers.pdf (accessed on 20 November 2017).
- Alhazmi, A.; Stojanovski, E.; McEvoy, M.; Garg, M.L. The association between dietary patterns and type 2 diabetes: A systematic review and meta-analysis of cohort studies. J. Hum. Nutr. Dietet. 2014, 27, 251–260. [Google Scholar] [CrossRef] [PubMed]
- De Boer, E.; Brants, H.; Beukers, M.; Ocke, M.; Dekker, L.; Nicolaou, M.; Snijder, M. Voeding Van Marokkaanse, Turkse, Surinaamse En Autochtone Nederlanders in Amsterdam; 2015-0099; RIVM (National Institute for Public Health and the Environment) Rapport: Bilthoven, The Netherlands, 2015. [Google Scholar]
- Hu, E.A.; Pan, A.; Malik, V.; Sun, Q. White rice consumption and risk of type 2 diabetes: Meta-analysis and systematic review. BMJ 2012, 344, e1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnard, N.; Levin, S.; Trapp, C. Meat consumption as a risk factor for type 2 diabetes. Nutrients 2014, 6, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yu, M.; Fang, L.; Hu, R.-Y. Association between sugar-sweetened beverages and type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2015, 6, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Steinbrecher, A.; Erber, E.; Grandinetti, A.; Kolonel, L.N.; Maskarinec, G. Meat consumption and risk of type 2 diabetes: The multiethnic cohort. Public Health Nutr. 2011, 14, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.R.; Boggs, D.A.; Krishnan, S.; Hu, F.B.; Singer, M.; Rosenberg, L. Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women. Arch. Intern. Med. 2008, 168, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Zaroudi, M.; Yazdani Charati, J.; Mehrabi, S.; Ghorbani, E.; Norouzkhani, J.; Shirashiani, H.; Nikzad, B.; Seiedpour, M.; Izadi, M.; Mirzaei, M.; et al. Dietary patterns are associated with risk of diabetes type 2: A population-based case-control study. Arch. Iran Med. 2016, 19, 166–172. [Google Scholar] [PubMed]
- Katona, S.J. The baby food hypothesis: An explanation why high fat high sugar (HFHS) mixtures are so addictive, providing novel treatment strategies to control appetite in obesity and anorexia. Med. Hypotheses 2016, 88, 33. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, Z.; Ghiasvand, R.; Salehi-Abargouei, A. Empirically derived dietary patterns and incident type 2 diabetes mellitus: A systematic review and meta-analysis on prospective observational studies. Public Health Nutr. 2015, 19, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Abiemo, E.E.; Alonso, A.; Nettleton, J.A.; Steffen, L.M.; Bertoni, A.G.; Jain, A.; Lutsey, P.L. Relationships of the mediterranean dietary pattern with insulin resistance and diabetes incidence in the multi-ethnic study of atherosclerosis (MESA). Br. J. Nutr. 2013, 109, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Steffen, L.M.; Ni, H.; Liu, K.; Jacobs, D.R., Jr. Dietary patterns and risk of incident type 2 diabetes in the multi-ethnic study of atherosclerosis (mesa). Diabetes Care 2008, 31, 1777–1782. [Google Scholar] [CrossRef] [PubMed]
- Erber, E.; Hopping, B.N.; Grandinetti, A.; Park, S.Y.; Kolonel, L.N.; Maskarinec, G. Dietary patterns and risk for diabetes: The multiethnic cohort. Diabetes Care 2010, 33, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-S.; Park, S.-Y.; Grandinetti, A.; Holck, P.S.; Waslien, C. Major dietary patterns, ethnicity, and prevalence of type 2 diabetes in rural Hawaii. Nutrition 2008, 24, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Stronks, K.; Snijder, M.B.; Peters, R.J.; Prins, M.; Schene, A.H.; Zwinderman, A.H. Unravelling the impact of ethnicity on health in Europe: The HELIUS study. BMC Public Health 2013, 13, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Willett, W. Nutritional Epidemiology; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Vermeulen, E.; Stronks, K.; Snijder, M.B.; Schene, A.H.; Lok, A.; de Vries, J.H.; Visser, M.; Brouwer, I.A.; Nicolaou, M. A combined high-sugar and high-saturated-fat dietary pattern is associated with more depressive symptoms in a multi-ethnic population: The helius (healthy life in an urban setting) study. Public Health Nutr. 2017, 20, 2374–2382. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Stone, M.; Peters, J.; Davies, M.; Khunti, K. The prevalence of co-morbid depression in adults with type 2 diabetes: A systematic review and meta-analysis. Diabet. Med. 2006, 23, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Beukers, M.H.; Dekker, L.H.; de Boer, E.J.; Perenboom, C.W.; Meijboom, S.; Nicolaou, M.; de Vries, J.H.; Brants, H.A. Development of the helius food frequency questionnaires: Ethnic-specific questionnaires to assess the diet of a multiethnic population in The Netherlands. Eur. J. Clin. Nutr. 2015, 69, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Dam, R.; Nicolau, M.; Stronks, K. Voedingspatroon van surinaamse amsterdammers in kaart gebracht. Groente-en fruitconsumptie lager dan verwacht. Nederlands Tijdschrift voor Diëtisten 2005, 60, 98–102. [Google Scholar]
- Weikert, C.; Schulze, M.B. Evaluating dietary patterns: The role of reduced rank regression. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Hryhorczuk, C.; Sharma, S.; Fulton, S.E. Metabolic disturbances connecting obesity and depression. Front. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, J.; van Erp-Baart, M.; Brants, H.; Hulshof, K.; Löwik, M. Nutrition and health among migrants in The Netherlands. Public Health Nutr. 2001, 4, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Miki, T.; Kochi, T.; Kuwahara, K.; Eguchi, M.; Kurotani, K.; Tsuruoka, H.; Ito, R.; Kabe, I.; Kawakami, N.; Mizoue, T. Dietary patterns derived by reduced rank regression (RRR) and depressive symptoms in Japanese employees: The furukawa nutrition and health study. Psychiatry Res. 2015, 229, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Dekker, L.H.; van Dam, R.M.; Snijder, M.B.; Peters, R.J.; Dekker, J.M.; De Vries, J.H.; de Boer, E.J.; Schulze, M.B.; Stronks, K.; Nicolaou, M. Comparable dietary patterns describe dietary behavior across ethnic groups in The Netherlands, but different elements in the diet are associated with glycated hemoglobin and fasting glucose concentrations. J. Nutr. 2015, 145, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Hoffmann, K.; Kroke, A.; Boeing, H. An approach to construct simplified measures of dietary patterns from exploratory factor analysis. Br. J. Nutr. 2003, 89, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Word Health Organization. WHO Collaborating Centre for Drug Statistics Methodology: Atc Classification Index with DDDs and Guidelines for Atc Classification and DDD Assignment; Norwegian Institute of Public Health: Oslo, Norway, 2006. [Google Scholar]
- World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Stronks, K.; Kulu-Glasgow, I.; Agyemang, C. The utility of ‘country of birth’ for the classification of ethnic groups in health research: The dutch experience. Ethn. Health 2009, 14, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Choenni, C.; Harmsen, C. Place of birth and ethnic composition of the surinamese in The Netherlands. Bevolkingtrends 2007, 1, 74–78. [Google Scholar]
- Cameron, A.J.; Magliano, D.J.; Soderberg, S. A systematic review of the impact of including both waist and hip circumference in risk models for cardiovascular diseases, diabetes and mortality. Obes. Rev. 2013, 14, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, K.; Shaw, J. International diabetes federation: The idf consensus worldwide definition of the metabolic syndrome. Diabetes Voice 2005, 50, 31–33. [Google Scholar]
- Snijder, M.B.; Zimmet, P.Z.; Visser, M.; Dekker, J.M.; Seidell, J.C.; Shaw, J.E. Independent association of hip circumference with metabolic profile in different ethnic groups. Obes. Res. 2004, 12, 1370–1374. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, M.; Gademan, M.G.; Snijder, M.B.; Engelbert, R.H.; Dijkshoorn, H.; Terwee, C.B.; Stronks, K. Validation of the squash physical activity questionnaire in a multi-ethnic population: The helius study. PLoS ONE 2016, 11, e0161066. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.R.; Deddens, J.A. A comparison of two methods for estimating prevalence ratios. BMC Med. Res. Methodol. 2008, 8. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.J.; Hirakata, V.N. Alternatives for logistic regression in cross-sectional studies: An empirical comparison of models that directly estimate the prevalence ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akin, J.S.; Guilkey, D.K.; Popkin, B.M.; Fanelli, M. Cluster analysis of food consumption patterns. J. Am. Dietet. Assoc. 1986, 86, 616–624. [Google Scholar]
- Montonen, J.; Knekt, P.; Harkanen, T.; Jarvinen, R.; Heliovaara, M.; Aromaa, A.; Reunanen, A. Dietary patterns and the incidence of type 2 diabetes. Am. J. Epidemiol. 2005, 161, 219–227. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, S.A.; Mishra, G.D.; Brunner, E.J. Dietary patterns, insulin resistance, and incidence of type 2 diabetes in the Whitehall II study. Diabetes Care 2008, 31, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Brunner, E.J.; Mosdol, A.; Witte, D.R.; Martikainen, P.; Stafford, M.; Shipley, M.J.; Marmot, M.G. Dietary patterns and 15-years risks of major coronary events, diabetes, and mortality. Am. J. Clin. Nut. 2008, 87, 1414–1421. [Google Scholar]
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; Nöthlings, U.; Boeing, H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Fang, J.C.; Gao, Z.H.; Zhang, C.; Xie, S.Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J. Diabetes Investig. 2016, 7, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Rimm, E.B.; Spiegelman, D.; Rifai, N.; Tofler, G.H.; Willett, W.C.; Hu, F.B. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am. J. Clin. Nutr. 2001, 73, 61–67. [Google Scholar] [PubMed]
- Heraclides, A.; Chandola, T.; Witte, D.R.; Brunner, E.J. Psychosocial stress at work doubles the risk of type 2 diabetes in middle-aged women. Diabetes Care 2009, 32, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, C.; Discacciati, A.; Akesson, A.; Orsini, N.; Brismar, K.; Wolk, A. Changes in fruit, vegetable and juice consumption after the diagnosis of type 2 diabetes: A prospective study in men. Br. J. Nutr. 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
n = 4694 | |||||
---|---|---|---|---|---|
Dutch (n = 1431) | South-Asian Surinamese (n = 992) | African Surinamese (n = 978) | Turkish (n = 586) | Moroccan (n = 707) | |
Age (years) (median, [Q1, Q3]) | 50.0 (38.0, 60.0) | 49.0 (41.0, 57.0) | 52.0 (44.0, 58.0) | 43.0 (34.0, 50.0) | 41.0 (32.0, 50.0) |
Women, n (%) | 798 (55.8) | 589 (59.4) | 658 (67.3) | 311 (53.1) | 439 (62.1) |
Education level, n (%) * | |||||
1 | 30 (2.1) | 127 (12.8) | 40 (4.1) | 141 (24.1) | 188 (26.7) |
2 | 208 (14.6) | 328 (33.2) | 322 (33.1) | 143 (24.4) | 136 (19.3) |
3 | 307 (21.5) | 276 (27.9) | 333 (34.2) | 175 (29.9) | 241 (34.2) |
4 | 882 (61.8) | 258 (26.1) | 279 (28.6) | 126 (21.5) | 140 (19.9) |
Family history of T2D, n (%) | |||||
Yes | 287 (20.1) | 587 (59.2) | 384 (39.3) | 246 (42.0) | 346 (48.9) |
No | 919 (64.2) | 253 (25.5) | 372 (38.0) | 216 (36.9) | 232 (32.8) |
Unknown | 225 (15.7) | 152 (15.3) | 222 (22.7) | 124 (21.2) | 232 (32.8) |
Achieving norm for PA, n (%) ** | 1068 (74.6) | 515 (51.0) | 587 (60.1) | 267 (45.6) | 332 (47.0) |
Total energy intake (kcal/d), mean ± SD | 2171 ± 608 | 1967 ± 668 | 2040 ± 715 | 2144 ± 733 | 2050 ± 723 |
Smoking, n (% yes) | 324 (22.7) | 230 (23.2) | 222 (22.8) | 168 (28.7) | 75 (10.6) |
Alcohol, n (% yes) | 1322 (92.4) | 542 (54.9) | 641 (65.7) | 178 (30.5) | 53 (7.5) |
BMI (kg/m2), mean ± SD | 24.8 ± 4.0 | 26.5 ± 4.8 | 28.1 ± 5.5 | 28.3 ± 5.1 | 27.6 ± 5.0 |
Waist circumference (cm), mean ± SD | 89.5 ± 12.5 | 91.7 ± 12.6 | 93.5 ± 13.5 | 93.8 ± 12.8 | 92.8 ± 13.0 |
Hip circumference (cm), mean ± SD | 100.7 ± 8.1 | 98.8 ± 9.2 | 103.9 ± 11.0 | 103.5 ± 11.0 | 104.1 ± 9.8 |
Diabetes, n (% yes) | 70 (4.9) | 222 (22.4) | 153 (15.6) | 60 (10.2) | 89 (12.6) |
Dutch (n = 1431) | South-Asian Surinamese (n = 992) | African Surinamese (n = 978) | Turkish (n = 586) | Moroccan (n = 707) | |
---|---|---|---|---|---|
Mean HSHF score, mean ± SD | 0.20 ± 1.2 | −0.57 ± 1.1 | −0.41 ± 1.2 | −0.08 ± 1.3 | −0.26 ± 1.3 |
Dichotomous HSHF score, High adherence *, (%) | 911 (63.7) | 350 (35.5) | 419 (42.8) | 317 (54.1) | 350 (49.5) |
Single foods ** (g/day) (median, [Q1, Q3]) | |||||
Sugar sweetened beverages | 14.3 (0.0, 80.5) | 46.4 (7.1, 177.7) | 64.3 (7.1, 244.6) | 13.4 (0.0, 67.9) | 17.9 (0.0, 93.5) |
Sugar/honey/jam | 8.6 (1.6, 21.8) | 9.6 (2.4, 23.0) | 10.7 (2.3, 24.8) | 14.4 (4.3, 29.8) | 15.0 (4.8, 32.0) |
Chocolates/sweets/cakes/cookies | 30.8 (17.1, 50.5) | 15.5 (6.7, 30.1) | 15.5 (5.5, 30.8) | 20.8 (8.6, 42.2) | 17.2 (6.9, 34.4) |
High fat dairy products | 46.0 (21.3, 94.3) | 17.5 (3.3, 44.6) | 18.6 (3.9, 50.3) | 54.5 (24.1, 103.4) | 64.3 (23.9, 142.9) |
Red meat | 37.1 (20.0, 58.0) | 11.4 (1.5, 31.3) | 22.5 (7.5, 45.7) | 53.6 (28.6, 100.6) | 40.2 (22.3, 75.9) |
Pasta | 34.3 (15.7, 68.6) | 14.4 (0.0, 28.6) | 15.2 (2.1, 28.6) | 21.4 (9.8, 45.7) | 24.3 (8.6, 45.7) |
Potatoes | 40.0 (20.0, 76.6) | 14.6 (5.0, 35.9) | 13.6 (2.6, 40.0) | 20.2 (8.1, 40.0) | 32.3 (12.5, 64.6) |
Fried potatoes | 6.9 (0.0, 13.9) | 2.0 (0.0, 5.5) | 5.4 (0.0, 15.2) | 8.7 (1.7, 22.3) | 8.9 (1.3, 25.8) |
Fast food | 13.4 (0.0, 33.5) | 0.0 (0.0, 6.7) | 0.0 (0.0, 3.3) | 13.4 (0.0, 31.4) | 6.5 (0.0, 21.0) |
Savoury snacks | 16.9 (7.5, 31.1) | 37.5 (16.2, 65.5) | 30.4 (12.2, 59.2) | 10.9 (3.2, 24.9) | 12.2 (3.9, 26.2) |
Mayonnaise and similar sauces | 3.5 (0.8, 7.5) | 2.0 (0.0, 5.5) | 2.9 (0.8, 6.6) | 0.0 (0.0, 2.8) | 0.2 (0.0, 4.3) |
Simplified HSHF dietary pattern score, mean ± SD | 0.82 ± 4.45 | −1.38 ± 4.30 | −0.78 ± 4.57 | 0.76 ± 5.26 | 0.74 ± 5.10 |
Dichotomous simplified HSHF dietary pattern score, high adherence *, (%) | 844 (59.0) | 366 (36.9) | 404 (41.3) | 327 (55.8) | 406 (57.4) |
Cases | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
PR (95% CI) | PR (95% CI) | PR (95% CI) | PR (95% CI) | PR (95% CI) | |
High vs. low score (total population) | |||||
94 | 1.01 (0.85, 1.21) | 1.03 (0.86, 1.22) | 1.03 (0.86, 1.22) | 1.05 (0.88, 1.25) | 1.04 (0.80, 1.35) |
High vs. low score (only newly diagnosed) | |||||
150 | 1.34 (0.95, 1.89) | 1.34 (0.95, 1.88) | 1.34 (0.94, 1.88) | 1.33 (0.94, 1.89) | 1.09 (0.65, 1.82) |
Model 3 | Model 4 | Model 5 | |
---|---|---|---|
PR * (95% CI) | PR * (95% CI) | PR * (95% CI) | |
Total population | |||
Simplified pattern score (high vs. low score) | 0.85 (0.71, 1.02) | 0.85 (0.71, 1.02) | 0.77 (0.62, 0.96) |
SSBs | 0.79 (0.70, 0.90) | 0.81 (0.72, 0.92) | 0.70 (0.70, 0.91) |
Sugar/honey/jam | 0.76 (0.68, 0.85) | 0.81 (0.72, 0.90) | 0.78 (0.70, 0.88) |
Chocolates/sweets/pastries | 0.83 (0.73, 0.94) | 0.86 (0.76, 0.97) | 0.83 (0.73, 0.94) |
High fat dairy products | 0.93 (0.85, 1.03) | 0.97 (0.88, 1.06) | 0.96 (0.87, 1.06) |
Red meat | 1.02 (0.93, 1.12) | 0.98 (0.89, 1.08) | 0.97 (0.88, 1.08) |
Pasta | 0.95 (0.84, 1.06) | 0.95 (0.85, 1.07) | 0.94 (0.84, 1.06) |
Potatoes | 1.00 (0.92, 1.08) | 1.00 (0.91, 1.08) | 0.99 (0.91, 1.08) |
Fried potatoes | 1.05 (0.97, 1.15) | 1.05 (0.97, 1.15) | 1.05 (0.96, 1.15) |
Fast foods | 0.93 (0.82, 1.06) | 0.93 (0.82, 1.05) | 0.92 (0.81, 1.05) |
Savoury snacks | 1.06 (0.99, 1.14) | 1.05 (0.97, 1.13) | 1.05 (0.97, 1.14) |
Mayonnaise and similar sauces | 1.03 (0.94, 1.13) | 1.00 (0.91, 1.09) | 1.00 (0.91, 1.09) |
Only newly diagnosed | |||
Simplified pattern score (high vs. low score) | 1.02 (0.72, 1.46) | 1.06 (0.74, 1.51) | 0.82 (0.53, 1.27) |
SSBs | 0.97 (0.80, 1.17) | 0.99 (0.82, 1.19) | 0.93 (0.76, 1.14) |
Sugar/honey/jam | 0.96 (0.81, 1.14) | 1.03 (0.88, 1.20) | 0.97 (0.82, 1.16) |
Chocolates/sweets/pastries | 0.88 (0.71, 1.10) | 0.91 (0.74, 1.13) | 0.82 (0.65, 1.04) |
High fat dairy products | 0.90 (0.74, 1.10) | 0.97 (0.80, 1.17) | 0.92 (0.74, 1.13) |
Red meat | 1.11 (0.95, 1.31) | 1.06 (0.90, 1.26) | 1.01 (0.84, 1.21) |
Pasta | 0.99 (0.80, 1.23) | 0.98 (0.79, 1.21) | 0.93 (0.74, 1.16) |
Potatoes | 0.95 (0.80, 1.12) | 0.95 (0.79, 1.13) | 0.90 (0.75, 1.09) |
Fried potatoes | 1.02 (0.85, 1.22) | 1.03 (0.86, 1.23) | 0.98 (0.81, 1.19) |
Fast foods | 1.09 (0.91, 1.31) | 1.07 (0.89, 1.29) | 1.04 (0.86, 1.26) |
Savoury snacks | 1.03 (0.89, 1.19) | 1.01 (0.87, 1.17) | 0.95 (0.81, 1.12) |
Mayonnaise and similar sauces | 1.11 (0.94, 1.30) | 1.10 (0.93, 1.30) | 1.05 (0.88, 1.26) |
Fully Adjusted Model * | Fully Adjusted Model * + HSHF Score | |
---|---|---|
PR (95% CI) | PR (95% CI) | |
Total population: 594 cases | ||
Dutch | 1.00 (ref) | 1.00 (ref) |
South-Asian Surinamese | 2.76 (2.05, 3.72) | 2.90 (2.11, 3.98) |
African Surinamese | 2.17 (1.61, 2.93) | 2.27 (1.66, 3.10) |
Turkish | 1.95 (1.31, 2.89) | 2.01 (1.34, 3.00) |
Moroccan | 2.07 (1.42, 3.04) | 2.13 (1.45, 3.14) |
Only newly diagnosed: 150 cases | ||
Dutch | 1.00 (ref) | 1.00 (ref) |
South-Asian Surinamese | 2.64 (1.51, 4.63) | 2.46 (1.36, 4.46) |
African Surinamese | 2.18 (1.29, 3.69) | 2.04 (1.17, 3.56) |
Turkish | 2.03 (1.00, 4.10) | 1.96 (0.96, 3.98) |
Moroccan | 1.25 (0.57, 2.71) | 1.20 (0.55, 2.63) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huisman, M.J.; Soedamah-Muthu, S.S.; Vermeulen, E.; Muilwijk, M.; Snijder, M.B.; Nicolaou, M.N.; Van Valkengoed, I.G.M. Does a High Sugar High Fat Dietary Pattern Explain the Unequal Burden in Prevalence of Type 2 Diabetes in a Multi-Ethnic Population in The Netherlands? The HELIUS Study. Nutrients 2018, 10, 92. https://doi.org/10.3390/nu10010092
Huisman MJ, Soedamah-Muthu SS, Vermeulen E, Muilwijk M, Snijder MB, Nicolaou MN, Van Valkengoed IGM. Does a High Sugar High Fat Dietary Pattern Explain the Unequal Burden in Prevalence of Type 2 Diabetes in a Multi-Ethnic Population in The Netherlands? The HELIUS Study. Nutrients. 2018; 10(1):92. https://doi.org/10.3390/nu10010092
Chicago/Turabian StyleHuisman, Merel J., Sabita S. Soedamah-Muthu, Esther Vermeulen, Mirthe Muilwijk, Marieke B. Snijder, Mary N. Nicolaou, and Irene G. M. Van Valkengoed. 2018. "Does a High Sugar High Fat Dietary Pattern Explain the Unequal Burden in Prevalence of Type 2 Diabetes in a Multi-Ethnic Population in The Netherlands? The HELIUS Study" Nutrients 10, no. 1: 92. https://doi.org/10.3390/nu10010092
APA StyleHuisman, M. J., Soedamah-Muthu, S. S., Vermeulen, E., Muilwijk, M., Snijder, M. B., Nicolaou, M. N., & Van Valkengoed, I. G. M. (2018). Does a High Sugar High Fat Dietary Pattern Explain the Unequal Burden in Prevalence of Type 2 Diabetes in a Multi-Ethnic Population in The Netherlands? The HELIUS Study. Nutrients, 10(1), 92. https://doi.org/10.3390/nu10010092