Soft Fruit Traceability in Food Matrices using Real-Time PCR
Abstract
:1. Introduction
2. Results and Discussion
Home Made Juice | Composition | DNA extracted/400 µL * |
---|---|---|
Pineapple | 100% pineapple | 0.063 μg |
Orange | 100% orange | 0.346 μg |
Apple | 100% apple | 1.400 μg |
Raspberry | 100% raspberry | 0.543 μg |
Redcurrant | 100% redcurrant | 0.008 μg |
Blueberry | 100% blueberry | 0.006 μg |
Strawberry | 100% strawberry | 0.043 μg |
Red Orange | 100% red orange | 0.157 μg |
Blackberry | 100% blackberry | 0.246 μg |
Juice Mixes | Composition | DNA extracted/400 µL * |
Blueberry-Orange | 70%–30% | 0.150 μg |
Blueberry-Orange | 50%–50% | 0.178 μg |
Blueberry-Orange | 30%–70% | 0.164 μg |
Pineapple-Strawberry | 70%–30% | 0.026 μg |
Pineapple-Strawberry | 50%–50% | 0.026 μg |
Pineapple-Strawberry | 30%–70% | 0.145 μg |
Redcurrant-Blueberry | 70%–30% | 0.007 μg |
Redcurrant-Blueberry | 30%–70% | 0.003 μg |
Redcurrant-Pineapple | 70%–30% | 0.027 μg |
Redcurrant-Pineapple | 30%–70% | 0.011 μg |
Strawberry-Blueberry | 70%–30% | 0.183 μg |
Strawberry-Blueberry | 30%–70% | 0.032 μg |
Orange-Strawberry | 70%–30% | 0.087 μg |
Orange-Strawberry | 30%–70% | 0.356 μg |
Commercial products | Declared Composition | DNA extracted/350 mgº |
Blackberry Yogurt | not declared | 0.025 μg |
Apple Yogurt | of 15% fruit content: 65% apple | 0.019 μg |
Strawberry Jam | 100% strawberry | 0.085 μg |
Apple/blueberry baby food | 74% apple, 15% blueberry | 0.067 μg |
Raspberry Jam | 100% raspberry | 0.125 μg |
Blueberry Jam | 100% blueberry | 0.182 μg |
Snack with Strawberry Jam | not declared | 0.107 μg |
Blackcurrant Juice | minimum 25% blackcurrant | 0.005 μg |
Soft Fruit Juice | 30% fruit content: 16% apple, 5% strawberry, 5% blackcurrant, 4% blackberry | 0.021 μg |
Blueberry/Grape Juice | 55% blueberry, 45% wine grapes | 0.002 μg |
Blackcurrant Jam | 40% blackcurrant | 0.151 μg |
Soft Fruit Yogurt | not declared | 0.046 μg |
Red Fruit Juice | 18% orange, 14% apple, 3% cranberry | 0.021 μg |
Mixed Juice | 24% blueberry | not determined |
Primer name | Sequence | Match with |
---|---|---|
rbcL1 forward | 5’-TTGGCAGCATTYCGAGTAACTCC-3’ | |
rbcL2 forward | 5’-TGGCAGCATTYCGAGTAACTC-3’ | |
rbcLA reverse | 5’-CCTTTRTAACGATCAAGRC-3’ | rbcL1 forward |
rbcLB reverse | 5’-AACCYTCTTCAAAAAGGTC-3’ | rbcL1 forward |
rbcLC reverse | 5’-TTCSGCACAAAATAMGAAACGG-3’ | rbcL1 forward |
rbcLD reverse | 5’-TAGTATTTGCDGTGAATCCC-3’ | rbcL1 forward/rbcL2 forward |
rbcLE reverse | 5’-TGATCTCCACCAGACAKACG-3’ | rbcL1 forward/rbcL2 forward |
rbcLF reverse | 5’-ATATGCCAAACRTGRATACC-3’ | rbcL1 forward/rbcL2 forward |
rbcLH reverse | 5’-ATATGCCAAACRTGRATACC-3’ | rbcL1 forward |
Name | Sequence | Melting temp. (°C ) |
---|---|---|
Orange forward | 5’-GGCACGGGTTAAGTAGATTTGC-3’ | 60.3 |
Orange reverse | 5’-TTATATGTTCGCGCTGGTATGATC-3’ | 57.1 |
Blueberry forward | 5’-CGACCTTGGCGGAAAACA-3’ | 56.0 |
Blueberry reverse | 5’-AAGTGAGTTCCCTCCACTTTCG-3’ | 60.0 |
Pineapple forward | 5’-GGAGGAGCCCGAAAAACG-3’ | 58.2 |
Pineapple reverse | 5’-TTTCCGCCTTCTCAAGCAGTT-3’ | 57.9 |
Strawberry forward | 5’-CGAAAGGGCAAGGAAAAATG-3’ | 55.3 |
Strawberry reverse | 5’-GCTCCTCCCGAGCTCATCT-3’ | 61.0 |
3. Experimental Section
3.1. Food Samples and DNA Extraction
3.2. DNA Integrity Evaluation
3.3. PCR Analysis
3.4. Sequencing Analysis
3.5. Qualitative and Quantitative Real-Time PCR
4. Conclusions
Acknowledgements
References and Notes
- Hunter, D.C.; Zhang, J.; Stevenson, L.M.; Skinner, M.A. Fruit-based functional foods II: the process for identifying potential ingredients. Int. J. Food Sci. Technol. 2008, 43, 2123–2129. [Google Scholar]
- Traill, W.B.; Arnoult, M.H.P.; Chambers, S.A.; Deaville, E.R.; Gordon, M.H.; John, P.; Jones, P.J.; Kliem, K.E.; Mortimer, S.R.; Tiffin, J.R. The potential for competitive and healthy food chains of benefit to the countryside. Trends Food Sci. Technol. 2008, 19, 248–254. [Google Scholar]
- Commission Regulation (EC) No 13/2000 on the labelling, presentation and advertising of food. Off. J. Eur. Communities 2000, L109, 29–42.
- Commission Regulation (EC) No 178/2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. Off. J. Eur. Communities 2002, L31, 1–24.
- Gardner, A.M.; Yurawecz, M.P.; Cunningham, W.C.; Diachenko, G.C.; Mazzola, E.P.; Brumley, W.C. Isolation and identification of C16 and C18 fatty acid esters of chloropropanediol in adulteration Spanish cooking oils. Bull. Environ. Contam. Toxicol. 1983, 31, 625–630. [Google Scholar]
- Novak, J.; Grausgruber-Gröger, S.; Lukas, B. DNA-based authentication of plant extracts. Food Res. Int. 2007, 40, 388–392. [Google Scholar]
- Ehlert, A.; Demmel, A.; Hupfer, C.; Busch, U.; Engel, K.-H. Simultaneous detection of DNA from 10 allergens by ligation-dependent probe amplification. Food Addit. Contam. 2009, 26, 409–418. [Google Scholar]
- Peres, B.; Barlet, N.; Loiseau, G.; Montet, D. Review of the current methods of analytical traceability allowing determination of the origin of foodstuffs. Food Control 2007, 18, 228–235. [Google Scholar]
- Patel, T. Real Juice, pure fraud. New Sci. 1994, 1926, 26–30. [Google Scholar]
- Consolandi, C.; Palmieri, L.; Severgnini, M.; Maestri, E.; Marmiroli, N.; Agrimonti, C.; Baldoni, L.; Donini, P.; De Bellis, G.; Castiglioni, B. A procedure for olive oil traceability and authenticity: DNA extraction, multiplex PCR and LDR-universal array analysis. Eur.Food Technol. 2008, 227, 1429–1438. [Google Scholar]
- Woolfe, M.; Promrose, S. Food forensics: Using DNA technology to combat misdescription and fraud. Trends Biotechnol. 2004, 22, 222–226. [Google Scholar]
- Marmiroli, N.; Peano, C.; Maestri, E. Advanced PCR techniques in identifying 369 food components. In Food Authenticity and Traceability; Lees, M., Ed.; CRC Press: Cambridge U.K., 2003; pp. 3–33. [Google Scholar]
- Scotter, M.J.; Castle, L.; Roberts, D.P.T.; MacArthur, R.; Brereton, P.A.; Hasnip, S.K.; Katz, N. Development and single-laboratory validation of an HPLC method for the determination of cyclamate sweetener in foodstuffs. Food Addit. Contam. 2009, 26, 614–622. [Google Scholar] [CrossRef]
- Reid, L.M.; O’Donnell, C.P.; Downey, G. Potential of SPME-GC and Chemometrics to detect adulteration of soft fruit purées. J. Agric. Food Chem. 2004, 52, 421–427. [Google Scholar]
- Nagy, K.; Redeuil, K.; Bertholet, R.; Steiling, H.; Kussmann, M. Quantification of anthocyanins and flavonols milk-based food products by Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2009, 81, 6347–6356. [Google Scholar]
- Ortola-Vidal, A.; Schnerr, H.; Rojmyr, M.; Lysholm, F.; Knight, A. Quantitative identification of plant genera in food products using PCR and Pyrosequencing® technology. Food Control 2007, 18, 921–927. [Google Scholar] [CrossRef]
- Lamppa, G.K.; Bendich, A.J. Changes in chloroplast DNA levels during development of pea (Pisum sativum). Plant Physiol. 1979, 64, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Zhang, D.; Wang, X.Q.; Ma, X.F.; Wang, X.R. Intragenomic and interspecific 5s rRNA sequence variation in five Asian pines. Am. J. Bot. 2003, 90, 17–24. [Google Scholar]
- Bertea, C.M.; Luciano, P.; Bossi, S.; Leoni, F.; Baiocchi, C.; Medana, C.; Azzolin, C.M.M.; Temporale, G.; Lombardozzi, M.A.; Maffei, M.E. PCR and PCR-RFLP of the 5S-rRNA-NTS region and salvinorin A analyses for the rapid and unequivocal determination of Salvia divinorum. Phytochemistry 2006, 67, 371–378. [Google Scholar] [PubMed]
- Doveri, S.; Lee, D. Development of sensitive crop-specific polymerase chain reaction assay using 5S DNA: applications in food traceability. J. Agric. Food Chem. 2007, 55, 4640–4644. [Google Scholar]
- Cox, A.V.; Bennett, M.D.; Dyer, T.A. Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5S-rRNA gene clusters and to locate such clusters in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1992, 83, 684–690. [Google Scholar]
- Sargent, D.J.; Rys, A.; Nier, S.; Simpson, D.W.; Tobutt, K.R. The development and mapping of functional markers in Fragaria and their transferability and potential for mapping in other genera. Theor. Appl. Genet. 2007, 114, 373–384. [Google Scholar] [PubMed]
- Sagi, N.; Monma, K.; Ibe, A.; Kamata, K. Comparative evaluation of three different extraction methods for rice (Oryza sativa L.) genomic DNA. J. Agric. Food Chem. 2009, 57, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Yuan, Y.; Luo, Y.; Bal, W.; Zhang, C.; Huang, K. Event-specific detection of stacked genetically modified maize Bt11 × GA21 by UP-M-PCR and Real-Time PCR. J. Agric. Food Chem. 2009, 57, 395–402. [Google Scholar]
- D’Andrea, M.; Coïsson, J.D.; Travaglia, F.; Garino, C.; Arlorio, M. Development and validation of a SYBR-Green I real-Time PCR Protocol to Detect Hazelnut (Corylus avellana L.) in foods through calibration via plasmid reference standard. J. Agric. Food Chem. 2009, 57, 11201–11208. [Google Scholar] [PubMed]
- Pafundo, S.; Agrimonti, C.; Maestri, E.; Marmiroli, N. Applicability of SCAR markers to food genomics: olive oil traceability. J. Agric. Food Chem. 2007, 55, 6052–6069. [Google Scholar]
- Chaouachi, M.; Malki, R.E.; Berard, A.; Romaniuk, M.; Laval, V.; Brunel, D.; bertheau, Y. Development of a Real-Time PCR method for the differential detection and quantification of four solanaceae in GMO analysis: potato (Solanum Tuberosum), tomato (Solanum Lycopersicum), eggplant (Solanum Melongena), and pepper (Capsicum Annuum). J. Agric. Food Chem. 2008, 56, 1818–1828. [Google Scholar] [PubMed]
- Germini, A.; Zanetti, A.; Salati, C.; Rossi, S.; Forré, C.; Schmid, S.; Marchelli, R. Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J. Agric. Food Chem. 2004, 52, 3275–3280. [Google Scholar]
- Dalla Costa, L.; Vaccari, I.; Mandolini, M.; Martinelli, L. Elaboration of a reliable strategy based on Real-Time PCR To characterize genetically modified plantlets and to evaluate the efficiency of a marker gene removal in grape (Vitis spp.). J. Agric. Food Chem. 2009, 57, 2668–2677. [Google Scholar] [CrossRef] [PubMed]
- Peano, C.; Samson, M.; Palmieri, L.; Gulli, M.; Marmiroli, N. Qualitative and quantitative evaluation of the genomic DNA extracted from GMO and non-GMO foodstuffs with four different extraction methods. J. Agric. Food Chem. 2004, 52, 6962–6968. [Google Scholar]
- Anklam, E.; Gadani, F.; Heinze, P.; Pijnenburg, H.; Van Den Eade, G. Analytical methods for detection and determination of genetically modified organisms in agricultural crops and plant-derived foods products. Eur. Food Res. Technol. 2002, 214, 3–26. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Palmieri, L.; Bozza, E.; Giongo, L. Soft Fruit Traceability in Food Matrices using Real-Time PCR. Nutrients 2009, 1, 316-328. https://doi.org/10.3390/nu1020316
Palmieri L, Bozza E, Giongo L. Soft Fruit Traceability in Food Matrices using Real-Time PCR. Nutrients. 2009; 1(2):316-328. https://doi.org/10.3390/nu1020316
Chicago/Turabian StylePalmieri, Luisa, Elisa Bozza, and Lara Giongo. 2009. "Soft Fruit Traceability in Food Matrices using Real-Time PCR" Nutrients 1, no. 2: 316-328. https://doi.org/10.3390/nu1020316
APA StylePalmieri, L., Bozza, E., & Giongo, L. (2009). Soft Fruit Traceability in Food Matrices using Real-Time PCR. Nutrients, 1(2), 316-328. https://doi.org/10.3390/nu1020316