Irrigation Performance Assessment in Table Grape Using the Reflectance-Based Crop Coefficient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Ground Data
2.3. Satellite Data
2.4. Simplified Operational Approach to Net Irrigation Requirements
2.5. Estimation of Crop Transpiration
2.6. Application of the Model in Real-Time Irrigation Advice
2.7. Estimation of Water Deficit
3. Results
3.1. Characterization of Crop Growth, Yield, and Development
3.2. Comparison of NIWR Based on Predicted and Measured Values of NDVI and ETo
3.3. Comparison of Net Irrigation Water Requirements and Irrigation Applied
3.4. Evaluation of the Internal Plant Water Status
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- ODEPA Oficina de Estudios y Políticas Agrarias. Estadísticas Agrarias. Available online: http://www.odepa.gob.cl/estadisticas/productivas/ (accessed on 1 October 2017).
- Du, T.; Kang, S.; Zhang, J.; Li, F.; Yan, B. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agric. Water Manag. 2008, 95, 659–668. [Google Scholar] [CrossRef]
- Conesa, M.R.; Torres, R.; Domingo, R.; Navarro, H.; Soto, F.; Pérez-Pastor, A. Maximum daily trunk shrinkage and stem water potential reference equations for irrigation scheduling in table grapes. Agric. Water Manag. 2016, 172, 51–61. [Google Scholar] [CrossRef]
- Mabrouk, H. The use of water potentials in irrigation management of table grape grown under semiarid climate in Tunisia. OENO One 2014, 48, 123–133. [Google Scholar] [CrossRef]
- Chaves, M.M.; Zarrouk, O.; Francisco, R.; Costa, J.M.; Santos, T.; Regalado, A.P.; Rodrigue, M.L.; Lopes, C.M. Grapevine under deficit irrigation: Hints from physiological and molecular data. Ann. Bot. 2010, 105, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.G.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1998. [Google Scholar]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Zuñiga, C.; Aspillaga, C.; Ferreyra, R.; Selles, G. Response of “Flame Seedless” vines to different levels of irrigation water in the Aconcagua Valley, Chile. Acta Hortic. 2017, 1150, 295–302. [Google Scholar] [CrossRef]
- Neale, C.; Bausch, W.; Heerman, D. Development of reflectance-based crop coefficients for corn. Trans. ASAE 1989, 32, 1891–1899. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.J.; Barnes, E.M.; Kimball, B.A. Estimating cotton evapotranspiration crop coefficients with a multiespectral vegetation index. Irrig. Sci. 2003, 22, 95–104. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.P.; Neale, C.M.U.; Mateos, L.; Kustas, W.P.; Prueger, J.H.; Anderson, M.C.; Li, F. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agric. For. Meteorol. 2009, 149, 1843–1853. [Google Scholar] [CrossRef]
- Er-Raki, S.; Rodriguez, J.C.; Garatuza-Payan, J.; Watts, C.J.; Chehbouni, A. Determination of crop evapotranspiration of table grapes in a semi-arid region of Northwest Mexico using multi-spectral vegetation index. Agric. Water Manag. 2013, 122, 12–19. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.; Calera, A.; Balbontin, C.; González-Piqueras, J. Assesing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [PubMed]
- Samani, Z.; Bawazir, A.S.; Bleiweiss, M.; Skaggs, R.; Longworth, J.; Tran, V.D.; Pinon, A. Using remote sensing to evaluate the spatial variability of evapotranspiration and crop coefficient in the lower Rio Grande Valley, New Mexico. Irrig. Sci. 2009, 28, 93–100. [Google Scholar] [CrossRef]
- Campos, I.; Balbontin, C.; González-Piqueras, J.; González-Dugo, M.P.; Neale, C.; Calera, A. Combining water balance model with evapotranspiration measurements to estimate total available water soil water in irrigated and rain-fed vineyards. Agric. Water Manag. 2016, 165, 141–152. [Google Scholar] [CrossRef]
- Odi-Lara, M.; Campos, I.; Neale, C.M.U.; Ortega-Farias, S.; Poblete-Echeverria, C.; Balbontin, C.; Calera, A. Estimating evapotranspiration of an apple orchard using a remote sensing-based soil water balance. Remote Sens. 2016, 8, 253. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Pinter, P.R., Jr.; Kimball, B.A. Wheat basal crop coefficients determined by normalized difference vegetation index. Irrig. Sci. 2005, 22, 95–104. [Google Scholar] [CrossRef]
- Kalthoff, N.; Fiebig-Wittmaack, M.; Meißner, C.; Kohler, M.; Uriarte, M.; Bischoff-Gauß, I.; Gonzales, E. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes. J. Arid Environ. 2006, 65, 420–443. [Google Scholar] [CrossRef]
- Fiebig-Wittmaack, M.; Astudillo, O.; Wheaton, E.; Wittrock, V.; Perez, C.; Ibacache, A. Climatic trends and impact of climate change on agriculture in an arid Andean valley. Clim. Chang. 2012, 111, 819–833. [Google Scholar] [CrossRef]
- Ibacache, A.; Albornoz, F.; Zurita-Silva, A. Yield responses in Flame seedless, Thompson seedless and Red Globe table grape cultivars are differentially modified by rootstocks under semi arid conditions. Sci. Hortic. (Amst.) 2016, 204, 25–32. [Google Scholar] [CrossRef]
- INIA Red Agrometeorológica del INIA. Available online: http://agromet.inia.cl/estaciones.php (accessed on 1 September 2017).
- McMaster, G.S.; Smika, D.E. Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric. For. Meteorol. 1988, 43, 1–18. [Google Scholar] [CrossRef]
- Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens. Environ. 2005, 98, 63–79. [Google Scholar] [CrossRef]
- Jensen, M.E.; Burman, R.D.; Allen, R.G. Evapotranspiration and Irrigation Water Requirements; American Society of Civil Engineers: New York, NY, USA, 1990; Volume 1. [Google Scholar]
- Torres, E.A.; Calera, A. Bare soil evaporation under high evaporation demand: A proposed modification to the FAO-56 model. Hydrol. Sci. J. 2010, 55, 303–315. [Google Scholar] [CrossRef]
- Melton, F.S.; Johnson, L.F.; Lund, C.P.; Pierce, L.L.; Michaelis, A.R.; Hiatt, S.H.; Guzman, A.; Adhikari, D.D.; Purdy, A.J.; Rosevelt, C.; et al. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1709–1721. [Google Scholar] [CrossRef]
- Hornbuckle, J. Vineyard Irrigation—Delivering Water Savings through Emerging Technology. In Final Report to Grape and Wine Research & Development Corporation; CSIRO Land and Water: Canberra, Australia, 2014; Available online: https://www.wineaustralia.com/getmedia/6e7c3e92-c36c-4685-9bf8-9039d99aa4a0/CSL-0901-Final-Report-IrriSAT (accessed on 8 December 2017).
- Campos, I.; Neale, C.; Suyker, A.; Arkebauer, T.; Gonçalves, I. Reflectance-based crop coefficients REDUX: For operational evapotranspiration estimates in the age of high producing hybrid varieties. Agric. Water Manag. 2017, 187, 140–153. [Google Scholar] [CrossRef]
- Bausch, W.C.; Neale, C.M.U. Crop coefficients derived from reflected canopy radiation—A concept. Trans. ASAE 1987, 30, 703–709. [Google Scholar] [CrossRef]
- Campos, I.; Calera, A.; Balbontin, C.; Torres, E.A.; González-Piqueras, J.; Neale, C.M.U. Basal crop coefficient from remote sensing assessment in rain-fed grapes in southeast Spain. In Remote Sensing and Hydrology; IAHS: Jackson Hole, WY, USA, 2010; Volume 352, pp. 397–400. [Google Scholar]
- Campos, I.; Villodre, J.; Carrara, A.; Calera, A. Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions. J. Hydrol. 2013, 494, 1–9. [Google Scholar] [CrossRef]
- Campos, I.; Gonzalez-Piqueras, J.; Carra, A.; Villodre, J.; Calera, A. Calibration of the soil water balance model in terms of total available water in the root zone for a continuous estimation of surface evapotranspiration in Mediterranean dehesa. J. Hydrol. 2016, 534, 427–439. [Google Scholar] [CrossRef]
- Trout, T.J.; Johnson, L.F. Estimating crop water use from remotely sensed NDVI, Crop Models and Reference ET. In The Role of Irrigation and Drainage in a Sustainable Future, Proceedings of the USCID Fourth International Conference on Irrigation and Drainage, Sacramento, CA, USA, 3–6 October 2007; Clemmens, A.J., Anderson, S., Eds.; Colorado State University: Fort Collins, CO, USA, 2007. [Google Scholar]
- Vanino, S.; Pulighe, G.; Nino, P.; De Michele, C.; Bolognesi, S.F.; D’Urso, G. Estimation of Evapotranspiration and Crop Coefficients of Tendone Vineyards Using Multi-Sensor Remote Sensing Data in a Mediterranean Environment. Remote Sens. 2015, 7, 14708–14730. [Google Scholar] [CrossRef] [Green Version]
- Flood, N. Comparing Sentinel-2A and Landsat 7 and 8 using surface reflectance over Australia. Remote Sens. 2017, 9, 659. [Google Scholar] [CrossRef]
- Ruiz, R.; Sellés, G.; Ahumada, R. Aspectos físicos del suelo y calidad de fruta en parronales de uva de mesa. In Manejo de Riego y Suelo en Vides Para Vino y Mesa; Muñoz, I., Gonzalez, M., Sellés, G., Eds.; Instituto de Investigaciones Agropecuarias INIA: Santiago, Chile, 2007; pp. 77–84. [Google Scholar]
- Sommer, K.J.; Clingeleffer, P.R.; Ollat, N. Effects of minimal pruning on grapevine canopy development, physiology and cropping level in both cool and warm climates. Wein-Wiss. 1993, 48, 135–139. [Google Scholar]
- Faci, J.M.; Blanco, O.; Medina, E.T.; Martínez-Cob, A. Effect of post veraison regulated deficit irrigation in production and berry quality of Autumn Royal and Crimson table grape cultivars. Agric. Water Manag. 2014, 134, 73–83. [Google Scholar] [CrossRef]
- Behboudian, M.H. Zora Singh Water relations and irrigation scheduling in grapevine. Hortic. Rev. 2001, 27, 189–225. [Google Scholar]
- Myburgh, P.A. Responses of Vitis vinifera L. cv. Sultanina to water deficits during various pre- and post-harvest phases under semi-arid conditions. S. Afr. J. Enol. Vitic. 2003, 24, 25–33. [Google Scholar] [CrossRef]
- Wang, D.; Gartung, J. Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation. Agric. Water Manag. 2010, 97, 1787–1794. [Google Scholar] [CrossRef]
2014–2015 HD: 15 December 2014 | 2015–2016 HD: 22 December 2015 | 2016–2017 HD: 6 December 2016 | Average | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1 | T0 | T2 | Sig. | T1 | T0 | T2 | Sig. | T1 | T0 | T2 | Sig. | T1 | T0 | T2 | Sig. | |
Y (Ton/ha) | ND | ND | ND | ND | 22.3 | 20.5 | 22.5 | NS | 17.7b | 21.8a | 24.5a | 5% | 20.0 | 21.2 | 23.5 | NS |
BD (cm) | 18.5 | 18.8 | 18.9 | NS | 18.9 | 19.1 | 19.7 | NS | 19.9 | 19.8 | 20.1 | NS | 19.1b | 19.2ab | 19.6a | 5% |
BW (g) | 3.3 | 3.5 | 3.6 | NS | 3.4 | 3.7 | 3.9 | NS | 4.1 | 4.0 | 4.2 | NS | 3.6b | 3.7a | 3.9a | 1% |
fPAR | ND | ND | ND | ND | 0.77 | 0.80 | 0.85 | ND | 0.61 | 0.78 | 0.85 | ND | 0.69 | 0.79 | 0.85 | ND |
PW (Kg) | 1.6 | 2.1 | 2.7 | NS | 2.4b | 3.2ab | 3.8a | 5% | 1.5c | 3.0b | 3.9a | 1% | 1.8c | 2.8b | 3.4a | 1% |
Month | 2014–2015 | 2015–2016 | 2016–2017 | |||
---|---|---|---|---|---|---|
Irrigation (T1; T0; T2) mm/month | NIWR (P) mm/month | Irrigation (T1; T0; T2) mm/month | NIWR (P) mm/month | Irrigation (T1; T0; T2) mm/month | NIWR (P) mm/month | |
August | 13; 17; 21 | 11 | 27; 36; 45 | −49 (69) | 7; 10; 12 | 21 |
September | 18; 24; 30 | 11 (19) | 35; 47; 59 | 46 | 45; 60; 75 | 59 |
October | 33; 44; 55 | 69 | 35; 47; 59 | 54 (45) | 60; 80; 100 | 125 |
November | 39; 52; 65 | 117 | 57; 76; 95 | 150 | 86; 114; 143 | 158 |
December | 56; 74; 93 | 146 | 91; 121; 152 | 185 | 74; 98; 123 | 175 (1.3) |
January | 72; 96; 120 | 128 | 68; 91; 114 | 169 (0.4) | 62; 83; 103 | 149 |
February | 79; 106; 132 | 89 | 76; 101; 126 | 122 | 86; 115; 144 | 105 |
March | 47; 62; 78 | 30 (40) | 49; 65; 82 | 96 | 79; 105; 132 | 85 |
April | 5; 6; 8 | 40 | 15; 20; 25 | 51 (0.6) | 30; 39; 49 | 47 |
Total (mm) | 361; 481; 601 | 642 | 453; 603; 754 | 824 | 529; 705; 882 | 924 |
Growing Season | Stem Water Potential, Ψx MPa (DS) | |||
---|---|---|---|---|
Date | T1 | T0 | T2 | |
2015–2016 | 30 October 2015 | −0.82 (0.19) | −0.81 (0.09) | −0.83 (0.15) |
6 November 2015 | −0.62 (0.08) | −0.80 (0.18) | −0.70 (0.13) | |
11 November 2015 | −0.77 (0.08) | −0.68 (0.05) | −0.68 (0.09) | |
18 November 2015 | −0.92 (0.06) | −0.85 (0.17) | −0.77 (0.10) | |
25 November 2015 | −0.85 (0.10) | −0.71 (0.16) | −0.87 (0.16) | |
1 December 2015 | −0.92 (0.18) | −0.77 (0.20) | −0.82 (0.10) | |
9 December 2015 | −1.02 (0.28) | −0.90 (0.15) | −0.78 (0.17) | |
16 December 2015 | −1.20 (0.17) | −1.00 (0.11) | −1.02 (0.04) | |
22 December 2015 | −1.42 (0.10) | −1.30 (0.06) | −1.18 (0.13) | |
2016–2017 | 13 October 2016 | −1.03 (0.13) | −0.90 (0.07) | −0.87 (0.09) |
20 October 2016 | −1.05 (0.11) | −0.83 (0.13) | −0.86 (0.08) | |
25 October 2016 | −0.98 (0.04) | −0.89 (0.09) | −0.85 (0.05) | |
3 November 2016 | −1.02 (0.04) | −0.82 (0.13) | −0.79 (0.05) | |
10 November 2016 | −1.05 (0.06) | −0.93 (0.08) | −0.81 (0.17) | |
16 November 2016 | −1.02 (0.11) | −0.93 (0.09) | −0.86 (0.08) | |
24 November 2016 | −1.04 (0.09) | −1.00 (0.09) | −0.89 (0.06) | |
30 November 2016 | −1.05 (0.08) | −1.05 (0.06) | −0.95 (0.08) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbontín, C.; Campos, I.; Odi-Lara, M.; Ibacache, A.; Calera, A. Irrigation Performance Assessment in Table Grape Using the Reflectance-Based Crop Coefficient. Remote Sens. 2017, 9, 1276. https://doi.org/10.3390/rs9121276
Balbontín C, Campos I, Odi-Lara M, Ibacache A, Calera A. Irrigation Performance Assessment in Table Grape Using the Reflectance-Based Crop Coefficient. Remote Sensing. 2017; 9(12):1276. https://doi.org/10.3390/rs9121276
Chicago/Turabian StyleBalbontín, Claudio, Isidro Campos, Magali Odi-Lara, Antonio Ibacache, and Alfonso Calera. 2017. "Irrigation Performance Assessment in Table Grape Using the Reflectance-Based Crop Coefficient" Remote Sensing 9, no. 12: 1276. https://doi.org/10.3390/rs9121276
APA StyleBalbontín, C., Campos, I., Odi-Lara, M., Ibacache, A., & Calera, A. (2017). Irrigation Performance Assessment in Table Grape Using the Reflectance-Based Crop Coefficient. Remote Sensing, 9(12), 1276. https://doi.org/10.3390/rs9121276