# Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Study Area

## 3. Methods

#### 3.1. PCA

#### 3.2. Forming SRI

#### 3.3. Monitoring Deforestation Using SRI

- The model is estimated on a stable historical period where the parameters are assumed to be stable.
- A fluctuation process is initialized and captures deviations from the model. Under the null hypothesis, the fluctuation process converges to a Gaussian stochastic process.
- For each incoming observation, the fluctuation process is updated. If the fluctuation process exceeds the threshold for the limiting Gaussian process, there is evidence that the structure of the time series has changed.

#### 3.4. Seasonality Assessment

#### 3.5. Comparison of Different Indices

## 4. Accuracy Assessment

## 5. Results

#### Comparison of Seasonality in SRI and NDMI

## 6. Discussion

#### 6.1. Indices Comparison

#### 6.2. Applying PCA to the Whole Time Series

#### 6.3. Advantages, Limitations and Future Studies

## 7. Conclusions

## Supplementary Materials

## Author Contributions

## Conflicts of Interest

## Abbreviations

IR | Near and shortwave Infrared |

NDVI | Normalized Difference Vegetation Index |

NDMI | Normalized Difference Moisture Index |

SRI | Seasonality Reduced Index |

TCT | Tasseled Cap Transformation |

NBI | Natural Burn Index |

TW | TCT Wetness |

TG | TCT Greenness |

TB | TCT Brightness |

PCA | Principle Component Analysis |

## References

- Hamunyela, E.; Verbesselt, J.; Herold, M. Using spatial context to improve early detection of deforestation from Landsat time series. Remote Sens. Environ.
**2016**, 172, 126–138. [Google Scholar] [CrossRef] - Reiche, J.; Verbesselt, J.; Hoekman, D.; Herold, M. Fusing Landsat and SAR time series to detect deforestation in the tropics. Remote Sens. Environ.
**2015**, 156, 276–293. [Google Scholar] [CrossRef] - DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ.
**2015**, 161, 107–121. [Google Scholar] [CrossRef] - Dutrieux, L.P.; Verbesselt, J.; Kooistra, L.; Herold, M. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia. ISPRS J. Photogramm. Remote Sens.
**2015**, 107, 112–125. [Google Scholar] [CrossRef] - Zeileis, A.; Leisch, F.; Hornik, K.; Kleiber, C. Strucchange: An R Package for Testing for Structural Change in Linear Regression Models. J. Stat. Softw.
**2002**, 7, 1–38. [Google Scholar] [CrossRef] - Brown, R.L.; Durbin, J.; Evans, J.M. Techniques for testing the constancy of regression relationships over time. J. R. Stat. Soc. Ser. B (Methodol.)
**1975**, 37, 149–192. [Google Scholar] - Ploberger, W.; Krämer, W. The CUSUM test with OLS residuals. Econometrica
**1992**, 60, 271–285. [Google Scholar] [CrossRef] - Chu, C.S.J.; Hornik, K.; Kuan, C.M. MOSUM tests for parameter constancy. Biometrika
**1995**, 82, 603–617. [Google Scholar] [CrossRef] - Zeileis, A.; Leisch, F.; Kleiber, C.; Hornik, K. Monitoring structural change in dynamic econometric models. J. Appl. Econom.
**2005**, 20, 99–121. [Google Scholar] [CrossRef] - Lu, M.; Pebesma, E.; Sanchez, A.; Verbesselt, J. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series. ISPRS J. Photogramm. Remote Sens.
**2016**, 117, 227–236. [Google Scholar] [CrossRef] - Verbesselt, J.; Zeileis, A.; Herold, M. Near real-time disturbance detection using satellite image time series. Remote Sens. Environ.
**2012**, 123, 98–108. [Google Scholar] [CrossRef] - Rouse, J., Jr.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ.
**1974**, 351, 309–317. [Google Scholar] - Kimes, D.; Markham, B.; Tucker, C.; McMurtrey, J. Temporal relationships between spectral response and agronomic variables of a corn canopy. Remote Sens. Environ.
**1981**, 11, 401–411. [Google Scholar] [CrossRef] - Liu, H.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens.
**1995**, 33, 457–465. [Google Scholar] - Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ.
**2008**, 112, 3833–3845. [Google Scholar] [CrossRef] - Key, C.; Benson, N. Landscape Assessment (LA) Sampling and Analysis Methods; General Technical Report RMRS-GTR-164-CD; Rocky Mountain Research Station, USDA Forest Service: Logan, UT, USA, 2006. [Google Scholar]
- Kauth, R.J.; Thomas, G. The Tasseled Cap—A Graphic Description of the Spectral-temporal Development of Agricultural Crops as Seen by Landsat. LARS Symp.
**1976**. Available online: http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1160&context=lars_symp (accessed on 10 July 2017). - Lobser, S.; Cohen, W. MODIS tasseled cap: land cover characteristics expressed through transformed MODIS data. Int. J. Remote Sens.
**2007**, 28, 5079–5101. [Google Scholar] [CrossRef] - Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasseled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett.
**2014**, 5, 423–431. [Google Scholar] [CrossRef] - Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. Int. J. Remote Sens.
**2002**, 23, 1741–1748. [Google Scholar] [CrossRef] - Crist, E.P.; Cicone, R.C. A physically-based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens.
**1984**, 20, 256–263. [Google Scholar] [CrossRef] - Cohen, W.B.; Spies, T.A. Estimating structural attributes of Douglas-fir/western hemlock forest stands from Landsat and SPOT imagery. Remote Sens. Environ.
**1992**, 41, 1–17. [Google Scholar] [CrossRef] - DeVries, B.; Pratihast, A.K.; Verbesselt, J.; Kooistra, L.; Herold, M. Characterizing Forest Change Using Community-Based Monitoring Data and Landsat Time Series. PLoS ONE
**2016**, 11, e0147121. [Google Scholar] [CrossRef] [PubMed] - Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ.
**2005**, 97, 301–310. [Google Scholar] [CrossRef] - Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ.
**2002**, 83, 195–213. [Google Scholar] [CrossRef] - Zhu, Z.; Woodcock, C.E.; Olofsson, P. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens. Environ.
**2012**, 122, 75–91. [Google Scholar] [CrossRef] - Chatfield, C. Analysis of Time Series: An Introduction; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Canty, M.J. Image Analysis, Classification and Change Detection in Remote Sensing: With Algorithms for ENVI/IDL and Python; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on Loess. J. Off. Stat.
**1990**, 6, 3–73. [Google Scholar] - Hyndman, R.; Khandakar, Y. Automatic Time Series Forecasting: The forecast Package for R. J. Stat. Softw.
**2008**, 27, 1–22. [Google Scholar] [CrossRef] - Moody, A.; Johnson, D.M. Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sens. Environ.
**2001**, 75, 305–323. [Google Scholar] [CrossRef] - Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens.
**2002**, 40, 1824–1832. [Google Scholar] [CrossRef] - Hermance, J.F. Stabilizing high-order, non-classical harmonic analysis of NDVI data for average annual models by damping model roughness. Int. J. Remote Sens.
**2007**, 28, 2801–2819. [Google Scholar] [CrossRef] - Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens. Environ.
**2010**, 114, 2970–2980. [Google Scholar] [CrossRef] - Jolliffe, I. Principal Component Analysis; Wiley Online Library: Hoboken, NJ, USA, 2002. [Google Scholar]
- Burges, C.J. Dimension Reduction: A Guided Tour; Now Publishers Inc.: Delft, The Netherlands, 2010. [Google Scholar]
- Schowengerdt, R.A. Remote Sensing: Models and Methods for Image Processing; Academic Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens.
**1988**, 26, 65–74. [Google Scholar] [CrossRef] - Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies. Remote Sens. Environ.
**1998**, 64, 1–19. [Google Scholar] [CrossRef] - Switzer, P.; Green, A.A. Min/max autocorrelation factors for multivariate spatial imagery. In Computer Science and Statistics; Elsevier, Science Publishers B.V.: Amsterdam, The Netherlands, 1984; pp. 13–16. [Google Scholar]
- Nielsen, A.A. The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data. IEEE Trans. Image Process.
**2007**, 16, 463–478. [Google Scholar] [CrossRef] [PubMed][Green Version] - Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ.
**2012**, 118, 83–94. [Google Scholar] [CrossRef] - USGS. Product Guide, Landsat 4–7 Surface Reflectance LEDAPS Product. Available online: https://landsat.usgs.gov/landsat-surface-reflectance-high-level-data-products (accessed on 10 July 2017).
- Hamunyela, E.; Verbesselt, J.; Roerink, G.; Herold, M. Trends in spring phenology of western European deciduous forests. Remote Sens.
**2013**, 5, 6159–6179. [Google Scholar] [CrossRef] - Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A. Imaging spectroscopy: Earth and planetary remote sensing with the USGS Tetracorder and expert systems. J. Geophys. Res. Planets
**2003**, 108. [Google Scholar] [CrossRef] - Pontius, R.J.; Boersma, W.; Castella, J.C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci.
**2008**, 42, 11–37. [Google Scholar] [CrossRef] - Klug, W.; Grippa, G.; Tassone, C.; Graziani, G.; Pierce, D. Evaluation of Long Range Atmospheric Transport Models Using Environmental Radioactivity Data from the Chernobyl Accident (the ATMES Report); Springer: Berlin, Germany, 1992. [Google Scholar]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ.
**2010**, 114, 2897–2910. [Google Scholar] [CrossRef] - Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ.
**2014**, 144, 152–171. [Google Scholar] [CrossRef] - Zhang, H.; Roy, D. Landsat 5 Thematic Mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change. Remote Sens. Environ.
**2016**, 186, 217–233. [Google Scholar] [CrossRef] - Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens.
**2004**, 42, 2691–2694. [Google Scholar] [CrossRef] - Canty, M.J.; Nielsen, A.A. Linear and kernel methods for multivariate change detection. Comput. Geosci.
**2012**, 38, 107–114. [Google Scholar] [CrossRef]

**Figure 1.**Map of the study area and validation points, using Landsat ETM+ image Bands 3, 4 and 5 in red, blue and green channels, respectively, to composite the images. (

**a**) Brazilian site; the composite image is for 22 July 2011; green circles indicate validation points; (

**b**) Bolivian site; the composite image is for 7 August 2011; green circles indicate validation points; (

**c**) locations of the two study sites.

**Figure 2.**The PC loadings for all the testing time series containing no deforestation events at each site. The PC loadings with a band relationship that is indicated in PC3 of (

**a**) and PC2 of (

**b**) are selected based on (Equation (2)).

**Figure 3.**Diagram illustrating the proposed multispectral time series change monitoring method. PCA: Principal Component Analysis, MEFP: Monitor of Empirical Fluctuation Process.

**Figure 4.**Flowchart of our experiment comparing SRI and conventional vegetation indices. MOSUM, Moving Cumulative Sum.

**Figure 5.**Number of available Landsat TM and ETM + images of each year from 1984–2014 of the Bolivian and Brazilian study area.

**Figure 6.**Boxplot of ${R}^{2}$ of fitting first order harmonic terms to each SRI and NDMI of the testing dataset locations in the Bolivian study site (100 points).

**Figure 7.**Time series of NDMI, NDVI, TCT and SRI at two sample locations of the Bolivian site. The red dashed line indicates real deforestation time; the blue dotted line indicates the time of MEFP detected deforestation. (

**a**) Time series at location (18.341${}^{\circ}$ S, 62.541${}^{\circ}$ W); (

**b**) time series at location (18.364${}^{\circ}$ S, 62.584${}^{\circ}$ W).

**Figure 8.**Time series of NDMI, NDVI, TCT and SRI at two sample locations of the Brazilian site. The red dashed line indicates real deforestation time; the blue dotted line indicates the time of MEFP detected deforestation. (

**a**) Time series at location (10.345${}^{\circ}$ S, 63.862${}^{\circ}$ W); (

**b**) time series at location (10.686${}^{\circ}$ S, 63.595${}^{\circ}$ W).

**Table 1.**Figure Of Merit (FOM, %), Producer’s Accuracy (PA, %), User’s Accuracy (UA, %), Overall Accuracy (OA, %) and Temporal Delay (TD, observation) at the Bolivian site. A mean model is used in the MEFP for the method introduced here (SRI), and a first-order harmonic model is used for the other indices.

FOM | PA | UA | OA | TD | |
---|---|---|---|---|---|

SRI | 39.4 | 87.5 | 41.8 | 88.6 | 6 |

NDMI | 19.9 | 81.3 | 20.8 | 73.8 | 19 |

NDVI | 21.5 | 54.6 | 26.2 | 83 | 24 |

TB | 15.8 | 18.4 | 52.8 | 91.1 | 41 |

TG | 21.5 | 79.6 | 22.7 | 74.9 | 17 |

TW | 22 | 99 | 22 | 70.3 | 5 |

**Table 2.**FOM (%), PA (%), UA (%), OA (%) and (observation) at the Brazilian site. A mean model is used in the MEFP for the method introduced here (SRI), and a first-order harmonic model is used for the other indices.

FOM | PA | UA | OA | TD | |
---|---|---|---|---|---|

SRI | 17.7 | 64.6 | 19.6 | 47.4 | 11 |

NDMI | 22.4 | 62.5 | 25.9 | 59.6 | 17 |

NDVI | 18.4 | 44.3 | 23.9 | 63.2 | 16 |

TB | 9.5 | 13.9 | 23 | 65.5 | 27 |

TG | 21.1 | 54.9 | 25.6 | 55.5 | 24 |

TW | 20.3 | 87.1 | 20.9 | 38.1 | 30 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lu, M.; Hamunyela, E.; Verbesselt, J.; Pebesma, E.
Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring. *Remote Sens.* **2017**, *9*, 1025.
https://doi.org/10.3390/rs9101025

**AMA Style**

Lu M, Hamunyela E, Verbesselt J, Pebesma E.
Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring. *Remote Sensing*. 2017; 9(10):1025.
https://doi.org/10.3390/rs9101025

**Chicago/Turabian Style**

Lu, Meng, Eliakim Hamunyela, Jan Verbesselt, and Edzer Pebesma.
2017. "Dimension Reduction of Multi-Spectral Satellite Image Time Series to Improve Deforestation Monitoring" *Remote Sensing* 9, no. 10: 1025.
https://doi.org/10.3390/rs9101025