Next Article in Journal
Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests
Next Article in Special Issue
Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8
Previous Article in Journal
Developing a Comprehensive Spectral-Biogeochemical Database of Midwestern Rivers for Water Quality Retrieval Using Remote Sensing Data: A Case Study of the Wabash River and Its Tributary, Indiana
Previous Article in Special Issue
Sentinel-2’s Potential for Sub-Pixel Landscape Feature Detection
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Remote Sens. 2016, 8(6), 520;

An Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery

Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD 57007, USA
Author to whom correspondence should be addressed.
Academic Editors: Clement Atzberger and Prasad S. Thenkabail
Received: 4 May 2016 / Revised: 13 June 2016 / Accepted: 14 June 2016 / Published: 21 June 2016
Full-Text   |   PDF [11555 KB, uploaded 21 June 2016]   |  


Moderate spatial resolution satellite data from the Landsat-8 OLI and Sentinel-2A MSI sensors together offer 10 m to 30 m multi-spectral reflective wavelength global coverage, providing the opportunity for improved combined sensor mapping and monitoring of the Earth’s surface. However, the standard geolocated Landsat-8 OLI L1T and Sentinel-2A MSI L1C data products are currently found to be misaligned. An approach for automated registration of Landsat-8 OLI L1T and Sentinel-2A MSI L1C data is presented and demonstrated using contemporaneous sensor data. The approach is computationally efficient because it implements feature point detection across four image pyramid levels to identify a sparse set of tie-points. Area-based least squares matching around the feature points with mismatch detection across the image pyramid levels is undertaken to provide reliable tie-points. The approach was assessed by examination of extracted tie-point spatial distributions and tie-point mapping transformations (translation, affine and second order polynomial), dense-matching prediction-error assessment, and by visual registration assessment. Two test sites over Cape Town and Limpopo province in South Africa that contained cloud and shadows were selected. A Landsat-8 L1T image and two Sentinel-2A L1C images sensed 16 and 26 days later were registered (Cape Town) to examine the robustness of the algorithm to surface, atmosphere and cloud changes, in addition to the registration of a Landsat-8 L1T and Sentinel-2A L1C image pair sensed 4 days apart (Limpopo province). The automatically extracted tie-points revealed sensor misregistration greater than one 30 m Landsat-8 pixel dimension for the two Cape Town image pairs, and greater than one 10 m Sentinel-2A pixel dimension for the Limpopo image pair. Transformation fitting assessments showed that the misregistration can be effectively characterized by an affine transformation. Hundreds of automatically located tie-points were extracted and had affine-transformation root-mean-square error fits of approximately 0.3 pixels at 10 m resolution and dense-matching prediction errors of similar magnitude. These results and visual assessment of the affine transformed data indicate that the methodology provides sub-pixel registration performance required for meaningful Landsat-8 OLI and Sentinel-2A MSI data comparison and combined data applications. View Full-Text
Keywords: registration; Landsat-8; Sentinel-2; area-based least squares matching; feature based matching registration; Landsat-8; Sentinel-2; area-based least squares matching; feature based matching

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary materials


Share & Cite This Article

MDPI and ACS Style

Yan, L.; Roy, D.P.; Zhang, H.; Li, J.; Huang, H. An Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery. Remote Sens. 2016, 8, 520.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top